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Genome-wide rare variant score associates
with morphological subtypes of autism
spectrum disorder

Ada J. S. Chan1,2, Worrawat Engchuan1,2, Miriam S. Reuter 1,2,3, Zhuozhi Wang1,2,
Bhooma Thiruvahindrapuram 1,2, Brett Trost 1,2, Thomas Nalpathamkalam1,2,
CarolNegrijn4, Sylvia Lamoureux1,2, GiovannaPellecchia 1,2, RohanV. Patel 1,2,
Wilson W. L. Sung 1,2, Jeffrey R. MacDonald 1,2, Jennifer L. Howe1,2,
Jacob Vorstman 1,5,6, Neal Sondheimer 7,8,9, Nicole Takahashi10,
Judith H. Miles10, Evdokia Anagnostou9,11, Kristiina Tammimies 12,
Mehdi Zarrei1,2, Daniele Merico 1,13, Dimitri J. Stavropoulos14,15,
Ryan K. C. Yuen 1,2,7, Bridget A. Fernandez 4,16,17 &
Stephen W. Scherer 1,2,7,18

Defining different genetic subtypes of autism spectrum disorder (ASD) can
enable the prediction of developmental outcomes. Based on minor physical
and major congenital anomalies, we categorize 325 Canadian children with
ASD into dysmorphic and nondysmorphic subgroups. We develop a method
for calculating a patient-level, genome-wide rare variant score (GRVS) from
whole-genome sequencing (WGS) data. GRVS is a sum of the number of var-
iants in morphology-associated coding and non-coding regions, weighted by
their effect sizes. Probands with dysmorphic ASD have a significantly higher
GRVS compared to those with nondysmorphic ASD (P =0.03). Using the
polygenic transmission disequilibrium test, we observe an over-transmission
of ASD-associated common variants in nondysmorphic ASD probands
(P = 2.9 × 10−3). These findings replicate using WGS data from 442 ASD pro-
bands with accompanying morphology data from the Simons Simplex Col-
lection. Our results provide support for an alternative genomic classification
of ASD subgroups using morphology data, which may inform intervention
protocols.

Autism spectrum disorder (ASD), which is diagnosed on the basis of
behavioral assessments that reveal social communication deficits and
repetitive behaviors, is often associated with traits, including major
congenital anomalies (MCAs), minor physical anomalies (MPAs)1,2, and
intellectual disability3–5. Increasingly, penetrant variants of diagnostic
value6,7 and lesser impact common variants are being implicated in the
etiology of ASD4,8.

Autistic individuals who are more dysmorphic (complex ASD)
tend to have lower intelligence quotients (IQ) and more brain and

othermajor congenital anomalies9,10 comparedwith thosewho are less
dysmorphic (essential ASD), leading to poorer developmental out-
comes. Individuals with complex ASD are also less likely to have a
family history of ASD, suggesting that morphological subtypes can
reveal informative genetic differences among ASD subgroups9.

Genetic liability to ASD can be quantified using a polygenic risk
score (PRS), which is a weighted sum of ASD-associated common
variants, using effect sizes drawn from genome-wide association
studies11. A similar score for rare variants remains to be established.
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Rare variant studies use burden analyses to compare the frequency of
rare variants, equally weighted, between cases and controls or among
ASD subtypes3,12,13. Quadratic tests have also been used in rare variant
association tests and typically weigh variants by minor allele
frequency14,15. Two recent studies have calculated a rare variant risk
scorebasedon the number of variants overlapping specific genes16 or a
score that weighs sequence variants by variant type (i.e., loss-of-
function andmissense variants) and inheritance17. However, additional
variant types, such as copy-number variants, remain to be included in
weighted scores. Moreover, the effect size of a variant not only
depends on the variant type, but also on the function, expression, or
disease association of the gene and should also be considered in the
rare variant score.

Here, from two independent cohorts, we use whole-genome
sequences (WGS) and detailed clinical morphology data to: (1)

develop a genome-wide rare variant score (GRVS) to measure the
relationship between rare variants andmorphology, and (2) examine
the contribution of rare and common variants in morphological ASD
subtypes (Fig. 1 and Supplementary Fig. 1). We show that probands
with dysmorphic ASD have a significantly higher GRVS compared to
those with nondysmorphic ASD, and that there is an over-
transmission of ASD-associated common variants in nondysmorphic
ASD probands.

Results and discussion
Stratification of discovery cohort by morphological anomalies
For our discovery cohort, we used a population-based sample of 325
unrelated children with Autism Diagnostic Observation Scale (ADOS)-
confirmed ASD. Following clinical examination, a total morphology
score was assigned to each case based on the number of MPAs and
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Fig. 1 | Project workflow. Summary of phenotype stratification, whole-genome
sequencing workflow, and genomic analyses performed in this study. ASD autism
spectrum disorder, ADM autism dysmorphology measure, CNVs copy-number
variants, SNVs single-nucleotide variants, indels insertions and deletions, ERDS
estimation by read depth with single-nucleotide variants, GATK-HC Genome Ana-
lysis Toolkit-Haplotype Caller, SNPs single-nucleotide polymorphisms, ACMG
American College of Medical Genetics and Genomics, IQ intelligence quotient.
*Unaffected siblings were used for GRVS and PRS analyses. **Excluding samples
with false negative ADM-defined nondysmorphic ASD. We also included only
samples sequenced on Illumina platforms to be consistent with the replication

cohort. For variant calling, on average per sample, we detected ~3.7 million SNPs,
36,514 rare single-nucleotide variants (SNVs), 4113 small insertions and deletions
(indels), 13 rare copy-number variants (CNVs), 390 rare SVs, 73.4 de novo SNVs, 7.3
de novo indels, and 0.1 de novo CNVs (Supplementary Data 2). Experimental vali-
dation rates were 94.8%, 85.7%, and 87.5%, respectively, for de novo SNVs, indels,
and CNVs (Supplementary Data 3 and 4). Using GRVS, we were able to quantify and
validate the contribution of morphology-associated, rare sequence-level and copy-
number variants tomorphological ASD subtypes. While we can call other SVs from
the WGS, there needs to be higher-quality data before these can be effectively
incorporated into GRVS.
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MCAs9,10. The cohort was then stratified into three subtypes of
increasing morphologic severity: 187 essential ASD (57.5%), 57 equi-
vocal ASD (17.5%), and 81 complex ASD (24.9%) (Supplementary
Data 1). We further stratified these samples into two subtypes by
combining complex and equivocal ASD into a single dysmorphic ASD
grouping to increase power and redefining essential ASD as
nondysmorphic ASD.

Clinically significant rare variant analysis from WGS
We performed WGS on 795 genomes (325 probands and 470 par-
ents), which are new to this publication, and detected all classes of
variation (SNV, indel, CNV and structural variants (SVs) (Fig. 1 and
Supplementary Data 2–4). Using the American College of Medical
Genetics and Genomics guidelines18,19, we identified a total of 46
clinically significant variants (CSVs) in 46 of 325 probands
(14.1%) (Supplementary Data 5–7). The proportion of dysmorphic
ASD cases with a CSV (25.4%; 35/138) was significantly higher
than for nondysmorphic ASD (5.9%, 11/187) (P = 6.6 × 10−7, odds
ratio = 5.4, 95% confidence intervals = [2.6, 12.3], one-sided Fish-
er’s test), consistent with our previous findings10. We also identi-
fied 29 variants of uncertain significance (VUS) in 26 probands
that were of interest, including tandem repeat expansions in
previously reported ASD candidate loci20; three probands each
had two VUS (Supplementary Data 5–7 and Supplemen-
tary Note 1).

Rare variant burden and enrichment analyses
To further investigate the contribution of rare variants among mor-
phological ASD subtypes, we first conducted a rare variant burden
analysis and multiple test correction using the Benjamini Hochberg
approach (BH-FDR) (see “Methods”). We found a significantly higher
prevalence of rare coding deletions >10 kb in probands with more
dysmorphic features (Deviance statistics (degrees of freedom= 1) =
9.97, P = 1.59 × 10−3, Beta = 0.50, 95% confidence intervals = [0.16,
1.00], and BH-FDR = 3.17 × 10−3, two-sided likelihood ratio test, Sup-
plementary Data 8). Rare coding duplications >10 kb and ≤10 kb,
genic deletions ≤10 kb, loss-of-function (LoF), and missense variants
were not significantly different among subtypes (Supplemen-
tary Data 8).

We then performed enrichment and burden analyses to identify
gene sets or noncoding regions, respectively, that were differentially
affected by rare or de novo variants between the morphological ASD
subtypes. The 71 gene sets and noncoding regions studied have been
previously associatedwith ASDor developmental disorders13,21–27. After
multiple-testing correction (permutation-based false discovery rate
(FDR) < 20%), 20 significant gene sets or noncoding regions were
identified (Supplementary Data 9 and 10). We observed that probands
with dysmorphic features had higher burdens of deletions and mis-
sense variants impacting genes responsible for various neuronal
functions and duplications >10 kb impacting brain-expressed genes
(Fig. 2 and Supplementary Data 9). Dysmorphic probands also had a

Fig. 2 | Gene sets for which de novo and rare coding variants are significantly
more prevalent in some subtypes of ASD.We define events as (a, b) genes
impacted by CNVs or (c) as variants for SNVs and indels. The coefficient is the
relationship between the number of events in each gene set and the ASD subtypes;
it reflects the effect size of a variant type and gene set among different ASD sub-
types. Positive coefficients indicate more events in individuals with ASD and more
dysmorphic features; negative coefficients indicate more events in individuals with
ASD and fewer dysmorphic features. We show only gene sets for which (a, b) rare
CNVs (n = 325 samples), or (c) de novo missense variants (n = 235 samples) are
significantly more prevalent in different subtypes of ASD. Tier 1 and 2 missense
variants consist of all or only predicted damaging missense variants, respectively,

as defined in ref. 25. Symbol shapes indicate the subtype comparisons that were
conducted for each combination of the gene set and variant type. Two-sided like-
lihood ratio tests were performed with permutation-based FDR for the multiple-
testing correction. Two subtype comparison = nondysmorphic vs. dysmorphic
ASD. Three subtype comparison = essential vs. equivocal vs. complex ASD. Colored
shapes indicate significant signals after multiple test correction by permutation-
based FDR, where yellow, orange, and red, indicate permutation-based FDR< 20%,
10% and 5%, respectively. The data points (the center) indicate the estimated
coefficient, while error bars indicate 95% confidence intervals of the estimated
coefficient. Source data are provided as a Source Data file.
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significantly higher prevalence of rare deletions ≤10 kb overlapping
promoters of long noncoding genes, and duplications (larger and
smaller than 10 kb) overlapping active brain enhancers (Supplemen-
tary Fig. 3 and Supplementary Data 10).

Calculation of GRVS for each proband in the discovery cohort
We then tested the collective contribution of rare variants in
morphology-associated regions, while considering the effect size of
each variant, which varies depending on the variant type and
morphology-associated region. We developed a GRVS for each pro-
band, which is a weighted sum of the number of rare variants in
morphology-associated regions identified from gene set enrichment
and noncoding burden tests (Supplementary Data 11). We weighed the
number of rare variants in each morphology-associated region as well
as the variant type (i.e., coding or noncoding deletions and duplica-
tions >10 kbor ≤10 kb, loss-of-function variants,missense variants, and
noncoding SNVs and indels) using the coefficients from logistic
regression models.

To calculate GRVSs for each proband in the discovery cohort, we
used a tenfold cross-validation strategy to reduce overfitting (Sup-
plementary Fig. 1a). We used Nagelkerke’s R2 to determine the optimal
P value threshold (P < 0.1) to identify morphology-associated regions
(Supplementary Fig. 4a and “Methods”). GRVS can be calculated for
probands regardless of whether their parents have been sequenced.
However, there would be a systematic difference in GRVSs in this
cohort if all probands were used because those probands whose par-
ents have been sequencedwould include scores fromdenovo variants,
whereas those without sequenced parents would not have de novo
variant scores. To avoid this, GRVS was calculated only for probands
with two sequenced parents (n = 235) (Fig. 3a and Supplementary
Data 12).

Probands with dysmorphic ASD had significantly higher aver-
age GRVSs than those with nondysmorphic ASD (P = 0.03, one-sided
Wilcoxon rank-sum test) (Fig. 3b). Most probands (96.6%, 227/235)
had more than one variant impacting morphology-associated
regions (Supplementary Data 12). Rare coding CNVs had the high-
est effect size; rare noncoding SNVs and indels had the lowest
(Fig. 3c and Supplementary Data 11). When we excluded the pro-
bands with high impact variants (i.e., deletions or LoFs impacting
LoF intolerant genes or missense variants with the missense bad-
ness, PolyPhen-2, and constraint28 (MPC) score > 2) in 183 ASD
genes26, those with dysmorphic ASD still had higher average GRVSs
than those with nondysmorphic ASD with a trend toward sig-
nificance (P = 0.07, one-sided Wilcoxon rank-sum test). These find-
ings suggest that variants in morphology-associated regions that
are not known to have high impact also contribute tomorphological
outcomes in ASD.

Contribution of clinically significant variants to GRVS
Using the GRVS formula, we calculated a score for CSVs that over-
lapped an ASD-relevant, morphology-associated region (so that effect
size was available for calculation) and that occurred in probands with
sequencing data from both parents, of which 17 of the 46 CSVs met
these criteria. No score was calculated for the remaining 29 variants
because 15 were identified in probands where both parents were not
available for sequencing, and 14 variants were not located in or
encompassed by one of the 20 morphology-associated regions
(“Methods”). In 47% of samples with CSV scores (8/17 probands, Sup-
plementary Data 13), CSVs contributed >50% of the total GRVS. When
we excluded the probands with CSVs, those with dysmorphic ASD still
had significantly higher average GRVSs than those with non-
dysmorphic ASD (P = 0.044, one-sided Wilcoxon rank-sum test,
Fig. 3b). Thesefindings suggest that variants inmorphology-associated
regions that are not CSVs also significantly contribute to morpholo-
gical outcomes in ASD.

Analysis of common variants using polygenic TDT
Toexplore the contributionof common (minor allele frequency >0.05)
ASD-associated variants in ASD subtypes, we calculated polygenic risk
scores (PRS) for ASD and body mass index (BMI)8 (“Methods” and
Supplementary Data 12). We then compared these scores across the
morphologic groups using the polygenic transmission disequilibrium
test (pTDT)8, which compares the PRS of the proband to the parents’
mean PRS. We found a significant overtransmission of common
ASD-associated variants in probands with nondysmorphic ASD
(P = 2.9 × 10−3, one-sided Welch’s t-test) and no significant over-
transmission in probands with dysmorphic ASD (P =0.3) (Fig. 4). PRS
for BMI was selected as a negative control because there is no genetic
correlation between BMI and ASD29, and we did not find over-
transmission of PRS for BMI in either subtype (Fig. 4).

IQ correlations
IQ is often negatively correlated with the burden of rare
variants3,4,13,30,31. We therefore examined our probands with dys-
morphic ASD and determined they had a significantly lower mean IQ
compared to nondysmorphic ASD (P = 0.013, one-sided Welch’s t-test,
Fig. 5a and Supplementary Data 12). Probands with a CSV had sig-
nificantly lower IQ compared to probandswithout a CSV (P = 2.2 × 10−4,
one-sided Welch’s t-test, Fig. 5b). However, IQ was not significantly
correlated with GRVS (rho = −0.042, P = 0.64, Fig. 5c) or PRS (rho =
−0.15, P =0.12, Fig. 5d).

Clinical reclassification of discovery cohort for comparison to
replication cohort
We repeated our analysis on a replication cohort of relevant sam-
ples from the Simons Simplex Collection (442 ADOS-confirmed
affected probands and 355 unaffected siblings)32. The affected
probands had been categorized into two morphological subtypes
(400 nondysmorphic and 42 dysmorphic cases)32 using the Autism
Dysmorphology Measure (ADM)33. In contrast to the discovery
cohort, the SSC probands were classified by targeted physical
examinations performed by individuals without expert training in
dysmorphogy, and the classification did not incorporate the pre-
sence or absence of major congenital anomalies. To compare the
two cohorts, we reclassified a subset of the original discovery
cohort based on minor anomalies alone using the ADM algorithm
(203 nondysmorphic and 73 dysmorphic cases, “Methods”). We
calculated new GRVSs for the ADM-reclassified discovery cohort
using a tenfold cross-validation approach (143 nondysmorphic and
48 dysmorphic cases met criteria for inclusion in this analysis,
Supplementary Fig. 1a, Supplementary Data 12 and 14, and “Meth-
ods”). We used Nagelkerke’s R2 to determine the optimal P value
threshold and identified 35 morphology-associated regions, which
largely overlapped with our original analysis (Supplementary
Fig. 4b). The morphology-associated regions (P < 0.1, Supplemen-
tary Data 15) identified in the reclassified discovery cohort were
used to calculate GRVSs for the replication cohort (Supplementary
Fig. 1b, Supplementary Data 16, and “Methods”).

GRVS analyses in discovery and replication cohorts
In both cohorts, probands with ADM-defined dysmorphic ASD had sig-
nificantly higher GRVSs (Pdiscovery = 4.7 × 10−7 and Preplication =
5.8 × 10−3, one-sided Wilcoxon rank-sum test, Fig. 6a) and yield of CSVs
(Pdiscovery = 2.7 × 10−7 and Preplication = 2.1 × 10−3, one-sided Wilcoxon rank-
sum test, Fig. 6b and Supplementary Data 17 and 18) compared to ADM-
defined nondysmorphic ASD, consistent with our findings using the
gold-standard dysmorphology classification. In the replication cohort,
unaffected siblings had a significantly lower GRVS compared to ADM-
defined dysmorphic ASD (P=6.7 × 10−3 one-sided Wilcoxon rank-sum
test) but did not have a significantly lower GRVS compared to ADM-
defined nondysmorphic ASD (Fig. 6a). Furthermore, unaffected siblings
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of nondysmorphic probands did not have a significantly lower GRVS
compared unaffected siblings of dysmorphic probands (P=0.19, one-
sided Wilcoxon rank-sum test). We repeated the GRVS analyses sepa-
rately for European and non-European subsets. Our finding stayed the
same for both subsets, where probands with ADM-defined dysmorphic
ASD had significantly higher GRVSs when compared to ADM-defined
nondysmorphic ASD (Pdiscovery_eur = 2.3 × 10−5 and Preplication_eur =
1.3 × 10−3, Preplication_noneur = 3.1 × 10−4, one-sided Wilcoxon rank-sum test)
or unaffected siblings (Preplication_eur = 8.2 × 10−4, Preplication_noneur =

1.5 × 10−4) (Supplementary Fig. 7 and Supplementary Note 1). This result
suggests that GRVS is quite robust to a population bias and could be
applied across different populations.

Common variant analyses in discovery and replication cohorts
In both cohorts, we also found a significant overtransmission of
common ASD-associated SNPs in ADM-defined nondysmorphic ASD
(Pdiscovery = 6.7 × 10−3 and Preplication = 6.3 × 10−3, one-sided Wilcoxon
rank-sum test, Fig. 6c). In results similar to ref. 8, we did not observe

Fig. 3 |Genome-wide rare variant score inASDsubtypes.Events are comprisedof
variants for SNVs and indels or genes impactedbyCNVs. For each sample, theGRVS
is the sum of rare and de novo events in morphology-associated regions, weighted
by effect size (estimated from the coefficients in the regressionmodel). GRVSswere
generated 30 times for each sample (see “Methods”), yielding an average score and
average number of variants. CSVs, clinically significant variants. a Distribution of
standardizedGRVS for the discovery cohort (n = 235).bGRVSs for thewhole cohort
(left plot, n = 235) or the whole cohort excluding the 17 probands with clinically
significant variants (right plot, n = 218), were ordered and ranked by percentile.
Note that while 46 probands in the discovery cohort (n = 325) had CVSs, only 17 of
them had two sequenced parents meeting inclusion criterion for the GRVS group
(n = 235). The minima and maxima of box plots indicate 3× the interquartile range-

deviated scores from the median, and the center indicates the median of the score
percentiles. Violin plots show the distributions of the samples’ GRVS percentiles;
box plots contained within show the median and quartiles of the percentiles for
each subtype. P values denote the probability that the GRVS in dysmorphic ASD is
not greater than nondysmorphic ASD (one-sided, Wilcoxon rank-sum test). c Rare
variants have different effect sizes. Themean coefficient reflects the effect size of a
variant type. Coefficients of deletions and duplications of the same size bin were
averaged together. Coefficients of predicted LoF variants, missense variants, and
predicted damaging missense variants were averaged together. Error bars indicate
mean ± standard deviation. The number of morphology-associated regions for
each variant type is indicated the y axis with “n =”. Source data are provided as a
Source Data file.
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overtransmission in unaffected siblings in the replication cohort
(P = 0.88, one-sidedWilcoxon rank-sum test). Althoughwedid not find
a correlation between PRS and GRVS in the discovery cohort, a sig-
nificant positive correlation between PRS and GRVS was observed in
the replication cohort (Spearman’s rho =0.11, P = 0.038) (Supplemen-
tary Fig. 6 and Supplementary Data 12 and 16).

IQ comparisons
Individuals with ADM-defined dysmorphic ASD or with CSVs had a
significantly lower IQ compared to ADM-defined nondysmorphic ASD
or those without CSVs, respectively (Supplementary Fig. 5a, b and
Supplementary Data 12, 14–16). Although there was no correlation
between IQ and GRVS in the discovery cohort when the subtype clas-
sification was done by either gold-standard dysmorphology examina-
tion (rho = −0.042, P =0.64, Fig. 5c) or using the ADM (rho = 0.081,
P =0.42, Supplementary Fig. 5c), a significant negative correlation was
found in the replication cohort (rho = −0.12, P =0.016, Supplementary
Fig. 5c). We did not find significant correlations between IQ and PRS
(Fig. 6d and Supplementary Fig. 5d), in either cohort (Supplementary
Fig. 6 and Supplementary Data 12 and 16).

Differences in the correlation between GRVS and IQ between
the cohorts might be attributable to differences in ascertainment.
The discovery cohort was assembled using a population-based
recruitment strategy, and the average IQ of the cohort is 105, similar
to the population average of 100. In contrast, individuals with
comorbid ID or low IQ are found in SSC34, consistent with the
replication cohort having a significantly lower IQ compared to the
discovery cohort (mean IQdiscovery = 105 ± 23, mean IQreplication = 82
± 27, P = 1.1 × 10−21, two-sided Welch’s t-test). Inconsistent findings
between ASD cohorts have also been observed when examining sex
differences in IQ35, where findings from cohorts with specific
selection criteria (e.g., simplex families) may not be generalizable to
the broader ASD population.

Conclusions
Our data suggest that while both dysmorphic and nondysmorphic ASD
demonstrate overtransmission of common ASD-associated variants,
there is a significantly higher burden of rare variants in dysmorphic
ASD than nondysmorphic ASD. GRVS methods may add further spe-
cificity to identifying clinically informative endophenotypes but
exquisitely phenotyped cohorts will be required. While dysmorpholgy
classification by expert clinical examination is not highly scalable, the
use of automated tools for two and three-dimensional imaging36 may
make it feasible to perform high throughput dysmorphology classifi-
cation. This will allow GRVSs to be more widely used, potentially in
combination with one or more early clinical biomarkers.

Methods
Inclusion and ethics
We attempted to ensure that ethnic and other types of diversity in the
research participants represented the populations being studied,
including analyzing all family samples collected. We ensured that the
study questionnaires were prepared in an inclusive way relevant to the
populations being studied. For our ASD research, we also rely on
participant advisory committees and our protocols undergo regular
review. We designed our study to ensure sex balance in the recruit-
ment of participants. For example, the male:female ratio for indivi-
duals with ASD in the Autism Speaks MSSNG (discovery) collection is
similar the well-established 4:1 sex bias in the ASD population. All
clinical and genomic data is available for further analysis (seemain text
and Supplementary Files), and the release of these data types is cov-
ered in the ethics protocols. The author list of this paper includes
contributors from the locations where the research was conducted
who participated in the data collection, design, analysis, and/or inter-
pretation of the work. In the selection of authors, we followed guide-
lines of the International Journal of Medical Education. Each of these
aspects of the study was part of the protocols approved by

Fig. 4 | Inheritance ofpolygenic risk forASDandBMI inmorphologic subtypes.
Differences in polygenic risk score (PRS) for ASD andBMI between participants and
their respective mid-parent score. Box plots depict the median and quartiles of
polygenic transmission disequilibrium test (pTDT) deviation, and the minima and
maxima of box plots indicate 3× the interquartile range-deviated pTDT deviations

from themedian. Dots represent pTDT deviations of participants. P values for each
subgroup indicate the probability that themean of the pTDTdeviation distribution
is not greater than zero (one-sided Welch’s t-test was performed assuming pTDT
deviation to be greater than zero), as depicted by the dotted line. Source data are
provided as a Source Data file.
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Newfoundland’s Health Research Ethics Board (HREB# 2003.027) and
SickKids Research Ethics Board (REB#0019980189).

Subject enrollment—discovery cohort
The cohort consists of children residing in the Canadian province of
Newfoundland and Labrador, recruited from one of three develop-
mental team assessment clinics between 2010 and 2018. Assessment
through one of these clinics was required for a child with ASD to
qualify for provincially funded home Applied Behavioural Analysis
(ABA) therapy. Families were invited to participate after their child
received an ASD diagnosis from the multidisciplinary team which was
led by a developmental pediatrician. Probands met ASD criteria
according to the Diagnostic and StatisticalManual ofMental Disorders
(Fourth or Fifth Edition, Text Revision)37,38 and all diagnoses were

confirmed by an Autism Diagnostic Observation Schedule39 assess-
ment. Most probands also had an Autism Diagnostic Interview-
Revised40 assessment consistent with ASD. Children were not exclu-
ded from the study based on syndromic features or the presence of a
known syndrome. Parents or guardians of the children provided
written informed consent. The studywas approvedbyNewfoundland’s
Health Research Ethics Boards (HREB# 2003.027) and SickKids
Research Ethics Board (REB#0019980189).

Subject enrollment—replication cohort
The replication cohort consisted of a subset of samples from the
Simons Simplex Collection, including 442 affected probands with
dysmorphology and WGS data along with their unaffected sib-
lings (n = 355).

Fig. 5 | Relationship between IQ, morphological ASD subtypes and genetic
variants. a Comparison of IQ among morphological ASD subtypes. b Comparison
of IQ between probands with and without a CSV. a, b Violin plots show the dis-
tributions of the probands’ IQ; box plots contained within show the median and
quartiles of IQ for each subtype, the minima and maxima of box plots indicate 3×
the interquartile range-deviated IQ from the median. P values denote the prob-
ability that the mean IQ of nondysmorphic ASD or probands without CSVs is not

greater than dysmorphic ASD or probands with CSVs, respectively (one-sided,
Welch’s t-test). Correlationbetween IQ and (c) GRVS and (d) PRS is shown. c,d Each
dot represents the IQ andGRVSor PRSpercentile of a sample. The linear regression
line indicates the linear correlation between IQ and GRVS or PRS percentiles.
Correlation coefficient is quantified by two-sided Spearman’s rho correlation.
P values indicate the probability that the correlation is occurred due to chance.
Source data are provided as a Source Data file.
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Fig. 6 | Replication of rare and common genetic findings in a subset of Simons
Simplex Collection cohort. a GRVSs for each cohort were ordered and ranked by
percentile. Violin plots show the distributions of the probands’ GRVS percentiles;
box plots contained within show the median and quartiles of the percentiles for
each subtype, the minima and maxima of box plots indicate 3× the interquartile
range-deviated scores from the median. P values denote the probability that the
GRVS in ADM-defined dysmorphic ASD is not greater than ADM-defined non-
dysmorphic ASD (one-sided, Wilcoxon rank-sum test). b Yield of CSVs between
dysmorphic and nondysmorphic subtypes in discovery and replication cohorts.
P values indicate the probability that the yieldofCSVs in nondysmorphic ASD is not
lower than that of dysmorphic ASD (one-sided, Welch’s t-test). c Inheritance of
polygenic risk for ASD in dysmorphic and nondysmorphic ASD subtypes in dis-
covery and replication cohorts. Box plots depict the median and quartiles of pTDT
deviation, and the minima and maxima of box plots indicate 3× the interquartile
range-deviated pTDT deviations from the median. Dots represent pTDT deviations

of subjects. P values for each subgroup indicate the probability that themeanof the
pTDT deviation distribution is not greater than zero (one-sided, Welch’s t-test), as
depicted by the dotted line. The finding of no significant overtransmission in
dysmorphic ASD did not replicate in SSC, which might be due to lack of statistical
power (i.e., at least 100 dysmorphic samples are needed to achieve 80% power if
PRS explains 2.45% of phenotypic variance11) and/or ascertainment differences
between the discovery and replication cohorts. The discovery cohort included data
about major congenital anomalies in morphologic classification, whereas the
replication cohort did not. While our discovery cohort was population-based, the
Simons Simplex Collection excluded probands with medically significant perinatal
diseases, severe neurological deficits, and certain genetic syndromes32. This likely
decreased the proportion of probands with excess MPAs and birth defects,
potentially leading to a lower burdenof commonASD-associated variants88. Source
data are provided as a Source Data file.
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Clinical assessment and morphological examination—discovery
cohort
Clinical assessments, morphological examinations, and classification
were performed9,10. In brief, the team reviewed the child’s family
history and medical records, including radiology and electro-
encephalogram (EEGs). EEGs were ordered if there was a clinical sus-
picion of seizures. Other screens for birth defects were arranged based
on standard physical examination of the proband, which included a
cardiovascular examination (e.g., echocardiogram for aprobandwith a
murmur consistent with a ventricular septal defect). A single experi-
enced dysmorphologist (B.A.F.) performed a detailed morphological
examination of the child and (if possible) parents documenting minor
physical anomalies (MPAs), height, weight, head circumference and
anthropometric measurements of the head, face, hands, and feet. As
described by Miles et al.9, each proband was assigned an MPA score;
one point was given for each embryologically unrelated MPA or for
each measurement greater than two standard deviations above or
below the population mean, and that was absent from the parents if
they were available for examination. Each child was also assigned a
major congenital anomaly (MCA) score (twopointswere given for each
MCA), and a total morphology score (MPA +MCA scores). Using the
total morphology score, we classified each child into essential (total
morphology score 0–3), equivocal (total morphology score 4–5) or
complex (total morphology score ≥6) groups. We used the final clas-
sification for comparing the yield of CSVs and for performing the rare
and common variant analyses.

Autism dysmorphology measure—discovery and replication
cohorts
Our replication cohort consisted of a subset of samples from the
Simons Simplex Collection32. This subset of samples had already been
categorized into twomorphological groups (400 nondysmorphic and
42 dysmorphic cases) by multiple non-geneticist examiners using the
Autism Dysmorphology Measure33. In brief, the Autism Dysmorphol-
ogy Measure is a decision tree-based classifier that assigns cases into
nondysmorphic and dysmorphic groups based the presence or
absence of minor physical anomalies of 12 body areas. It was designed
to be used by clinicians who do not have expert training in dysmor-
phology, and the assessment is limited to the craniofacies, hands, and
feet of the child. The ADMdecision tree was trained on expert-derived
consensus classification of 222 ASD cases who had gold-standard
examinations of all body areas by clinical geneticists with expertise in
dysmorphology9,41. The latter was the approach we used for the initial
morphologic classification of our discovery cohort into essential,
equivocal, and complex groups9.

In contrast to the Autism Dysmorphology Measure, the morpho-
logical scores used to classify the discovery cohort factored in major
congenital anomalies as well asMPAs, andMPAswere documented for
the entire body including areas not assessed by the ADM (for example,
the thorax, arms, legs, and skin). In order to align the type of mor-
phologic data that was used to classify the discovery and replication
cohorts, we reclassified the discovery cohort using the Autism Dys-
morphology Measure, yielding 248 nondysmorphic and 77 dys-
morphic cases. Of the 248 ADM-defined nondysmorphic cases, 18
cases were clearly dysmorphic upon further review by an experienced
dysmorphologist (B.A.F). The Autism Dysmorphology Measure is
reported to have an 82% sensitivity33, and the sensitivity for the dis-
covery cohort is similar at 80%. Thus, we excluded the 18 individuals
with a false negative dysmorphic ADM classification to make the dis-
covery cohort as clean as possible. We also included only samples that
were sequenced on Illumina platforms to be consistent with the
replication cohort32. Thus, the final number of ASD cases in the dis-
covery cohort used for analysis was 276, of which 203 had non-
dysmorphic ASD and 73 had dysmorphic ASD, according to ADM.

Whole-genome sequencing and variant detection
We extracted DNA fromwhole blood or lymphoblast-derived cell lines
and assessed the DNA quality with PicoGreenTM and gel electrophor-
esis.We sequenced 795 genomes (325 probands and 470 parents) with
one of the following WGS technologies/sites4: Complete Genomics
(Mountain View, CA, n = 33 probands, 64 parents), IlluminaHiSeq2000
by The Center for Applied Genomics (TCAG) (Toronto, ON, n = 24
probands, 48 parents), or Illumina HiSeq X byMacrogen (Seoul, South
Korea, n = 182 probands, 250 parents) or TCAG (n = 86 probands, 108
parents). For WGS by Complete Genomics, at least 10μg of non-
degradedDNAwas provided forWGS. Complete Genomics performed
additional quality controls, including DNA quality assessment, sex
check, and comparison of samples with results from 96-SNP geno-
typing assay to avoid sample mix-up. For WGS by Illumina HiSeq X, we
used between 100 ng and 1μg of genomic DNA for genomic library
preparation and WGS. We quantified DNA samples using a Qubit High
Sensitivity Assay and checked sample purity using the Nanodrop
OD260/280 ratio.We used the Illumina TruSeqNanoDNA Library Prep
Kit following the manufacturer’s recommended protocol. In brief, we
fragmented theDNA into 350-bp average lengths using sonication on a
Covaris LE220 instrument. The fragmented DNA was end-repaired, A-
tailed, and indexed using TruSeq Illumina adapters with overhang-T
added to the DNA. We validated the libraries on a Bioanalyzer DNA
High Sensitivity chip to check for size and absence of primer dimers
and quantified them by qPCR using a Kapa Library Quantification
Illumina/ABI Prism Kit protocol (KAPA Biosystems). We pooled the
validated libraries in equimolar quantities and sequenced the paired-
end reads of 150-bp lengths on an Illumina HiSeq X platform following
Illumina’s recommended protocol. For samples sequenced on
HiSeq2000, DNA was extracted and sheared into fragments, which
were then purified by gel electrophoresis. DNA fragments were ligated
with adapter oligonucleotides to form paired-end DNA libraries with
an insert size of 500 bp. We used ligation-mediated PCR amplification
to enrich libraries with 5′ and 3′ adapters. The DNA libraries were
sequenced to generate 90bp pair-end reads with at least 30× average
genome coverage per sample. We used KING v.2.2.542 to confirm
familial relationships and ADMIXTURE v1.343 and EIGENSOFT
v6.0beta44 to confirm ancestries (Supplementary Data 12). PLINK ver-
sion v1.9.b3.42 was used for basic QC and to format the input and
results of both relatedness and ancestry analyses.

Alignment and variant calling for genomes sequenced by Com-
pleteGenomicswere performedbyCompleteGenomics45. For samples
sequenced on Illumina platforms, eachWGS site alignedWGS reads to
the human reference genome assembly hg19 (GRCh37) using Burrows-
Wheeler Aligner v.0.7.1246 (TCAG) or Isaac v.2.0.1347 (Macrogen). For
each genome, we performed local realignment and quality recalibra-
tion and detected SNVs and small indels using the Genome Analysis
Toolkit (GATK) Haplotype Caller48 v.3.4.6 without genotype refine-
ment. We detected CNVs using ERDS (estimation by read depth with
single-nucleotide variants)49 1.1 and CNVnator50 0.3.2. Algorithms were
run using their default parameters.We used 500bp as the window size
for CNVnator. For CNVnator, we removed calls with >50% of q0 (zero
mapping quality) reads within the CNV regions (q0 filter), except for
the homozygous autosomal deletions or hemizygous X-linked dele-
tions in males (with normalized average read depth; NRD <0.03). We
defined stringent calls as those that were called by both algorithms
(with 50% overlap). In a subset of samples sequenced on HiSeq X, the
insert size, I, fell below 350bp, which correlated with fewer deletions
called by ERDS. ERDS requires deletions <10 kb to be supported by
anomalously mapped read pairs within a distance D = I − 2r, where r is
the read length. To resolve this, we modified ERDS that gives D a
constant value of 5051. We detected SVs using Manta v.0.29.652. When
supported by the variant caller (i.e., GATK andManta), trio-based joint
variant calling was conducted for each family.

Article https://doi.org/10.1038/s41467-022-34112-z

Nature Communications |         (2022) 13:6463 9



To identify uniparental isodisomies (isoUPDs), we calculated the
ratio of the number of homozygous or hemizygous SNPs to the
number of SNPs per chromosome, for each sample. Samples with a
ratio greater than 0.55 had a putative isoUPD on the corresponding
chromosome. We examined CNV and kinship data to rule out con-
founding factors (i.e., large CNVs or consanguinity). For each sample
with a ratio greater than 0.55, we examined plots of B-allele frequency
per chromosome; those with runs of homozygosity >10Mb on one
chromosome were considered to have a putative isoUPD53. We exam-
ined the inheritance of homozygous SNPs within the region of the
putative isoUPD via visual inspection of BAM files and experimentally
validated one of the SNPs to confirm the isoUPD and inheritance.

We systematically detected aneuploidies by calculating a ratio of
the average read depth per chromosome to that for the entire sample.
Ratios ≤0.5 and ≥1.5 were considered a loss or gain, respectively. For
Complete Genomics data, we identified aneuploidies by looking for an
excess of large CNVs for each chromosome per sample.

Tandem repeats were detected from samples with PCR-free DNA
library preparation and sequenced on the Illumina HiSeq X platforms
using ExpansionHunter Denovo54 v0.7.0 with default parameters. We
detected tandem repeat expansions in the discovery cohort using
ExpansionHunter Denovo size cutoffs from the previous study20.
Sample quality control procedures were performed to remove sam-
ples with tandem repeat counts exceed three standard deviations
above mean20.

Variant annotation
We annotated SNVs and indels with information on population allele
frequency, variant impact predictors, and putative pathogenicity and
disease association, using a custom pipeline based on ANNOVAR Feb
2016 version55 (see Supplementary Data 19 for list of databases and
predictors used)4. For non-genic regions, we annotated whether the
variant overlapped reported ASD-associated noncoding regions21–25

(SupplementaryData 20). These included transcription start sites, fetal
brain promoters and enhancers of LoF intolerant genes22, histone
modification (H3K27ac) sites in fetal and adult brain23, splice sites, 3′-
and 5′-untranslated regions (UTRs)25, binding sites predicted by
DeepSEA24 to cause LoF, as well as conserved promoters of any genes,
developmental delay-associated genes, and long noncoding RNA
genes21. We tested three additional functional sites that have not been
previously associated with ASD. These included boundaries of topo-
logically associating domains56, CTCF binding sites57, and brain
enhancers from Roadmap Epigenomics chromatin states (15-states
chromHMM)58.

We annotated CNVs and SVs with a custom pipeline using RefSeq
gene models, with repeat regions, gaps, centromeres, telomeres and
segmental duplications relative to the University of California at Santa
Cruz genome assembly hg19. Similar to our non-genic annotations for
SNVs, we annotated whether a CNV overlapped promoters of genes21,
H3K27ac sites21, 3’UTR and 5’UTR25 (Supplementary Data 20). We
retained CNVs overlapping such regions, but not exonic regions. We
also annotated the frequency of each CNV and SV from among 3107
parents in the MSSNG database4 (fifth version) and the putative
pathogenicity and disease association [from Human and Mouse Phe-
notype Ontologies59,60 (HPO and MPO), ClinGen Genome Dosage
Sensitivity Map61, Online Mendelian Inheritance in Man, and Database
of genomic variation and phenotype in humans using ensemble
resources (DECIPHER)62].

We annotated mitochondrial variants using Annovar-based cus-
tom scripts with annotations from MitoMaster (April 2019) and
Ensembl v96.

Detection of rare variants
We extracted high-quality rare data for SNVs and indels after apply-
ing the following filters: (1) FILTER is PASS or varQuality is VQHIGHor

PASS; (2) population allele frequencies <1% in 1000 Genome
Project63, NHLBI-ESP64, Exome Aggregation Consortium65, The Gen-
ome Aggregation Database66, and internal Complete Genomics con-
trol databases; (3) reference and alternative allele frequency >95%
and <1%, respectively, based on allele frequencies of 2573 parents in
MSSNG (fourth version)4 to decrease batch and cross-platform
effects; and (4) allele frequency <5% from 250 parents from this
study aligned with Isaac to decrease alignment-specific artifacts. The
population allele frequency cutoff of <1% was selected, as it gave the
optimal and significant analysis result (Supplementary Fig. 2). To
further minimize cross-platform and batch effects, we required het-
erozygous SNVs and indels to have an alternative allele fraction of
0.3–0.7 (inclusive) and homozygous/hemizygous SNVs and indels to
have an alternative allele fraction >0.7 for variants from Complete
Genomics. For Illumina variants, we also required heterozygous SNVs
and indels to have a genotype quality score of at least 99 and 90,
respectively, and homozygous SNVs and indels to have a genotype
quality score of at least 25.

We retained CNVs >2 kb that had <70% overlap with gaps, cen-
tromeres, telomeres, and segmental duplications. For CNVs from
Illumina platforms, we defined stringent CNVs as those called by both
ERDS andCNVnator (with 50% reciprocal overlap).WedefinedCNVs as
rare if the allelic frequency was <1% in parents from the MSSNG
database4 and <5% in parents of this cohort that were aligned
with Isaac.

We retained as rare SVs, those with an allelic frequency of <1% in
parents analyzed with Manta from the MSSNG database and <5% in
parents in this cohort that were aligned with Isaac. Pairs of entries with
identical non-zero first numbers in the MATEID tag were retained as
one inversion. Entries with identical MATEID values were retained as
complex SVs. On average per sample, we detected ~3.7 million SNPs,
36,514 rare single-nucleotide variants (SNVs), 4113 small insertions and
deletions (indels), 13 rare copy-number variants (CNVs), 390 rare
structural variations (Supplementary Data 2).

Detection of de novo variants
To identify de novo SNVs and indels from sequencing data from
Complete Genomics, we compared each variant in the proband to the
sequence at the same position in the parents. A variant inconsistent
with Mendelian inheritance (present in the offspring but not in either
parent or the sibling), was considered to be a potential de novo
mutation for that child.We applied the following qualityfilters for each
variant45: (i) varQuality of allele1 and allele2 is either VQHIGH (for v2.2)
or PASS (for v2.4); (ii) ploidy of the child = 2 (or = 1 for X- and Y-linked
variants inmale subjects) and the ploidy of both parents is not “N”; (iii)
the ratioof sequence reads supporting the alternative call to thatof the
reference call is 0.3–0.7 (or ≥0.7 for X- and Y-linked variants in male
subjects); (iv) the variant call does not overlap with known regions of
segmental duplication; (v) the refscore (likelihood of the region being
the same as the reference sequence) in both parents is >40 or “−”; (vi)
the variant call does not overlap with any variants found in Complete
Genomics public genomes; (vii) the variant call has frequency <0.01 in
the 1000 Genomes Project; (viii) the SNV call in the child does not
overlap with any variant call (SNV or indel) in either parent; and (ix)
variants clustered within a distance of 100 bp have been eliminated.
For Illumina WGS data, we also used DenovoGear67 (version 0.5.4) to
detect de novo SNVs and indels. We extracted variants inconsistent
with Mendelian inheritance (present in offspring but not in parents)
with FILTER = PASS and defined rare, as above. To identify high-
confidence de novo SNVs, we applied the following quality filters: (1)
pp_DNM score ≥0.9 from DenovoGear67; (2) overlap GATK48 calls with
genotype quality scores ≥99 for heterozygous SNVs. We defined high-
confidence de novo indels as those called by DenovoGear and GATK
with the same start site. We retained de novo SNVs and indels with a
ratio of sequenced reads supporting the alternative call to the total
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number of reads at the position of 0.3–0.7, or >0.7 for X- and Y-linked
variants not in the pseudoautosomal regions in male subjects.

We defined putative de novo CNVs as rare stringent CNVs (see
“Detection of rare variants”) that were inconsistent with Mendelian
inheritance. For CNVs that did not have a conclusive inheritance pat-
tern (i.e., CNV in child and parent were not the same size), we defined
putative de novo CNV as those with a CNV length ratio between child
and parent of >2. For each putative de novo CNV from Illumina plat-
forms, we calculated a read depth ratio of the CNV with the sur-
rounding region in each family member51. Ratios of 0.35–0.65 were
considered heterozygous deletions, <0.35 as homozygous/hemi-
zygous deletions, >=1.4 as duplications and 0.9–1.1 as a normal copy
number. Putative de novo CNVs were considered de novo if the copy-
number status based on ratios were inconsistent with Mendelian
inheritance. For the 40 regions with ratios that did not meet the
aforementioned criteria,we visualized theWGS reads to determine the
inheritance status for samples sequenced by Illumina. To determine
the inheritance status for samples sequenced by Complete Genomics,
we examined the read depth coverage of the CNV relative to that of
Complete Genomics controls68 and its flanking regions in each family
member. On average per sample, we detected 73.4 de novo SNVs, 7.3
de novo indels, and 0.1 de novo CNVs (Supplementary Data 2).

Validation of variants
We randomly selected a subset of all high-quality exonic de novo SNVs,
all de novo indels and all CSVs for validation in probands and available
parents. We used Primer369 to design primers to span at least 100 bp
upstream and downstream of a putative variant, avoiding regions of
known SNPs, repetitive elements, and segmental duplications. DNA
from whole blood, if available, was used to amplify candidate regions
by polymerase chain reaction and to assay with Sanger Sequencing.
For CNVs, we validated all high-confidence de novo exonic and all
clinically significant CNVs in whole blood DNA (if available) of pro-
bands and available parents using TaqManTM Copy Number Assay
(Applied Biosystems), SYBR® Green qPCR (Thermofisher) or digital
droplet PCR (BioRad). Experimental validation rateswere 94.8%, 85.7%,
and 87.5%, respectively, for de novo SNVs, indels, and CNVs (Supple-
mentary Data 3 and 4).

Mitochondrial variant detection
For the samples sequenced by Illumina platforms, reads aligning to the
mitochondrial genome were extracted and realigned to the revised
Cambridge Reference Sequence (NC_012920) in b37 using BWA
v0.7.12. Pileups were generated with samtools mpileup v1.1 requiring
the program to include duplicate reads in the analysis and retaining all
positions in the output. Custom scripts were developed to parse the
mpileup output to determine the most frequently occurring non-
reference base at each position in the mitochondrial genome. The
heteroplasmic fractions were calculated and vcf files were generated.
Fasta files with the most frequently occurring base at every position
were also generated and used as input for the program HaploGrep
v2.1.1 for haplogoup prediction. The vcf files were annotated using
Annovar-based custom scripts with annotations from MitoMaster
(April 2019) and Ensembl v96.

For the samples that were sequenced by Complete Genomics, the
mitochondrial variants called by the proprietary software were
extracted. Fasta files were generated using custom scripts replacing
mitochondrial reference bases with alternative bases at heteroplasmic
sites, and the files were used as input for the programHaploGrep v2.1.1
for haplogoup prediction. The vcf files were annotated using Annovar-
based custom scripts with annotations from MitoMaster (April 2019)
and Ensembl v96.

Positions with heteroplasmic fraction less than 5% or greater than
95% and common in certain haplogroups (greater than 5%) were
excluded from downstream analysis. All variants were manually

reviewed, and a list of artefactswascompiled andexcluded. To identify
pathogenic mitochondrial variants, the following variants were con-
sidered: anyMitoMaster pathogenic variants at 5–100% heteroplasmy,
variants between 10–90% heteroplasmy, and variants between 5 and
100% heteroplasmy and seen <2% of the time in the individual’s
haplogroup.

Variant detection for replication cohort
For the replication cohort, CRAM files and sequence-level variants
were downloaded from Globus (https://www.globus.org/). We detec-
ted CNVs using ERDS49 and CNVnator50, as described for the discovery
cohort51. Rare variants were filtered as described for the discovery
cohort. We identified de novo SNVs and indels using DeNovoGear67.
Allele frequencies from the Simons SimplexCollectionwere calculated
and de novo variants with internal frequencies <1% were excluded. De
novo SNVs and indels at poorly sequenced or highly variable sites were
also excluded from further analysis. The remaining de novo variants
were filtered as described for the discovery cohort, with the exception
of using a PP_DNM<0.95 threshold for de novo SNVs. Variants were
annotated as described above for the discovery cohort.

Variant prioritization and molecular diagnosis
To identify CSVs from the discovery cohort, we prioritized rare and de
novo LoF and damaging (as predicted by at least five/seven
predictors25) missense variants, and variants reported by ClinVar70 or
the Human Gene Variant Database71. We also prioritized rare and de
novo CNVs and SVs, including those overlapping syndromic regions in
DECIPHER62 or ClinGen Genome Dosage Sensitivity Map61 databases.
Genes affected by such variants were compared to ASD candidate
genes3,4,13,72,73, candidate genes for neurodevelopmental disorders72,
and genes implicated in neurodevelopmental or behavioural
phenotypes according toHPO60 andMPO59. In addition, we considered
the mode of inheritance from the Online Mendelian Inheritance
in Man and Clinical Genomics Database73, segregation and
genotype–phenotype correlations. We classified the variants as
pathogenic, likely pathogenic, variants of uncertain significance, likely
benign, or benign, based on the American College of Medical Genetics
and Genomics Guidelines18,19. Variants of unknown significance in
known or candidate ASD genes with emerging evidence were further
categorized into three ASD candidate variant categories (Supplemen-
tary Note 1 and Supplementary Data 5–7). Although applying quality
filters for high-confidence variants is important to minimize false
positives for burden analysis, this can increase false negatives. There-
fore, we also manually inspected WGS data when we identified CSVs
that did not pass filtering criteria for high-confidence variants.

Clinically significant variants classified as pathogenic or likely
pathogenic or that were considered clinically relevant (i.e., prompting
further clinical management) were reviewed by a medical geneticist in
the context of the participant’s phenotype and family history. Relevant
findings were reported back to families through a clinical geneticist.
Differences in the yield ofCSVs among themorphological groupswere
calculated using Fisher’s exact test.

To identify CSVs from the affected probands in the replication
cohort, the aforementioned approach was applied to de novo LoF,
damaging missense, and CNVs. CSVs from the replication cohort were
confirmed by manual inspection of WGS reads.

Rare variant burden analysis in gene sets and noncoding regions
For thediscoverycohort,weperformed twoASDsubtype comparisons
for each rare variant burden analysis as follows: (1) comparing com-
plex, equivocal and essential ASD using ordinal regression tests and (2)
comparing complex and equivocal ASD (i.e., dysmorphic ASD) to
essential ASD using logistic regression tests. The test was done by
regressing an event (e.g., number of genes impacted by rare deletions
per subject) capturing a particular genomic region (i.e., coding, gene
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sets, or noncoding regions) on the phenotype outcome (e.g., complex
vs. essential ASD). The events tested in this study were the number of
LoF, missense, and predicted deleterious variants for sequence-level
variants and the number of genes or noncoding regions for CNVs. Tier
1 and 2 missense variants consist of all or only predicted damaging
missense variants, respectively, as defined in ref. 25. The CNVs were
grouped into two size bins, small CNVs (2–10 kb) and largeCNVs (10 kb
to 3Mb) due to greater proportion of these CNVs overlapping coding
or noncoding regions, respectively. The number of genes impacted by
other CNVs was based on their overlapwith the coding regions of each
gene. However, the number of genes impacted by small CNVs were
based on genic overlap since there were not enough small coding
CNVs for the gene set enrichment analysis. We compiled a list of 37
gene sets related to neuronal function, brain expression, mouse phe-
notypes from MPO, or human phenotypes from HPO that have been
previously associated with ASD or used as negative control gene sets
when comparing ASD to control groups (Supplementary Data 21)74–84.
For noncoding regions, we compiled a list of regions reported to be
associated with ASD (Supplementary Data 20)21–23. We also included a
score that predicts the impact of a variant on transcription factor
binding as one of the noncoding regions tested24. Logistic regression
and ordinal regression were applied for two subtypes and three sub-
types comparison, respectively. Sex, genotyping platform, and three
principal components from population stratification were included in
the model as covariates to correct for any biases caused by sex dif-
ference, platforms, or ethnicity. Deviance test P value was calculated
by comparing residuals from two regression models; one with just the
covariates and another with all both covariates and target variable85.
Global burden analysis was performed to compare the total number of
LOF variants, missense variants, predicted deleterious variants for
sequence-level variants, and genes impacted by CNVs. The coefficients
reported were obtained from the model with the covariates. Multiple
test correction for global burden tests was done using the Benjamini
Hochberg approach (BH-FDR). For the gene sets and noncoding
regions burden test, total variant count (for SNVs and noncoding
CNVs) or total gene count (for CNVs) was also included as one of the
covariates to get rid of a global burden bias that might inflate the test
P value. The coefficients, however, were calculated from the model
with all the covariates except the total variant count or the total gene
count for the actual magnitude of their impact. Permutation-based
FDR correction (1000 permutations) corrected for the multiple com-
parison. Sincedifferent gene sets and noncoding regions consist of the
different number of genes or regions, we calculated the coefficients
using z-scores for the number of features in each gene set/region to
compare the coefficients across morphology-associated regions.
When examining the burden of rare variants using logistic regression
models, we used all probands from the discovery cohort (n = 325).
Since some probands did not have their parents sequenced, we used a
subset of the discovery cohort (n = 235) when examining de novo
variants. All statistical analysis was performed using R Statistical Soft-
ware v3.5.1.

Genome-wide rare variant score
In addition to identifying relevant gene sets or regions that were dif-
ferentially enriched among ASD morphologic subgroups, we devel-
oped a procedure to calculate a genome-wide rare variant score
(GRVS) for each subject. This allowed the contribution of different
variant types toward phenotype severity to be assessed together. The
procedure involved two main steps: (i) identification of relevant, dif-
ferentially enriched gene sets or noncoding regions for each variant
type along with an estimation of their effect sizes in the discovery
cohort, and (ii) calculation of the score for each subject in the target
cohorts.

To estimate the effect sizes in the discovery cohort, we first fitted
a logistic regression model by regressing platform, sex and first three

principal components from population stratification on the dysmor-
phology classification (nondysmorphic = 0 and dysmorphic = 1, or
essential = 0, equivocal = 1, complex = 2). We then used the regression
coefficients of these covariates and the intercept in the second logistic
regressionmodel, where a feature representing a particular gene set or
region was tested. Therefore, regression coefficients of all the gene
sets and regions were corrected for those possible biases from the
covariates equally. The two models can be notated as below:

Y =a+βC ð1Þ

Y =a+βC + βiX i ð2Þ

where Y is the outcome variable of dysmorphology classification, ɑ is an
intercept, β is a regression coefficients of covariates, C is a vector of
covariates, βi is the regression coefficient of a morphology-associated
region, i, and Xi is the number of features found in a morphology-
associated region. A feature is defined as the number of rare or de novo
SNVs or indels or the number of genes or noncoding regions impacted
by rare CNVs. For rare variants, we used all probands in the discovery
cohort. Since some probands did not have their parents sequenced, we
used a subset of the discovery cohort when examining de novo variants.
To determine the optimal P value threshold to identify significant gene
sets, we calculated Nagelkerke’s R2 at different P value thresholds
(P<0.001, 0.005, 0.01, 0.05, 0.1. 0.5, and 1) using the discovery cohort
and tenfold cross-validation strategy. The optimal P value threshold was
at P<0.1 (Supplementary Fig. 4). To minimize the redundancy in
significant gene sets and noncoding regions, we retained the most
significant gene sets and noncoding regions with a Jaccard index <0.75.
We used the regression coefficients (βi) of significant gene sets or
noncoding regions (P<0.1) as a weight for the number of variants in
those gene sets or regions in the GRVS calculation.

For each individual, the GRVS was calculated using the formula
below

GRVS=
Xk

j = 1

Xn

i= 1

βij X ij ð3Þ

where n is the number of significant (P <0.1) gene sets or regions for a
particular variant type, j, k is the number of variant types (e.g., de novo
missense variants),βi is a regression coefficient of a significant gene set
or region, i, andXi is the number of variants (for SNVs and indels) or the
number of genes or regions (for CNVs) that are found in the significant
gene set or region in the sample.

To examine the GRVS in the discovery cohort, we used a tenfold
cross-validation strategy to avoid overfitting. Using this strategy, the
discovery cohort was randomly divided into 10 equally sized sub-
samples (stratified by subtypes). We calculated the GRVS of each
sample in each subset using the effect sizes determined in the
remaining nine subsets. To minimize stochasticity in the GRVS calcu-
lation, we repeated this procedure 30 times and the average GRVS and
average number of variants for each sample were used for subsequent
subtypes comparisons (Supplementary Fig. 1a). For the replication
cohort,wecalculatedGRVSs using significant gene sets andeffect sizes
derived from the discovery cohort (Supplementary Fig. 1b). GRVS can
be calculated for probands regardless of whether their parents have
been sequenced. However, there would be a systematic difference in
GRVSs in the discovery cohort if all probands were used because those
whose parents have been sequenced includes scores from de novo
variants, whereas probands whose parents have not been sequenced
do not have scores from de novo variants. To ensure that the same
variant types (including de novo variants) were included in each score
for probands in the discovery cohort, GRVS was calculated only for
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probands whose parents had also both been sequenced. GRVSs were
standardized within each cohort and subtyping method. We tested
whether GRVS is higher in dysmorphic ASD compared to non-
dysmorphic ASD using a one-sided Wilcoxon’s signed-ranked test.

We used our ADM-reclassified cohort as the discovery cohort for
several reasons: (1) In contrast to theMPAs (dysmorphologydata) from
SSCwhichwere identified bymultiple non-geneticist examiners, MPAs
in the discovery cohort weredocumented by a single dysmorphologist
with over 20 years of clinical experience (B.A.F.). MPA’s for children in
the discovery cohort were then put through the ADM algorithm and
the cases were classified as ADM-dysmorphic or ADM-nondysmorphic.
This strategy allowed us to use very uniformly collected phenotypic
data to derive the morphology-associated regions and effect sizes for
GRVS calculation. (2) Our discovery cohort also contains more dys-
morphic probands than SSC, which gives more power to identify
morphology-associated regions (enriched in dysmorphic ASD). (3)
Lastly, the discovery cohort was assembled using a population-based
recruitment strategy so that the morphology-associated regions
identified come from a patient collection representative of ASD as it
exists at the level of primary care providers. In contrast there are
ascertainment biases in SSC (e.g., simplex families and exclusion of
severely affected/ syndromic probands) which might limit the gen-
eralizability of effect sizes and morphology-associated regions in a
population-based cohort35.

We calculated a score for CSVs using the GRVS formula if the CSV
was identified in a proband with two sequenced parents, and if the
variant occurred in or overlapped one of the morphology-associated
gene sets or noncoding regions so that effect sizewas available for that
variant. 46 CSVs were identified in 46 probands and17 of thesemet the
above criteria allowing us to calculate a score for the variant. Of the
remaining 29 CSVs, 15 were identified in probands where sequencing
data were not available from both parents, and 14 variants did not
overlap a morphology-associated region.

Common variant and PRS analysis
Weexamined the contributionof commonSNPs amongASD subtypes.
We calculated the PRS for each sample by deriving ASD summary
statistics from a population-based genome-wide association study
(GWAS) of 13,076 cases and 22,664 controls from the iPSYCHproject11.
We calculated the PRS for BMI, which was a negative control due to its
lack of association with ASD29, using BMI summary statistics from a
population-based GWAS of 322,154 individuals of European descent
from the GIANT Consortium86. We preprocessed the GWAS summary
tables to fix the effect allele mismatch (swapped A1 and A2 alleles and
converted its odds ratio) and to remove ambiguous SNPs (i.e., SNPs
with A to T and C to G variations) and multi-allelic SNPs.

We conducted joint genotyping of BMI- and ASD-associated SNPs
only on samples sequenced on Illumina platforms (200 probands and
400 parents). We could not re-genotype Complete Genomics data, so
the samples were excluded from further analysis. We retained SNPs
with a minor allele frequency >0.05 and genotyping rate >90%, of
which 349,682 SNPs and 428,364 SNPs intersected with iPSYCH-ASD
and GIANT-BMI SNPs passing suggested a P value threshold (P
value < 0.1 for ASD and P value < 0.2 for BMI) by Weiner et al.2,
respectively. We then calculated PRSs using PRSice v2.2.087 (para-
meters used: clump-kb 250, clump-p 1.000000, clump-r2 0.100000,
info-base 0.9) using a P value threshold of 0.1 for iPSYCH and 0.2 for
GIANT-BMI, as suggested in ref. 8. After clumping, only 18,549 SNPs
and 38,245 SNPs remained for PRS calculation for ASD and BMI,
respectively11. We calculated PRS for ASD for the SSC replication
cohort using 26,067 SNPs with P value < 0.1 after the clumping step.
The PRSs in both cohorts were standardized (with a mean of zero and
standard deviation of one). We used the pTDTmethod8 and one-sided
Welch’s t-test to examine the overtransmission of common variants
associated with ASD susceptibility among subtypes. Probands were

used in the analysis if the probands were of European ancestry and if
sequencing data were available from both parents.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The WGS data generated in this study have been deposited into
controlled access research databases, as further described below,
because this is the type of data sharing that was approved by the
study participants. Access to FASTQ data for samples in the dis-
covery cohort that were consented for MSSNG can be obtained by
completing the data access agreement: https://research.mss.ng.
Access to FASTQ data for samples in the discovery cohort not con-
sented for MSSNG, as well as VCF files for sequence-level variants for
all samples in the discovery cohort are available at European
Genome-Phenome Archive (accession EGAS00001005753). This data
can be obtained by contacting the corresponding author and com-
pleting the data access agreement. If approved, data will be shared
through the European Genome-Phenome Archive. Access to data for
the replication cohort can be obtained by completing the data access
agreement (https://www.sfari.org/resource/sfari-base), as was done
for this study. The clinical data generated in this study are provided
in Supplementary Data 7, 12, and 16. Public databases used in this
study can be accessed using the following links: 1000 Genomes
Project (https://www.internationalgenome.org/), NHLBI Exome
Sequencing Project (https://evs.gs.washington.edu/EVS/), gnomAD
(https://gnomad.broadinstitute.org/), Human Phenotype Ontology
(https://hpo.jax.org/app/), Mouse Phenotype Ontology (http://www.
informatics.jax.org/vocab/mp_ontology), ClinVar (https://www.ncbi.
nlm.nih.gov/clinvar/), Human GeneMutation Database (https://www.
hgmd.cf.ac.uk/), Clinical Genomics Database (https://research.nhgri.
nih.gov/CGD/), and Online Mendelian Inheritance in Man (https://
www.omim.org/). Source data are provided with this paper.

Code availability
Code used in thismanuscript is available at GitHub (https://doi.org/10.
5281/zenodo.7113997).
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