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Radiation therapy (RT) is widely used in cancer care strategies. Its effectiveness relies

mainly on its ability to cause lethal damage to the DNA of cancer cells. However, some

cancers have shown to be particularly radioresistant partly because of efficient and

redundant DNA repair capacities. Therefore, RT efficacy might be enhanced by using

drugs that can disrupt cancer cells’ DNA repair machinery. Here we review the recent

advances in the development of novel inhibitors of DNA repair pathways in combination

with RT. A large number of these compounds are the subject of preclinical/clinical studies

and target key enzymes involved in one or more DNA repair pathways. A totally different

strategy consists of mimicking DNA double-strand breaks via small interfering DNA

(siDNA) to bait the whole DNA repair machinery, leading to its global inhibition.
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INTRODUCTION

Radiation therapy (RT), in conjunction with surgery and systemic therapies (chemotherapy,
targeted therapies, immunotherapy. . . ), is a cornerstone of cancer care. About 50% of cancer
patients receive RT (1). The primary objective of RT is to increase the amount of radiation delivered
to the tumor to ensure local control and reduce the amount of radiation in adjacent healthy tissues.
Advanced developments such as image-guided RT (IGRT) or intensity-modulated RT (IMRT) have
led to the enhancement of this therapeutic ratio (2). Despite such improvements, many patients still
experience local recurrence of the disease after RT. Clinical factors such as tumor stage, frequently
associated with increased hypoxia, can explain some of the failures, but it is clear that biological
characteristics play a key part in successful treatment (3–5). RT-induced cell death is mostly due to
DNA damage, especially to double-strand breaks (DSBs) (6, 7). Consequently, tumor cells with
highly efficient DNA repair are radioresistant (8), whereas deficiencies in pathways that repair
DSBs are particularly detrimental to the cells (9). Therefore, therapies that inhibit the DNA repair
machinery have the potential to enhance RT efficacy (10, 11). Inhibiting DNA repair offers an
opportunity to target genetic differences between tumor and normal cells, as DNA repair is often
dysregulated in tumor cells (10, 12–14). Tumor cells divide rapidly because of unregulated cell
cycle control. Thus, they have less time to repair DNA damage as compared to normal cells that
are not dividing or will stop dividing after activation of key checkpoints induced by RT (15, 16).
Beside altered cell cycle control, cancer cells may also present defects in their DNA repair system,
inducing dependence on specific repair pathways and/or overexpression of alternative pathways
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(16, 17). Furthermore, cancer cells often develop under stress
conditions, thus raising the frequency of endogenous DNA
damage (18, 19). This review will firstly focus on the distinct
categories of DNA lesions induced by RT and the DNA repair
pathways required for their repair. Subsequently, it will present
the approaches that are currently being developed to enhance RT
efficacy by modulating DNA repair.

RT-INDUCED DNA DAMAGE RESPONSE

DNA lesions induced by RT activate the DNA damage
response (DDR), which essentially involves post-translational
modifications of proteins to activate downstream signaling
pathways (20). DDR is based on an intricate network of
proteins that work together to manage DNA repair and cell
cycle coordination. DDR interrupts the cell cycle, thereby
inhibiting the spread of DNA damage to daughter cells and
facilitating repair. Cell division arrest is mainly controlled by the
checkpoint kinases CHK1 and CHK2, which are activated by the
phosphatidylinsositol-3-kinases (PI3K) of the DDR machinery
(15). DDR signaling is also essential for triggering apoptosis when
repair is unsuccessful, notably through modifications to the p53
protein (20).

RT induces a variety of DNA lesions. Approximately 10,000
damaged bases, 1,000 single strand breaks (SSBs) and 40 DSBs are
produced per gray per cell (21, 22). Such lesions, if not corrected,
can lead to cell death by mitotic catastrophe and apoptosis. DSBs
are the most lethal to the cells despite their low proportion, as
one single unrepaired DSB can trigger cell death (7). DSBs are
produced directly and indirectly by RT. Indirect DSBs most often
occur during replication if the initial damage is unrepaired. As an
example, when a replication fork encounters an unrepaired SSB,
the fork is blocked and leads to the conversion of this SSB into a
DSB (10, 23, 24). The resulting DSB can directly trigger cell death
or activate DDR, which induces cell cycle arrest and promotes
DNA repair. This repair is usually error-free, allowing the cell to
survive without genetic consequences. It can also be error-prone,
leading either to cell death if the error is not viable or mutation
and chromosomic aberrations (25).

DNA REPAIR OF RT-INDUCED DAMAGE

Following RT, damaged bases induced by oxidative stress are
repaired by the base excision repair pathway (BER) (26–31).
In BER, damaged bases are excised by DNA glycosylases,
resulting in apurinic (AP) sites. Subsequently; these AP sites
are cleaved by apurinic endonuclease 1 (APE1) or an AP-
lyase activity, leading to SSBs. SSBs are repaired by the part
of the BER pathway called single strand break repair (SSBR)
(Figure 1A) (12, 32). Either short-patch or long-patch SSBR
can then proceed, depending on several factors such as type
of lesion and cell cycle state. Single nucleotide insertion by
DNA polymerase (Pol) β and ligation by DNA ligase III are
described as short-patch SSBR, and interact with the protein X-
ray repair cross-complementing 1 (XRCC1). Long-patch SSBR
involves the removal of a larger DNA segment, which requires

several DNA replication factors such as proliferating cell nuclear
antigen (PCNA), Pol δ/ǫ, flap endonuclease 1 (FEN1), and DNA
ligase I. Concerning SSBs detection, poly-ADP-ribose polymerase
(PARP1 or PARP2) are required (28, 33–37). The binding of
PARP to SSB activates its auto-PARylation, and leads to the
recruitment of BER/SSBR proteins. PARP-1 was also reported
as a regulator of DNA repair gene expression through the E2F1
pathway (38). Unrepaired SSB or a damaged base can block the
replication forks, resulting in fork collapse and DSB (23). The
great majority of oxidative damage induced by ionizing radiation
is corrected by BER. However, under hypoxic conditions, IR
causes the formation of cyclodeoxynucleosides that can be only
removed by nucleotide excision repair (NER). Several results
suggest that NER may be involved in the repair of oxidized DNA
damage. In addition, ionizing-radiation breast cancer risk has
been related to polymorphism in ERCC2 (one of the main NER
enzymes) (39).

Two major pathways repair DSBs: homologous
recombination (HR) and non-homologous end joining (NHEJ)
(40). However, both mismatch repair (MMR) and NER pathways
have been reported to affect both HR- and NHEJ-mediated DSB
repair efficacy to a lesser extent (41). The formation of DSBs
triggers the activation of three key enzymes from the PIKK
family: ataxia telangiectasia mutated kinase (ATM), ATM-related
kinase (ATR), and DNA-dependent protein kinase (DNA-PK).
This leads to the phosphorylation of many proteins, signaling
damage and initiating DNA repair. One of the early steps is
the phosphorylation of histone H2AX (γ-H2AX), which signals
the presence of DSB to repair proteins where they aggregate
in ionizing radiation-induced foci (IRIF) (42). Besides their
crucial roles in DDR signaling, the kinases ATR and ATM are
also involved in maintaining replication fork stability (14) and
fork reversal in case of fork-stalling lesions, notably through
SMARCAL1 (43).

In mammalian cells, c-NHEJ (classical NHEJ, Figure 1B) is
the most efficient DSB repair mechanism. It acts by directly
ligating the broken DNA ends (44). c-NHEJ can occur during
the entire cell cycle. It is frequently accompanied by small
deletions at the repair break site and is considered to be the
main cause of DSB error-prone repair. The first step of NHEJ
is the binding of the heterodimer Ku70/Ku80 at the end of the
DSB (45), allowing the recruitment of catalytic subunit DNA-
PKcs forming the protein complex DNA-PK (46). DNA-PK,
bounded to DNA, is activated and phosphorylates numerous
proteins including H2AX (47), Artemis (48), X-ray repair cross-
complementing 4 (XRCC4) and ligase IV complex (49), and XLF
(XRCC4-like factor) (50) that are recruited on the site of the
DSB and participate in its repair. When c-NHEJ is impaired, an
alternative pathway called a-EJ (alternative EJ) or MHEJ (Micro
Homology End Joining) (Figure 1C) is activated (51). At the
initial breaking site, a deletion of 5–25 nucleotides is necessary to
reveal micro-homologies to realize a-EJ (52), while a maximum
of 4 deleted nucleotides is necessary for c-NHEJ (44). The micro-
homologies that are slightly longer in the case of a-EJ could
partly explain the higher number of large deletions and other
genomic rearrangements that occur (53, 54). The a-EJ pathway
is differentiated from c-NHEJ by the fact that it is independent
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FIGURE 1 | DNA damage repair after radiation therapy. In irradiated cells, a number of DNA lesions are induced including single (SSB) and double-strand breaks

(DSB). (A) SSBs are corrected by the part of base excision repair (BER) known as single-strand break repair (SSBR). The binding of PARP to SSB activates its

auto-PARylation and leads to the recruitment of BER/SSBR proteins including AP endonucleases (APE1), XRCC1 (helper protein), PCNA, FEN, PNK, and DNA

polymerases (Pol; damage processing) and DNA ligases. (B) In c-NHEJ, DSB is recognized by the Ku80-Ku70 heterodimer, which leads to DNA-dependent protein

kinase catalytic subunit DNA-PKcs recruitment, gathering the DNA-PK complex and activating its kinase activity. This leads to the involvement of repair proteins

(XRCC4, DNA ligase IV and others), which perform the processing and final junction reaction. (C) When c-NHEJ is impaired, an alternative pathway called a-EJ

(alternative EJ) takes place and involves mainly PARP1, XRCC1, ligase III, MRN complex and the DNA polymerase θ. (D) In HR, after ATM activation, the DSB site is

bounded by the MRE11-RAD50-NBS1 complex (MRN). The consequence is the phosphorylation of a set of targets including H2AX (γ-H2AX), localized at the site of

DSB. HR uses the sister chromatid as a model to repair DSB. First, the resection of the DNA at DSB results in a 3′ single-strand DNA, which is then coated by

proteins of replication A (RPA). Subsequently, proteins of the RAD family are recruited and mediate the invasion of the homologous strand of the sister chromatid,

leading to the formation of Holliday junctions. DNA polymerases can then synthetize across the missing regions. The Holliday junctions are finally resolved by cleavage

and followed by ligation of adjacent ends. Represents inhibitors of DNA repair in preclinical or clinical development.

of Ku proteins (52). a-EJ involves mainly PARP1, XRCC1, ligase
III (LIGIII), and the MRE11/RAD50/NBS1 (MRN) complex (55,
56). DNApolymerase theta (Pol θ or PolQ) is specifically involved
in nucleotide incorporation in the a-EJ mechanism through the
TMEJ (theta-mediated end joining) pathway (57).

HR is an alternative pathway for repairing DSBs that uses
the sister chromatid as a model, restricting this mechanism to
the S and G2 cell cycle phases (Figure 1D) (40). HR is the
most conservative and least error-prone repair mechanism. It
necessitates the presence of BRCA proteins, defects of which
increase susceptibility to breast or ovarian cancer. The DSB
site is bounded by several factors such as the MRN complex,
EXO1 (exonuclease 1), DNA2-BLM (Bloom syndrome), BRCA1
and CTIP (CtBP-interacting protein) that contribute to DNA

resection and formation of a 3′ single-strand DNA (58–60),
which is then coated by proteins of replication A (RPA). After
the RPA protein’s displacement by RAD51, BRCA2 together
with the localizer of BRCA2 (PALB2), RAD54, and BARD1
(BRCA1-associated RING domain protein 1) mediates the
nucleoprotein filament invasion of the homologous strand of the
sister chromatid and creates the “D-loop” (61). DNA polymerases
can then synthetize across the missing regions. The resulting
Holliday junctions are finally resolved by cleavage and followed
by ligation of adjacent ends (62). However, HR can sometimes be
error-prone, especially if template switching occurs, e.g., in repeat
sequences (63).

The choice between the twomajor mechanisms for DSB repair
(NHEJ and HR pathways) seems to be linked to several factors
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such as cell-cycle phase, chromatin context, or availability of key
actors such as the Ku complex, 53BP1 or RAD51 (64, 65).

CURRENT STRATEGIES INVOLVED IN DDR
INHIBITION IN COMBINATION WITH RT

Targeting Key Enzymes Involved in a
Specific DNA Repair Pathway
Inhibiting BER/SSBR
BER and SSBR pathways repair damaged bases and SSBs.
Inhibiting BER/SSBR may lead to unrepaired damages that are
converted to DSBs when encountering a replication fork (23).
Therefore, in cells already defective for HR, such as BRCA−/−

breast or ovarian cancer tumors, the inhibition of BER by PARP
inhibitors leads to unrepaired DSBs and cell death (14). This
effect, called synthetic lethality, has been extensively described
(17, 66, 67) and studied in numerous clinical trials (68–70). Since
the majority of RT-induced damages are repaired by BER/SSBR,
inhibition of this pathway should highly sensitize cells to RT even
in HR-proficient cells (29). The preclinical evaluation of PARP
inhibitors has shown enhanced RT efficacy both in vitro and in
vivo (71–73). Several PARP inhibitors have already been tested
in or entered into numerous clinical trials in association with RT
for brain metastases, ovarian cancer, breast cancer, rectal cancer,
or glioblastoma, among others (Table 1). However, early data
did not demonstrate convincing and coherent proof of synergy,
although neither did they demonstrate unexpected toxic effects
(74, 75). Another strategy for the inhibition of BER/SSBR is the
development of APE1 inhibitors. APE1 is crucial for BER/SSBR
and is commonly overexpressed in cancer cells (80, 81), giving
to this strategy some tumor specificity. APE1 inhibitors have
shown efficacy in combination with RT in preclinical studies (82).
Lucanthone, an APE1 inhibitor, combined with temozolomide,
has recently been tested in a phase 2 clinical trial in glioblastoma
(Table 1). The results are not yet published.

Inhibiting NHEJ
DNA-PK, a key enzyme in NHEJ, is a member of the PI3K
family that performs a central role in many cellular functions
(83). Selective DNA-PK inhibitors have led to radiosensitization
in preclinical studies (84–86). Three phase 1 trials are currently
testing the safety and tolerability of a DNA-PK inhibitor (M3814)
in combination with palliative RT +/- immunotherapy in
advanced solid tumors (NCT02516813 and NCT03724890) and
curative-intent radiotherapy in locally advanced rectal cancer
(NCT03770689) (Table 1). Such strategies, which are not based
on a selective effect on the tumor, are considered promising by
some (14) though they have been criticized by others (87). Early
reports of the clinical combination of M3814 and palliative RT
showed enhanced normal tissue reactions including dysphagia,
prolonged mucosal inflammation/stomatitis, and skin injury (87,
88). Inhibition of Ku subunits could also result in reduced
DNA-PK activity and NHEJ. This is consistent with the existing
data reporting that shRNA depletion of Ku70 or Ku80 showed
cytotoxicity and radiosensitization in pancreatic cancer cells (89,
90). CC-115, a dual inhibitor of DNA-PK and mammalian target

of rapamycin (mTOR), is being tested; preliminary anti-tumor
activity has been reported, although whether these responses
are attributable to activity against DNA-PK or mTOR is unclear
(14, 91). A phase 1 trial testing CC-115 in combination with RT
and temozolomide in the treatment of glioblastoma is ongoing
(NCT02977780). NHEJ can also be indirectly inhibited via the
EGFR pathway (see below).

Inhibiting HR
Cancer cells are known to be more proliferative than normal
cells (92). Inhibitors of replication-associated processes such
as HR exploit this specificity to enhance the therapeutic ratio.
Nevertheless, there are few specific inhibitors of HR. It has been
shown that RAD51 expression and functional HR can be reduced
using imatinib during experimental RT, leading to increased
radiosensitization (13, 93). Indirect inhibition of HR can also be
obtained via cell cycle checkpoint targeting (see below).

Targeting Key Enzymes Involved in
Multiple Repair Pathways
DNA damage detection and signaling is the first step common
to all DNA repair pathways. Acting on this step will
alter several pathways. Therefore, several approaches have
been tested to disable part or all of the DNA damage
recognition/signaling steps.

Inhibiting ATM
ATM is one of the key enzymes in DNA damage signaling
of DSBs for HR but also NHEJ (94). Defective cells in ATM
are extremely radiosensitive, independent of their p53 status
(95). ATM inhibitors have shown radiosensitization in preclinical
studies (96–98). A single 15Gy RT dose suppressed tumor
growth in a preclinical model when ATM was deleted in cancer
cells vs. when deleted in endothelial cells (99), underlining the
interest in testing ATM inhibitors in combination with highly
conformal RT. Like DNA-PK, ATM is part of the PI3K family
and has many cellular functions. A phase 1 study is currently
testing an ATM inhibitor (AZD1390) in combination with RT
in brain tumors including glioblastoma and brain metastases
(NCT03423628). Indirectly, inhibition of the TGFβ-signaling or
mitogen-activated protein kinase (MAPK) pathway can lead to
reduced ATMactivation and increased tumor cell radiosensitivity
through reduced DSB repair (100–102).

Inhibiting ATR
ATR is a critical kinase that is activated in reaction to replication
stress and blocked replication forks. ATR is one of the key
enzymes in DNA damage signaling of DSBs (103). Cancer
cells, which exhibit relatively elevated levels of replication
stress, are more susceptible to dependence on ATR signaling
for survival (104). An ATR inhibitor (AZD6738) has given
encouraging preclinical results (67, 105) and is currently in
phase I trials as monotherapy or in combination with olaparib,
RT (NCT02223923), carboplatin and immunotherapy agents.
Another ATR inhibitor (M6620) is being tested in three phase
1 trials with radiotherapy in esophageal cancer (NCT03641547),
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TABLE 1 | Examples of clinical trials of inhibitors of the DNA damage response in combination with radiation therapy.

DNA repair pathway(s) Target Inhibitor Cancer type Phase References/trial identifier

Targeting key enzymes involved in a specific pathway

BER/SSBR APE1 Lucantone Glioblastoma Phase 2 NCT01587144

PARP Iniparib Glioblastoma Phase 1/2 NCT00687765

Brain metastases Phase 1 NCT01551680

Veliparib Rectal Phase 1 NCT01589419

Breast Phase 1 NCT01477489

Peritoneal carcinomatosis Phase 1 (74)

Brain metastasis Phase 2 (75)

NHEJ DNA-PK M3814 Solid tumors Phase 1 NCT02516813

M3814 Rectal Phase 1b NCT03770689

M3814 Solid tumors Phase 1 NCT03724890

HR RAD51 Imatinib High grade glioma Phase 1/2 (76)

Targeting key enzymes involved in multiple pathways

NHEJ/HR ATM AZD1390 Brain tumors Phase 1 NCT03423628

ATR AZD6737 Solid tumors Phase 1 NCT02223923

M6620 Esophageal Phase 1 NCT03641547

M6620 Head and neck Phase 1 NCT02567422

M6620 Brain metastases Phase 1 NCT02589522

Targeting chromatin dynamics via epigenetic modifications

HDAC Vorinostat Gastrointestinal Phase 1 (77)

High grade glioma Phase 2/3 NCT01236560

Valproic acid Cervical Phase 2 (78)

Baiting DNA-break recognition

BER/SSBR

NHEJ/HR

PARP

DNA-PK

Dbait Melanoma Phase 1 (79)

Targeting cell cycle checkpoints

CHK1/2 Prexsertib Head and neck Phase 1 NCT02555644

WEE1 Adavosertib Glioblastoma Phase 1 NCT01849146

Adavosertib Cervical Phase 1 NCT03345784

Adavosertib Head and neck Phase 1 NCT03028766

locally advanced head and neck squamous cell carcinoma
(NCT02567422) and brain metastases (NCT02589522).

Inhibiting MRN Complex
Mirin is an inhibitor of MRE11 endonuclease and thus of HR
function. However, MRE11 is also upstream of NHEJ, and so
mirin inhibits NHEJ and its effects are not specific to HR (16, 106,
107). It might be of particular interest in combination with RT.

Baiting DNA Breaks Signaling
This approach developed recently is represented by themolecules
called Dbait/AsiDNATM. Dbait/AsiDNATM consist of double-
strand oligonucleotides that mimic DNA strand breaks and
consequently bind and trap the signaling and repair proteins
DNA-PK (24, 108, 109) and PARP (110), leading to inhibition
of both SSB and DSB repair. In preclinical studies, the
proof of concept that a RT-Dbait association could be used
in treating melanoma (24) and high-grade glioma (111) has
been established. A first-in-man phase 1 trial was conducted
combining Dbait/AsiDNATM in combination with palliative RT
in in-transit metastases of melanoma (79) (Table 1). In this

trial, no dose-limiting toxicity was reported and the maximum
tolerated dose was not met.

Targeting Chromatin Dynamics via
Epigenetic Modifications
Epigenetics is an emerging field in cancer biology (112). It
focuses on functionally relevant genome modifications that do
not modify the nucleotide sequence. Such modifications include
DNA methylation or histone modifications that may regulate
gene expression but do not alter the associated DNA sequence.
These modifications could also affect DNA repair ability. The
loss of ARID1A, a piece of the SWI/SNF chromatin remodeling
complex, was recently reported to induce a selective vulnerability
to combined RT and PARP inhibitor therapy (113).

Inhibiting Histone Deacetylases (HDACs)
HDAC inhibitors are epigenetic therapeutics. They have the
capacity to lower RT-induced damage repair both at the level of
damage signaling, via inhibition of the ATM or MRN complex,
and by directly affecting proteins involved in NHEJ and HR
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(112, 114–117). Several clinical trials have been carried out for
various cancer types (77, 78) (Table 1).

Inhibition of Kinases Involved in
DDR-Related Survival Pathways
Sorafenib, a multi-kinase inhibitor, is currently utilized in the
clinic for the treatment of hepatocellular and renal cancers. It
inhibits MAPK signaling together with additional intracellular
Ser/Thr kinases, leading to both NHEJ and HR inhibition.
Sorafenib has shown a radiosensitization effect in preclinical
studies (118). Dasatinib is another multi-kinase inhibitor
inhibiting ABL and SRC tyrosine kinases. In preclinical studies,
it has shown a radiosensitization effect partly due to blocking of
DNA repair pathways involved in DSB repair (119). Sorafenib
and dasatinib are clinically evaluated in association with RT.
Because of their large spectrum of targets, most of these inhibitors
may show high toxicity, which prevents them from being used at
the dosage required to be efficient in combination with RT in the
management of aggressive tumors that overexpress some of their
targets (120, 121).

After RT, EGFR has been found to translocate into the
nucleus and modulate DNA repair (especially NHEJ) through
association with DNA-PKcs (122, 123). A current in-clinic
approach is using the monoclonal antibody cetuximab to inhibit
this nuclear translocation of EGFR. Cetuximab combined with
RT has improved patients’ overall survival in a phase III trial in
head and neck cancer (124). Furthermore, EGFR signaling may
be interrupted by small-molecule tyrosine kinase inhibitors such
as erlotinib or gefitinib, especially in the case of specific EGFR
mutation; these are currently being tested in combination with
RT (125, 126).

Targeting Cell Cycle Checkpoints
Checkpoint dysfunction represents a common molecular defect
acquired during tumorigenesis (15, 127), underlying the
importance of its regulation in cancer development. Interfering
with cell cycle checkpoint signaling is an alternative approach
to modulating DNA repair activity and potentially improving
the therapeutic ratio. The induction of DNA lesions by RT in
normal cells stops their progression in the cell cycle, thereby
avoiding the accumulation of other lesions and their damaging
effects (20). This cell cycle arrest is subtly correlated with DNA
repair to fine-tune cell cycle restart with the disappearance of
damage. In cancer cells with an altered G1 checkpoint, cell cycle
progression goes on relentlessly and, as a result, the removal
of the G2 block increases unrepaired damage and its transfer
to the daughter cells. This finally causes the loss of essential
genetic material and cell death, a process that strengthens
checkpoint inhibition strategies. Combination of RT with a dual
CHK1 and CHK2 inhibitors (AZD7762 and prexsertib) showed
a radiosensitization effect with an increase in mitotic catastrophe
in different cancer cell lines and xenografts (128–130). A phase
1b trial was completed that combined prexsertib with RT and
cisplatin or cetuximab in locally advanced head and neck cancer
(NCT02555644), the results of which are not yet published.
However, in addition to checkpoint activation, CHK1 is also
involved in HR (131, 132) and it is uncertain if this is only

a result of checkpoint inhibition or if it is partly due to HR
inhibition (133).

Another target is the WEE1 kinase, which has been shown to
be a major regulator of the G2-M checkpoint (134). This tyrosine
kinase inhibits the entrance in mitosis by adding an inhibitory
phosphorylation to Cdc2 (the human homolog of tyrosine kinase
1[Cdk1]) to tyrosine 15 (Y15). As a consequence, the Cdc2/cyclin
B complex becomes inactivated, which stops the cells in G2-
M and allows DNA repair. Preclinical studies have shown the
potential use of WEE 1 inhibitors as radiosentizers (135, 136).
Several ongoing clinical trials are testing WEE1 inhibitors with
RT. In addition, several phase 1 trials are currently testing
the WEE1 inhibitor adavosertib (AZD1775) in combination
with RT and temozolomide in the treatment of glioblastoma
(NCT01849146), with RT and cisplatin in cervical, vaginal or
uterine cancer (NCT03345784), or in combination with RT and
cisplatin in advanced head and neck cancer (NCT03028766
and NCT02585973).

Combining DNA Repair Targeting,
Immunotherapy, and Radiotherapy
DNA repair proteins preserve the integrity of the genome;
therefore, DNA repair targeting may enhance the tumor
mutational burden, which may lead to the production of
neoantigens and increased activity of anti-cancer T cells.
Some clinical trials have been set to investigate the use
of immune checkpoint inhibitors, notably by combining
Dravulumab (anti-PD-L1) with PARP (NCT02484404), ATR
(NCT02264678) or WEE1 inhibition (NCT02617277). To date,
the interplay between radiation and the immune system is far
from being completely deciphered, but several interesting facts
have been reported. The cytotoxic action of radiotherapy on
tumor cells provides T lymphocytes with tumor neoantigens
and releases pro-inflammatory cytokines, thus promoting
the immune response (137). The cell death inducing this
type of immune response is called immunogenic cell death.
Combining immunotherapy with radiotherapy (several recent
trials: NCT02707588, NCT02952586, NCT02999087) could
increase the ability to cause immunogenic cell death by removing
locks that block the immune system (138). The non-overlapping
toxicities of DNA repair targeting and immune checkpoint
inhibitors render the use of combinations of these agents with
radiotherapy appealing (14, 139).

CONCLUSION

Targeted therapies are beginning to demonstrate activity across a
number of tumor types. The most promising approach toward
improving the efficiency of a treatment and gaining a reliable
response is to develop therapy combinations that decrease the
chance of resistance and to treat resistance when it emerges.
There has been a considerable renewed emphasis on new targeted
treatments such as radiosensitizers that do not cause overlapping
dose-limiting toxicities. Selection of appropriate targeted agents
represents a challenge. As predicted, during preclinical and
clinical trials, particular attention was paid to proteins involved
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in DNA repair pathways. Various strategies have been explored,
ranging from specific protein targeting to global inhibition, and
many DNA repair inhibitors have been developed. Up until now,
only a few of them have reached the clinical stage, while even
fewer have been tested in combination with RT. The several
clinical trials currently underway will tell whether these new
compounds can be tolerable and efficient.

RT-induced lesions can be corrected by various DNA repair
pathways. The intricacy of crosstalk between DNA repair
pathways suggests that biomarker assays to determine the
status of multiple DNA repair pathways could provide essential
information on the sensitivity and resistance of cancer cells to

repair inhibitors. Understanding these DNA repair pathways and
identifying effective stratification biomarkers from the various
DNA repair pathways that are specifically altered in some tumors
would be required to characterize patients’ responses to specific
DNA repair inhibitors.
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