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Abstract: A Global Positioning System (GPS) spoofing attack can be launched against any commercial
GPS sensor in order to interfere with its navigation capabilities. These sensors are installed in a variety
of devices and vehicles (e.g., cars, planes, cell phones, ships, UAVs, and more). In this study, we focus
on micro UAVs (drones) for several reasons: (1) they are small and inexpensive, (2) they rely on a
built-in camera, (3) they use GPS sensors, and (4) it is difficult to add external components to micro
UAVs. We propose an innovative method, based on the video stream captured by a drone’s camera,
for the real-time detection of GPS spoofing attacks targeting drones. The proposed method collects
frames from the video stream and their location (GPS coordinates); by calculating the correlation
between each frame, our method can detect GPS spoofing attacks on drones. We first analyze the
performance of the suggested method in a controlled environment by conducting experiments on a
flight simulator that we developed. Then, we analyze its performance in the real world using a DJI
drone. Our method can provide different levels of security against GPS spoofing attacks, depending
on the detection interval required; for example, it can provide a high level of security to a drone
flying at altitudes of 50–100 m over an urban area at an average speed of 4 km/h in conditions of low
ambient light; in this scenario, the proposed method can provide a level of security that detects any
GPS spoofing attack in which the spoofed location is a distance of 1–4 m (an average of 2.5 m) from
the real location.

Keywords: drones; GPS spoofing; countermeasures

1. Introduction

A Global Positioning System (GPS) is a satellite-based radio navigation system that
provides geolocation and time information. GPS sensors are located in various devices and
vehicles such as cars, planes, cell phones, ships, large and small UAVs, and more. In light
of this, we propose a novel GPS spoofing attack detection system. We focus our solution on
small UAVs (drones) for several reasons: (1) they are small and inexpensive, (2) they rely on
a built-in camera, (3) they use GPS sensors, and (4) it is difficult to add external components
to micro UAVs. Many attacks on GPS sensors attempt to spoof the location of the device at
a given moment, including GPS spoofing, which is one of the most common attacks of this
kind. A successful spoofing attack enables the attacker to perform various attacks, such
as changing the direction of the device, redirecting the device to another location in the
world, and more. A drone manufacturer can detect GPS spoofing attacks by analyzing the
physical layer of the signal, because it has access to this data via the sensor. Currently, subtle
GPS spoofing attacks are not detected by drone manufacturers, creating a real problem for
consumers who need an effective user-level solution (i.e., a solution that is effective given
the existing constraints whereby the consumer likely has limited to no access to the relevant
data). Recent studies have suggested countermeasures to detect, mitigate, and prevent GPS
spoofing attacks, however the proposed methods have numerous disadvantages, and as a
result, a recent SoK identified GPS spoofing attacks against drones as a scientific gap [1]
that threatens drones’ ability to perform their tasks.
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In this research, we examine whether a drone’s video stream can be used to detect
GPS spoofing attacks, without the need for additional drone hardware or memory, or prior
knowledge of the flight area. We propose a method capable of detecting GPS spoofing
attacks by verifying the measurements obtained by the GPS sensor against the video stream
captured by the drone’s camera. We analyze the suggested method’s performance in a
controlled environment by conducting experiments on a flight simulator that we developed.
Then, we analyze its performance in the real world using a commercial drone. We show
that our method can detect any attempt to launch a GPS spoofing attack in which the
spoofed location is a distance of 1–4 m (an average of 2.5 m) from the real location and for
a drone flying at altitudes of 50–100 m over an urban area at an average speed of 4 km/h
with different levels of ambient light.

The significance of our method with respect to the methods proposed in related work
is as follows:

1. Our method relies on existing hardware: in contrast to methods presented in other
studies (e.g., [2–4]), our method does not involve the use of additional hardware,
which also makes it cost-effective;

2. Our method is database independent: in contrast to methods presented in other
studies (e.g., [5]) which use a precompiled database, our method does not rely on a
precompiled database or a map of the drone’s flight area;

3. Our method offers flexibility: unlike other methods, it can be implemented on the
drone itself or from the ground control station used to control the drone (i.e., on the
drone’s controller);

4. We empirically evaluate the accuracy of our method and determine the level of
security for a situation in which the spoofed location is an average of 2.5 m away from
the actual location, an aspect that was not evaluated in related studies.

In summary, this paper makes the following contributions: (1) We propose a new
method for the detection of GPS spoofing attacks on devices that include (or contain)
an on-board video camera. The method’s performance was evaluated with a simulator
and in a real life scenario. (2) We develop a simulator that allows us to simulate a drone
hovering over a Google Earth map, allowing us to simulate flights in different conditions
(various altitudes, terrains, speeds, and level of ambient light) and locations. The code of
the simulator has been uploaded to GitHub [6].

The remainder of this article is organized as follows. We provide an overview of
related work in Section 2. The proposed method is described in Section 3. In Section 4,
we discuss the analysis performed in our simulation environment. The results of our
real-world evaluation are presented in Section 5. In Section 6, we present the method’s
limitations. In Section 7, we discuss our plans for future work. Our article concludes in
Section 8, where we summarize our findings.

2. Related Work

In this section, we review prior studies that proposed countermeasures against GPS
spoofing. The GPS protocol is vulnerable to spoofing attacks, since it lacks encryption
and authentication mechanisms. As a result, attackers can inject false GPS signals using
software-defined radio (SDR) [7] or dedicated GPS spoofers (which can be purchased
online), causing the drone to believe that it is flying in a location that differs from the
actual location. Studies have shown that GPS spoofing attacks against drones can cause
a drone flying in autonomous mode to accelerate in the attacker’s chosen direction [8]
(by transmitting fake GPS coordinates in the opposite direction); force a drone flying in
manual mode to land [9] (by sending a no-flight zone alert that triggers a safety mechanism,
causing the drone to land); or change the direction of the drone’s movement itself [10].

Other studies have suggested countermeasures against GPS spoofing attacks by inte-
grating additional hardware. One study [3] suggested the use of a multi-receiver for GPS
spoofing detection to detect malicious fake signals, by verifying the GPS measurements us-
ing the fixed distances between the receivers and then measuring the distances between the
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receivers’ reported locations. When the GPS signal is legitimate, the distance will be similar
to the fixed distances, but when there is a GPS spoofing attack, the measured distances
will be very close to zero, as all the receivers are spoofed with the same fake location; this
method would be difficult to implement with small drones, because additional hardware
is needed for all of the GPS receivers. SPREE [4], a method presented in another study, is
a countermeasure for GPS spoofing attacks that can also detect takeover attacks; it relies
on the auxiliary peak method, which is used in combination with a navigation message
inspector in which the strongest satellite signal as well as other weaker environment signals
are tracked. SPREE’s main disadvantage is that external hardware is needed. Another
study [11] suggested the use of Iridium signals to detect Global Navigation Satellite System
(GNSS) spoofing. The authors reverse engineered parameters from the Iridium satellite
constellation, such as the satellite’s speed, packet interarrival times, maximum satellite
coverage, satellite pass duration, and satellite beam constellation. With those parameters,
they proposed a solution for the detection of a target user’s deviations from his/her path
caused by a GNSS spoofing attack. The main disadvantage of the proposed method is the
requirement to provide the parameter values for each user, which may be a barrier to a
consumer without this capability. Another study proposed SemperFi [12], a single antenna
GPS receiver capable of tracking legitimate GPS satellite signals and estimating the drone’s
true location (even during a spoofing attack); this method relies on a comparison of satellite
signals’ time of arrival (ToA) in order to determine whether a GPS spoofing attack occurred.
This solution’s main disadvantage is that the consumer is dependent on the manufacturer,
which is responsible for the solution’s implementation, and cannot implement the solution
him/herself. In a paper presenting a similar solution that deals with the GPS signal [13], the
authors proposed a receiver that uses maximum plausibility estimates after the validator
signal is dropped, in order to assess the correct location.

Other studies suggested countermeasures that do not rely on GPS for navigation and
instead rely on the cellular network; for example in [14], the authors presented “drive me
not”, a GPS spoofing detection method that utilizes mobile cellular network infrastructure
to validate the position received by the GPS infrastructure. Other research [15] utilized
UpLink’s received signal strength (RSS) measurements for cross-position validation for
GPS spoofing detection. In another study [16], the authors built a network of clustered
ground base stations (BSs) that cooperatively serve a number of UAV-UEs. The main
disadvantage of these solutions is that they will only work with drones that have cellular
communication capabilities; in contrast, our solution relies on a camera, which is a more
common drone component.

Methods for navigating without GPS have also been proposed, such as MVP [17],
a method for navigating in locations such as tunnels and underpasses. The main idea
is to extract magnetic fingerprints from geomagnetic field anomalies and compare the
measurements against a magnetic map. This method will be difficult to apply in open
places and without prior knowledge of the area.

Other research suggested countermeasures that use existing hardware. Several studies
proposed methods that use motion sensors and compasses to detect GPS spoofing attacks.
For example, one study [18] presented a method that uses gyroscope measurements to
verify GPS measurements; its drawbacks are that the sensor’s measurements suffer from
false negative/positive errors and must be calibrated in advance. Another method [19]
uses an on-board camera and the inertial measurement unit (IMU) to obtain the velocity
and position of the drone to detect unexpected changes in the flight path. In this case, the
drawbacks are the same as the previous method; additionally, this method relies on two
sensors: the camera and IMU. Another study [20] proposed two methods which must be
used together for GPS spoofing detection. Here, the difference in acceleration between
the GPS receiver and the accelerometer is used to detect GPS spoofing. This solution’s
disadvantage is that the accelerometer can be affected by external factors, and flying or
driving conditions can affect GPS spoofing detection performance. A deep learning-based
solution which uses images from satellites and compares them to images from a drone’s
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camera to determine whether the locations match was proposed by [5]; its disadvantage
is that it requires initial preparation in the flight area. Moreover, every GPS point in
the area must be covered, a requirement which increases the size of the precompiled
database significantly. Another study presented DIAT [2], which verifies the data/signals
received from a drone’s sensors with data from other nearby drones in order to detect
compromised measurements. Its drawback is that it needs to support and protect drone-to-
drone communication, which requires development of the communication protocol.

While various countermeasures against GPS spoofing attacks have been suggested,
they all have disadvantages. A recent SoK paper [1] identified GPS spoofing attacks against
civilian drones as a scientific gap that cannot be prevented by any existing mechanisms
with a high technological readiness level [21].

3. Proposed Method

In this section, we describe the proposed method for the detection of GPS spoofing
attacks on drones. Our method relies on data obtained from two sources: a drone’s video
stream and GPS measurements. It is based on the assumption that unlike GPS signals,
the drone’s video stream cannot be spoofed. To detect GPS spoofing attacks, our method
correlates a drone’s movement, calculated from the GPS signals, with the real-time video
stream frames. Based on this correlation and a predefined correlation threshold, our method
determines whether a GPS spoofing attack has occurred. The correlation between frames is
based on brute-force matcher (BFMatcher, which is used to match the features of the first
frame with another frame) [22], with the speeded-up robust features (SURF) [23] feature
detector. The algorithm receives two frames and calculates their correlation. The output
ranges from 0 to 100, with 100 assigned when the same frames are being compared and
zero assigned when completely different frames are compared. The correlation decreases
as the similarity between the images decreases. There are several other methods that can
be used to calculate the correlation; for example, the authors of [24] compared the use of
SURF, scale-invariant feature transform (SIFT), binary robust invariant scalable keypoints
(BRISK), and oriented FAST and rotated BRIEF (ORB), and found that SURF was the fastest
algorithm and provided good results. For this reason we choose to use BFMatcher with
SURF in all of our experiments.

The difference in the correlation between the first frame ( f ramei) and the next n
consecutive frames ( f ramei+1, . . . , f ramei+n) is continuously calculated. Based on the
GPS measurements and the similarity correlation between the frames, a model, which is
used to verify the location for the next q consecutive frames ( f ramei+n+1, . . . , f ramei+n+q),
is created. For each of the next q consecutive frames ( f ramei+n+1, . . . , f ramei+n+q), the
distance is predicted based on the frame’s similarity correlation with the first frame. If the
error, meaning the difference between the actual distance and the distance predicted by the
model, is beyond a threshold, the model issues an alert that the GPS measurements do not
correlate with the video stream (i.e., a GPS spoofing attack has taken place). In each flight,
our method is applied for a specified period of time (from f ramei to f ramei+n+q). The
similarity correlation between consecutive frames decreases as a function of the distance, so
eventually there will be no correlation between the first and last frames, and a new model
will be generated.

Our method includes the following steps:

1. After the drone takes off, frames along with their specific GPS locations are collected.
For each second of flight, one frame and its GPS location are saved. Thus, after n
seconds, we will have n frames ( f ramei = the first frame in the time window, and
f ramei+n = the nth frame in the time window);

2. The similarity correlation between f ramei and all other i + n frames is calculated. At
the same time, the distance (based on the GPS measurements) between the location
of f ramei and the location of all other i + n frames is calculated. This information
is used to generate a graph presenting the correlation vs. distance (an example of
such a graph is presented in Figure 1). This graph allows us to model the change in
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frame correlation against the GPS distance, which provides a suitable function for the
prediction of the next point ( f (correlation) = distance) on the graph;

3. The next f ramei+n+1 and its GPS location are obtained, and the correlation between
f ramei and f ramei+n+1 (correlation_i_i + n + 1) and the distance between the GPS
locations are calculated. Then, the model can predict predict_distance from function
f (correlation_i_i + n + 1) = predict_distance. We then have the actual and predicted
distance between f ramei and f ramei+n+1;

4. If predicted_distance ≈ real_distance, the GPS location correlates with the frame, indicat-
ing that there was no GPS spoofing attack on the drone. If predict_distance > real_distance,
there is no correlation between the GPS location and the frame, confirming that there has
been a GPS spoofing attack.

Figure 1. Correlation as a function of distance for location #1 (a neighborhood in Manhattan) for
an altitude of 200 m (the blue points indicate the simulation results, and the red line represents the
linear regression).

This process is presented in Figure 2 with an example in which we collected five
frames ( f rame0 to f rame4), along with their GPS locations, and tried to predict the distance
for f rame5 (i = 0, n = 4).

Figure 2. The implementation of the proposed method, using an example in which we obtained five
frames ( f rame0 to f rame4) and tried to predict the distance for f rame5 (i = 0, n = 4).

4. Analysis and Simulation

In this section, we describe the experiments and analysis performed in our simula-
tion environment, a setting which allows us to investigate the effect of (1) the drone’s
altitude, (2) the drone’s speed, (3) the terrain over which the drone flies, and (4) ambi-
ent light on our method’s performance. The simulation environment was designed so
that we could examine our solution in a controlled environment, without external distur-
bances, and demonstrate a proof of concept of our solution in various field conditions.
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In this setting we can also test our proposed method anywhere in the world by using
Google Earth. To predict the next position, we graphed the correlation vs. distance,
built a function suitable for the graph, and learned how it behaves. A test window is
defined as the number of points needed to construct a linear regression function so that
f (correlation) = distance_prediction.

We used the simulator to conduct various experiments aimed at assessing the influence
of the specific factors (1–4 in the previous paragraph) on the method’s performance. The
following metrics were used to evaluate the performance: the root-mean-square error
(RMSE), R2, and mean absolute error (MAE).

4.1. The Simulator

To build the simulator, we needed to understand how to manipulate the cropped
images so they serve as a snapshot from a hovering drone in real time. The cropped size is
influenced by the latitude (when altitude increases, more ground is covered) and the cam-
era’s field of view (FOV). We set the camera’s FOV at 79◦. After a map from Google Earth
has been selected, the values of the following parameters are used in the simulation: (1) me-
tersInLegend—the scale in meters from the Google Earth legend; (2) legendPixels—represents
the number of actual pixels, which appears in the Google Earth legend; (3) photoWidth—the
photo’s width in pixels; and (4) photoHeight—the photo’s height in pixels. We uploaded the
code to GitHub [6]. Figure 3 presents an example of the simulator screen.

Figure 3. Example of the simulator screen. The drone speed and altitude values are inserted on the
left and submitted by the user (by clicking on the “Submit” button); the user clicks on the image and
uses the arrows to move the black frame on the map; to finish, the user presses “Enter”.

The following steps must be performed when using the simulator: (1) Obtain a map
from Google Earth [25], and (2) insert the drone speed and altitude, and click on the
“Submit” button. (3) Click on the image; the position clicked on represents the drone’s
starting position, and the black frame captures what the drone sees in a specific frame.
(4) Use the arrows to move the black frame on the map—each movement will crop an
image; the difference in the distance (in meters) between each frame is calculated, and the
correlation between each frame is calculated; click the “Enter” button to stop.

We then plot the correlation vs. distance on a graph. The graph starts at the (0, 100)
point, which means that at the starting location the distance is zero. When moving along
the map, the correlation between the images decreases as a function of the distance.

4.2. Influence of Altitude

The altitude affects the efficacy of the test window and how quickly it needs to be
changed. As the drone’s altitude increases, its perspective widens, and the changes between
two consecutive frames are more significant.

Experimental Setup: In this experiment, we chose three locations in a neighborhood of
Manhattan (Figures 4–6). In the simulations, the drone flew at three different altitudes (50,
100, and 200 m) at a consistent speed of 5 m/s (meters per second). For each altitude, the
simulation ended immediately after the drone was out of the scope of the first frame (this
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was done in each of the experiments described below), because we found that a correlation
of zero is obtained when the drone is out of the first image’s scope due to the fact that there
is no longer any similarity to the first image.

Figure 4. Location #1: 200 m (in the left image), 100 m (in the center image), 50 m (in the right image).

Figure 5. Location #2: 200 m (in the left image), 100 m (in the center image), 50 m (in the right image).

Figure 6. Location #3: 200 m (in the left image), 100 m (in the center image), 50 m (in the right image).

Results and Conclusions: The results are presented in Tables 1–3. Based on the results
obtained, we calculated the RMSE, R2, and MAE. Several interesting insights can be derived
from the results: (1) RMSE: as the altitude increases, the RMSE value decreases; (2) R2:
while this tends to be a value of one, it can be seen that the R2 value decreases at 10−3; and
(3) MEA: when the value is close to zero we get a better match to reality.

Table 1. The effect of a drone’s altitude on the performance; the results are presented for location #1
and various altitudes, with a drone speed of 5 m/s (18 km/h).

Altitude Linear Function RMSE R2 MEA

200 m −0.224X + 97.984 1.2588 0.9984 0.9323
100 m −0.464X + 93.165 3.8040 0.9952 1.4468
50 m −1.072X + 100.797 5.7254 0.9934 2.0112

Table 2. The effect of a drone’s altitude on the performance; the results are presented for location #2
and various altitudes, with a drone speed of 5 m/s (18 km/h).

Altitude Linear Function RMSE R2 MEA

200 m −0.220X + 97.168 1.9597 0.9974 1.2334
100 m −0.497X + 103.025 3.7830 0.9958 1.6309
50 m −1.229X + 107.230 39.3119 0.9664 5.6436
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Table 3. The effect of a drone’s altitude on the performance; the results are presented for location #3
and various altitudes, with a drone speed of 5 m/s (18 km/h).

Altitude Linear Function RMSE R2 MEA

200 m −0.221X + 95.962 1.8016 0.9976 1.1909
100 m −0.500X + 101.049 2.1226 0.9976 1.1129
50 m −1.125X + 99.657 11.3997 0.9881 2.9085

4.3. Influence of Speed

The drone’s speed affects the efficacy of the test window and how quickly it needs to
be changed. As the drone’s speed increases, its perspective widens, and the correlation
between consecutive frames decreases accordingly. To isolate the problem, a constant
velocity is used in this experiment.

Experimental Setup: In this experiment, we used three different altitudes (50, 100, and
200 m) and one location in Manhattan (Figure 4). For each altitude, three different speeds
and a constant velocity were used. One frame was collected per second. As mentioned in
Section 4.2, the simulation ended immediately after the drone was out of the scope of the
first image.

Results and Conclusions: Tables 4–6 present the results for altitudes of 50, 100, and
200 m. Several interesting insights can be derived from the results: (1) RMSE: as the speed
increases, the RMSE value decreases; (2) R2: while this tends to be a value of one, it can be
seen that the R2 value decreases at 10−3; (3) MEA: when the value is close to zero we get a
better match to reality; and (4) by examining each speed separately, at higher altitudes the
error associated with high speeds decreases. We observe that the best speed for this terrain
is 10 m/s, where it can be seen that the values of the RMSE, R2, and MEA are the lowest
for all altitudes.

Table 4. The effect of a drone’s speed on the performance; the results are presented for location #1
and an altitude of 50 m, at various speeds.

Speed Linear Function RMSE R2 MEA

5 m/s (18 km/h) −1.487X + 145.204 0.2551 0.9918 0.4591
10 m/s (36 km/h) −0.878X + 91.951 1.5243 0.9878 1.1585
20 m/s (72 km/h) −0.914X + 93.379 1.7241 0.9965 1.1379

Table 5. The effect of a drone’s speed on the performance; the results are presented for location #1
and an altitude of 100 m, at various speeds.

Speed Linear Function RMSE R2 MEA

5 m/s (18 km/h) −1.900X + 187.233 5.8169 0.8138 2.3882
10 m/s (36 km/h) −1.720X + 173.427 0.7974 0.9936 0.7550
20 m/s (72 km/h) −1.818X + 179.150 2.9411 0.9941 1.6993

Table 6. The effect of a drone’s speed on the performance; the results are presented for location #1
and an altitude of 200 m, at various speeds.

Speed Linear Function RMSE R2 MEA

5 m/s (18 km/h) −0.225X + 98.134 1.2764 0.9983 0.9385
10 m/s (36 km/h) −0.230X + 99.831 0.2852 0.9996 0.4229
20 m/s (72 km/h) −0.229X + 99.946 0.5753 0.9993 0.5700

4.4. Influence of Terrain

When the terrain over which the drone flies changes constantly (as it does in urban
areas), the correlation between the frames has greater influence; in contrast, in unsettled
open/flat areas there are limited changes in the correlation between consecutive frames.
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The results presented in Section 4.2 demonstrate that the proposed method provides good
results in urban environments, so in this section, we examine only unsettled open/flat areas.

Experimental Setup: In this experiment, the drone flew over an unsettled open/flat
area at the lake in Central Park (Figure 7). Using a histogram normalized for the color scale,
the flatter the histogram, the more stable the image changes are. As the starting point, we
used the worst-case scenario in which the drone hovers over the lake at three different
altitudes (50, 100, and 200 m; see Figure 8) at speeds of 5, 10, and 20 m/s. As mentioned in
Section 4.2, the simulation ended immediately after the drone was out of the scope of the
first image.

Figure 7. The two types of terrain from an altitude of 1.2 km and histogram graphs: Manhattan as
urban (top) and Central Park as unsettled open/flat area (bottom).

Figure 8. Terrain test for the Central Park Lake location (location #2) from altitudes of: 200 m (in the
left image), 100 m (in the center image), 50 m (in the right image).

Results and Conclusions: Tables 7–9 present the results for this terrain for altitudes of
50, 100, and 200 m. Based on the results obtained, we calculated the RMSE, R2, and MEA.
The results obtained for the three metrics indicate that none of the metrics were suitable
for evaluating the influence of the terrain on our method’s performance. However, several
interesting insights can be derived from the results: (1) RMSE: the RMSE value is very high
(over 180) at all speeds and altitudes; (2) R2: the value obtained for this metric is never
close to one; therefore the error keeps increasing; and (3) MEA: the MEA value is never
close to zero. Based on the results of this experiment, we conclude that our solution is not
effective when applied on unsettled open/flat terrains; it is more suitable for urban terrain.



Sensors 2022, 22, 2608 10 of 17

Table 7. The effect of the flight terrain on the performance; the results are presented for location #2
and an altitude of 50 m, at various speeds.

Speed Linear Function RMSE R2 MEA

5 m/s (18 km/h) −1.351X + 104.897 181.7630 0.8930 11.4522
10 m/s (36 km/h) −1.105X + 97.275 247.5627 0.8547 13.2745
20 m/s (72 km/h) −1.178X + 100.595 237.1031 0.8723 12.2619

Table 8. The effect of the flight terrain on the performance; the results are presented for location #2
and an altitude of 100 m, at various speeds.

Speed Linear Function RMSE R2 MEA

5 m/s (18 km/h) −0.714X + 116.341 240.2957 0.8761 13.4783
10 m/s (36 km/h) −0.726X + 117.098 250.6292 0.8748 14.0265
20 m/s (72 km/h) −0.729X + 118.303 239.9461 0.8797 13.8666

Table 9. The effect of the flight terrain on the performance; the results are presented for location #2
and an altitude of 200 m, at various speeds.

Speed Linear Function RMSE R2 MEA

5 m/s (18 km/h) −0.294X + 118.573 300.9058 0.8159 15.1959
10 m/s (36 km/h) −0.279X + 115.805 278.9850 0.8254 14.5698
20 m/s (72 km/h) −0.266X + 113.072 290.8093 0.8237 14.8485

4.5. Influence of Ambient Light

Ambient light can influence how the terrain trajectory changes. We note that our
method relies on the video stream from a drone’s built-in camera, which does not provide
any special night vision capabilities or the ability to see in total darkness.

Experimental Setup: To obtain images with different levels of daylight, which are not
available from Google Earth, we used an image processing technique commonly used to
darken images [26]. This allowed us to simulate four lighting conditions: 75%, 50%, 25%,
and 10% light (see Figure 9) at altitudes of 50–200 m. In this experiment, one location was
used (location #1), along with the four lighting conditions. As mentioned in Section 4.2, the
simulation ended immediately after the drone was out of the scope of the first image.

Figure 9. The view of an urban location (location #1) from an altitude of 1.2 km in various lighting
conditions (ranging from 75 to 10% light).
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Results and Conclusions: Once again, several interesting observations can be derived
from the results, which are presented in Tables 10–12: (1) RMSE: we observe that when
there is less light (reflected in the darkened images), the RMSE value increases; (2) R2: as
the amount of light decreases, we observe a slight decrease in the values for this metric;
(3) MEA: as the amount of light decreases, the MEA value increases; (4) for all lighting
conditions, the best results obtained are for an altitude of 200 m; (5) poorer results are
obtained when the lighting level is under 25%. Our solution relies on the fact that there is
a change in terrain for every frame transition; these changes cannot be detected in dark
conditions, which is why the ambient light affects our solution.

Table 10. The effect of ambient light on the performance; the results are presented for an urban
location, from an altitude of 50 m, under various lighting conditions (ranging from 75 to 10% light).

Light Linear Function RMSE R2 MEA

75% −1.063X + 99.575 3.0514 0.9967 1.4503
50% −1.111X + 102.380 6.8292 0.9926 2.1720
25% −1.112X + 101.834 7.1568 0.9923 1.9989
10% −1.026X + 125.131 543.1094 0.5925 19.7922

Table 11. The effect of ambient light on the performance; the results are presented for an urban
location, from an altitude of 100 m, under various lighting conditions (ranging from 75 to 10% light).

Light Linear Function RMSE R2 MEA

75% −0.485X + 96.490 3.4121 0.9956 1.4333
50% −0.486X + 95.730 4.5149 0.9943 1.6018
25% −0.500X + 99.148 4.7360 0.9943 1.8010
10% −0.475X + 123.390 246.8611 0.7533 13.2136

Table 12. The effect of ambient light on the performance; the results are presented for an urban
location, from an altitude of 200 m, under various lighting conditions (ranging from 75 to 10% light).

Light Linear Function RMSE R2 MEA

75% −0.226X + 98.867 1.3956 0.9981 0.9657
50% −0.231X + 99.090 2.4037 0.9970 1.2434
25% −0.235X + 100.492 2.7024 0.9967 1.2696
10% −0.225X + 103.089 41.5135 0.9487 5.8316

5. Real-World Evaluation

In this section, we describe our real-world evaluation of the proposed method using a
DJI Mavic 2 Pro drone. Due to local regulations, we had to limit the drone’s flight altitude to
100 m; therefore the flights were performed at altitudes of 50 and 100 m. The first step was
to capture the GPS locations and their corresponding video frames from the drone’s video
stream. To do so, we built an app that collects this information using DJI’s Android mobile
software development kit (SDK) [27]. The ability to downsample or oversample the video
stream allowed us to simulate flight speeds that differ from the actual speed of the drone. We
gathered the samples, which will serve as input to our model, and stored them on a PC.

5.1. The Experiment

We performed drone flights in two urban areas (see the flight routes for locations #1
and #2 from an altitude of 50 m in Figure 10 and 100 m in Figure 11). We performed two
types of experiments; in one experiment the route was in the shape of a star (simulating a
pizza delivery drone that returns to its base station after each delivery to collect a hot pizza
for delivery), and in the other experiment a different, non-star-shaped route (simulating a
case in which a few packages are being delivered by the drone, as might be done with an
Amazon delivery drone) was used. We obtained a total of 5496 frames from an altitude
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of 50 m and 5425 frames from an altitude of 100 m, each of which was associated with
a specific GPS location at a point in time. For simplicity, the drone flew at a speed of
approximately 4 km/h, and one frame and its GPS location were obtained per second.

Figure 10. The drone flight route for location #1 (the left image) and location #2 (the right image)
from an altitude of 50 m.

Figure 11. The drone flight route for location #1 (the left image) and location #2 (the right image)
from an altitude of 100 m.

A test window is defined as the number of points needed to construct a linear regres-
sion function so that f (correlation) = distance_prediction. The subsequent frames can be
predicted by correlating frames with the distance for the same window. In each experiment,
we used different window sizes to create the linear regression and calculated the predicted
difference in the GPS location distance. We focused on three future points and estimated
their position based on the linear regression function, as doing so would allow us to raise
an alert within a reasonable amount of time in the case of a GPS spoofing attack. Every
calculation window utilizes resources, so we aimed to define a calculation window that
optimizes the number of calculations and the false positive rate (FPR), which we would
like to keep low.

5.2. Results

We present the results of our experiments for a drone flying at altitudes of 50 and
100 m. First, we calculate the average prediction error and maximum prediction error for
each time window. Then, for each flight we plot the mean of the average prediction errors
and maximum prediction errors at both altitudes (see Figures 12 and 13).

We observe that when the time window is small, the average prediction error is high.
For example, in Figure 12 the window size is two (meaning two frames are used to build
the linear regression function); in this case, the average prediction error is less than one, but
the maximum error is high. In addition, in the figures we can see that in the middle frames
the maximum error is at the lowest level, and it remains constant for several window sizes;
when the window size grows, the error also starts to increase.
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Next, we examine the FPR for specific window sizes in which the maximum prediction
error remains constant. For an altitude of 50 m, the maximum error distance is 6 m for
all window sizes, and for an altitude of 100 m, the maximum error distance is 5 m for all
window sizes. The best results for an altitude of 50 m are for window sizes 4 and 5, where
we obtain the lowest error rate for a distance of 4 m (Figure 14). While for 100 m, the best
results are for window sizes 5 and 6, where we obtain the lowest error rate for a distance
of 3.5 m (Figure 15). False positive alarms may be the result of: (1) the drone’s rotation,
or (2) an error in the camera’s autofocus function, which can result in a blurry frame. To
demonstrate this, let us examine two examples from real drone flights. In Figure 16, we can
see that the drone is rotating. As a result of this rotation, the frame’s similarity decreases to
28, and therefore the correlation between the frames decreases. This causes the model to
predict that the distance between the frames (the left and the middle images in Figure 16)
is 15 m instead of 1.5 m, which leads to a false positive. In Figure 17, we can see that
the middle frame is blurry, and the rest of the frames are clear; as a result of the frame’s
blurriness, its similarity decreases to 26, and therefore the correlation between the frames
decreases. Again, this causes the model to predict that the distance is 9 m instead of 1 m,
which leads to a false positive.

Figure 12. The prediction error (in meters) vs. various window sizes for an altitude of 50 m (average
for the two locations).

Figure 13. The prediction error (in meters) vs. various window sizes for an altitude of 100 m (average
for the two locations).

We also investigate how we can determine the optimal window size for our method,
the window size that will minimize both the maximum and average errors. For that, we can
use the equation: e(α) = α ∗ averageerror + (1− α) ∗ maximumerror. In Figures 12 and 13,
we can see that for an altitude of 50 m the maximum and average errors are obtained for
window sizes 4 and 5, while for 100 m they are obtained for window sizes 5 and 6.



Sensors 2022, 22, 2608 14 of 17

Figure 14. The FPR for a window size of 4 and 5 frames and an altitude of 50 m.

Figure 15. The FPR for a window size of 5 and 6 frames and an altitude of 100 m.

Thus, for the following configuration, the proposed method can provide a high level
of security, detecting any GPS spoofing attack in which the spoofed location is a distance
of 1–4 m (an average of 2.5 m) from the real location. Given this, we conclude that the
proposed method is capable of protecting a delivery drone from GPS spoofing attacks and
could therefore be used for this purpose.

Figure 16. Example of a drone flight in which the drone is changing direction (rotating, rather than
flying straight ahead), which causes a false positive due to the decreased correlation between the
frames (the frames are presented from left to right).

Figure 17. Example of three frames from a flight in a unchanging direction; the frame in the center is
blurry; this causes a false positive due to the decreased correlation between the frames.
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6. Limitations

Our method has a few limitations. In Section 4.4, we saw that the terrain influences
our method’s performance. If the terrain is relatively unchanging (e.g., in the case of an
ocean or desert), the method’s performance is not optimal. In such terrain conditions, the
changes between the frames are almost imperceptible, and as a result, the method will be
unable to differentiate between frames. It should be noted that for the use case presented
in this article, where we are concerned with the protection of a delivery drone in an urban
area, this does not pose a limitation, because for the route of a drone traveling over urban
terrain, there is variation between frames.

Another limitation is associated with the ambient light. In Section 4.5, we saw that
when the light decreases, the efficacy of our method decreases, to the point that it is not
effective in conditions of total darkness. We hypothesize that using a camera with night
vision capabilities will increase the method’s efficacy in such conditions.

Another limitation is the altitude. In Section 4.2, we saw that when the altitude is low,
the efficacy of our method decreases. Drone altitudes under 50 m can affect the efficacy
of our method, since the camera’s FOV will be narrowed to a view that makes it difficult
to use the frames. We hypothesize that using a camera with a wide FOV will increase the
method’s efficacy.

7. Future Work

Extreme weather conditions (e.g., snow, rain, fog) may affect the accuracy of the
proposed method, since such conditions can affect the quality of the images captured by
the video camera. Additional research could be performed to validate the robustness of
our method in extreme weather conditions.

In addition, other types of video cameras may improve the accuracy of the proposed
method. For example, a thermal camera may provide improved accuracy in extremely dark
conditions. In future research, the method’s robustness with frames obtained from other
kinds of cameras could be examined.

We also note that in our real-world tests the drone’s speed was slower than the speed
used in the simulator. Our ability to fly the drone at a high speed was limited, as we were
instructed by our institution to fly the drone in a controlled manner, so as not to pose a
risk to the environment. In future work, we suggest evaluating the method’s robustness at
higher speeds in a real-would experimental setting.

8. Summary

GPS spoofing attacks can cause dangerous navigation problems. Currently, product
manufacturers only offer chip-level solutions, which do not provide a satisfactory means
of detecting or preventing such attacks. In this article, we focused on devices that contain
video cameras and GPS sensors and proposed a real-time method for the detection of GPS
spoofing attacks on drones, which can be used by consumers. The proposed method makes
use of the video stream captured by a drone’s camera and the measurements obtained by
the GPS sensor. We demonstrated the proposed method on delivery drones, since their
role in everyday life is expanding; given the ease with which GPS spoofing attacks can be
performed, amateurs may try to attack delivery drones in order to steal the goods they
transport. Our evaluation results demonstrate our method’s ability to protect delivery
drones from GPS spoofing attacks. Our findings show that it can provide a high level
of security to a drone flying at altitudes of 50–100 m over an urban area at an average
speed of 4 km/h in conditions of low ambient light; in this scenario, the proposed method
can provide a level of security that detects any GPS spoofing attack in which the spoofed
location is a distance of 1–4 m (an average of 2.5 m) from the real location. Our method’s
advantages include the fact that it does not require any extra hardware or prior knowledge
on the flight area.
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