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Abstract: Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes
that are frequently associated with diseases in humans around the world. The consequences of these
serogroups for public health is a concern given the lack of effective prevention and treatment measures.
In this study, ten bacteriophages (phages; SA20RB, SA79RD, SA126VB, SA30RD, SA32RD, SA35RD,
SA21RB, SA80RD, SA12KD and SA91KD) isolated from cattle faeces collected in the North-West of
South Africa were characterized. Activity of these phages against non-O157 STEC isolates served as
hosts for these phages. All of the phages except SA80RD displayed lytic against non-O157 E. coli
isolates. Of 22 non-O157 E. coli isolates, 14 were sensitive to 9 of the 10 phages tested. Phage SA35RD
was able to lyse 13 isolates representing a diverse group of non-O157 E. coli serotypes including a
novel O-antigen Shiga toxigenic (wzx-Onovel5:H19) strain. However, non-O157 E. coli serotypes
O76:H34, O99:H9, O129:H23 and O136:H30 were insensitive to all phages. Based on transmission
electron microscopy, the non-O157 STEC phages were placed into Myoviridae (n = 5) and Siphoviridae
(n = 5). Genome of the phage ranged from 44 to 184.3 kb. All but three phages (SA91KD, SA80RD
and SA126VB) were insensitive to EcoRI-HF and HindIII nucleases. This is the first study illustrating
that cattle from North-West South Africa harbour phages with lytic potentials that could potentially
be exploited for biocontrol against a diverse group of non-O157 STEC isolated from the same region.

Keywords: Shiga toxin-producing Escherichia coli; biocontrol; non-O157 E. coli

1. Introduction

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging pathotypes that are
frequently associated with diseases ranging from diarrhoea to a more complicated haemorrhagic
colitis in humans [1]. The most common non-O157 STEC are O26, O45, O103, O111, O121 and O145.
These serogroups are called the “big six“ because they are often associated with severe illness and death
in humans and have been declared as adulterants by the United States Department of Agriculture [2].
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The public impact of non-O157 STEC strains on humans is worsened by an overall lack of effective
treatment and prevention measures even for those that are susceptible to antimicrobial agents [3].
Against this background, numerous outbreaks of human infections caused by non-O157 STEC strains
have been reported globally [4,5]. Beef and dairy cattle harbor a diverse group of non-O157 STEC [6,7]
that can potentially contaminate beef products or water sources used for irrigation. Thus, effective
pathogen control measures in ready to eat products are required especially in case of disease outbreaks.

Bacteriophage (phage) therapy has been revisited following the increasing emergence of
antimicrobial resistant bacteria [8]. First investigated in the early 20th century [9], phage therapy
was largely abandoned by Western countries due to safety and efficacy concerns and the widespread
availability of antibiotics [10]. Recent developments such as the successful use of bacteriophage to
treat a multidrug-resistant Acinetobacter baumannii systemic infection in a patient in California has
sparked renewed interest in phage therapy [11,12]. Phages are obligate parasites of bacteria and are
considered the most numerous biological entities in nature with an estimated 1031 phages on earth [13].
Phages that infect and kill bacteria hosts by lysis are termed lytic or virulent phages while temperate
phages can either lyse or lysogenize their host [14]. The lytic potential of phages is being exploited in
different areas in the agro-food industry, specifically in the detection of foodborne pathogens [15,16]
and as biocontrol agents [17,18].

A Listeria monocytogenes-specific phage cocktail, ListShield™, was the first commercial product
to be used as a “generally recognized as safe” phage food additive in ready to eat meat and poultry
products [19]. This was followed by EcoShieldTM which targeted E. coli O157:H7 in ground beef and
SalmoFreshTM, targeting Salmonella typhimurium [20]. The characterization of phages for potential use
either as alternative treatment or in combination with antimicrobials against foodborne pathogens
such as STEC, is an on-going process [21,22]. Additionally, studies have characterized E. coli O157
phages from cattle in the North-West Province, South Africa [23], but this study did not attempt to
isolate phages with activity against other serogroups. At the same time, much attention has focused on
the big six non-O157-infecting phages globally [24–26]. However, as new pathogenic E. coli continue to
emerge, this study expands on previous investigations by isolating and characterizing phages with
lytic activity against diverse serotypes of Shiga toxigenic, non-O157 E. coli isolated from beef and dairy
cattle in South Africa.

2. Materials and Methods

2.1. Bacteriophage Isolation, Host Range Determination, Propagation and Titration

Faecal samples were collected from three commercial beef and/or dairy cattle farms in three
regions (Rooigrond, Vryburg and Koster) of the North-West Province of South Africa. To isolate phages,
samples were enriched as described by Van Twest and Kropinski [27]. Briefly, faeces (3 g) were enriched
in 10 mL of 1.7% (w/v) Tryptic soy broth (TSB) (Difco Laboratories, Detroit, MI, USA) inoculated with
100 µL of overnight bacteria culture isolated from the same faecal samples, incubated at 37 ◦C with
shaking at 170 rpm for 24 h and then centrifuged at 10,000× g for 10 min. Supernatant (phage lysates)
were filtered through a 0.22 µM syringe filter (C.C Imelmann Ltd., Gauteng, South Africa) and the
crude lysates were stored at 4 ◦C.

For a spot test inoculation assay, 80 individual non-O157 bacterial culture previously isolated [6]
from the same faecal sample were used. These cultures were grown in TSB for 24 h at 37 ◦C
and 1 mL of the overnight culture was diluted in 9 mL of sterile TSB. Subsequently, 1 mL of the
diluted sample was flooded on 1.5% (w/v) Tryptic soy agar (TSA) (Difco Laboratories, Detroit, MI,
USA) plates. The remaining bacterial inoculum on the plates was aspirated using sterile pipette
tips and plates were left for 10 min to dry at room temperature. After which 10 µL of each crude
phage lysate was spot inoculated onto the bacterial lawn and incubated at 37 ◦C for 24 h. Plates
were observed for clear lytic zones on the bacterial lawn. Ten crude phage lysates in TSB that
showed lytic activity were preserved in triplicates in a 2 mL eppendorf tubes at 4 ◦C for two months.
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The bacterial lawn with lytic activity were used as host strains for subsequent analysis of the crude
phage lysates. Both non-O157 E. coli strains and crude phage lysates were transported to the Lethbridge
Research and Development Centre, Canada in accordance with Public Health Agency of Canada
regulations (https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/human-
pathogens-toxins-act.html, http://www.tc.gc.ca/eng/tdg/page-1296.html).

Crude phage lysates were purified by using three consecutive cycles of plaque purification using
the soft agar overlay technique [28]. Then, 100 µL of a mid-log phase phage-bacterial host culture and
phage lysate were mixed with 3 mL of molten top agar (0.3% w/v agar) and overlaid onto Modified
nutrient agar plates (Dalynn Biologicals, Calgary, AB, Canada). One plaque was picked using sterile
cut pipette tips and placed in a 1.5 mL eppendorf tubes containing 9 mL of lambda diluent (10 mM
Tris-CL, pH 7.5, 8 mM MgSO4) for further purification. The lytic capability of the purified phages for 22
non-O157 E. coli strains (Supplementary Materials Table S1) was tested using the spot-test inoculation
technique as described above. These non-O157 E. coli strains were previously isolated from cattle faecal
samples collected from the same three commercial beef and/or dairy farms in three regions (Rooigrond,
Vryburg and Koster) of North-West Province. Bacterial strains were previously characterized by PCR
and whole genome sequencing (WGS), [6]. Phage stock filtrates were prepared using the host strains
as describe by [29]. The titers of phages in the stock filtrate (108–109 PFU/mL) were later determined
by the soft agar overlay method [28]. In order to determine the host range, of the phages, 10 µL of
purified lysate was pipetted onto a lawn of 22 non-O157 E. coli strains and incubated at 37 ◦C for 24 h.
Plates were observed for the formation of plaques.

2.2. Transmission Electron Microscopy (TEM)

To examine the morphologies of the phages, ultracentrifugation of the phage suspension was
performed at 23,000× g for 1 h. The supernatant was discarded, and samples were re-suspended in
sterile water. Purified phages were deposited on carbon-coated Formvar films on copper grids, stained
with 2% uranyl acetate and images were captured using a Field electron and ion (FEI) Tecnai electron
microscope (Tecnai G2 F20 model FEI USA) at 200 KV accelerating voltage.

2.3. Genome Size Estimation and Restriction Fragment Length Polymorphism

Purified phages (108–109 PFU/mL) were subjected to Pulsed-field gel electrophoresis (PFGE) for
estimation of genome size according to the procedure of Lingohr, Frost and Johnson [30] using a
Clamped Homogeneous Electric Field-Dynamic Regulation (CHEFDRIII) system (Bio-Rad, Hercules,
CA, USA). Briefly, DNase 1 (10 µg mL−1) and RNase A (10 µg mL−1) (Sigma-Aldrich, Okaville, ON,
Canada) were added to 30 mL phage stock crude lysates and incubated at room temperature for 1 h
with continuous stirring to digest residual bacterial nucleotides. Phage lysates were later concentrated
overnight at 4 ◦C by adding polyethylene glycol (PEG) 8000 (Sigma-Aldrich, St. Louis, MO, USA) to
a final concentration of 10% w/v [28]. PFGE analysis was performed using the following conditions:
initial time 2.2 s; final time 54.2 s; voltage 6 V, angle: 120◦ and a run time of 18 h using Salmonella
Braenderup reference standard (H9812) as a marker. For restriction enzyme digestion analysis, phage
DNA embedded in 1% SeaKem Gold agarose (Lonza, Rockland, ME, USA) was digested with EcoRI-HF
and HindIII, for 4 h at 37 ◦C. The plugs were then subjected to PFGE for 5 h using a pulse time of
1.0–45.0 s, 6 V cm−1 alongside a low range PFGE marker (1 kb plus; New England Biolabs). Gels were
stained in ethidium bromide for 30 min and images captured on a Gel Doc imaging system (Alpha
Innotech, San Leandro, CA, USA).

3. Results

3.1. Isolation and Morphology of the Phages

A total of 10 phages were isolated from faecal samples collected in the three different regions of
South Africa (Table 1). Each phage was assigned a descriptor as described by Kropinski, Prangishvili and

https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/human-pathogens-toxins-act.html
https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/human-pathogens-toxins-act.html
http://www.tc.gc.ca/eng/tdg/page-1296.html
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Lavigne [31], vB (bacterial virus), followed by Eco (Escherichia coli), M or S (Myoviridae or Siphoviridae),
SA (South Africa), numbers (sample identity) followed by KD or VB or RD or RB (sampling region).
For example, a phage isolated from the Koster region was designated vB_EcoS_SA12K, with SA12KD
as the short form.

Table 1. Taxonomy and dimensions of 10 non-O157 E. coli phages.

Sampling Area Phage ID
Family Subfamily Head Dimension (nm) Tail Dimension (nm)

Width Height Width Height

Rooigrond dairy SA79RD Myoviridae - 100 ± 0 133 ± 0 24 ± 2 133 ± 0
Koster dairy SA91KD Myoviridae - 70 ± 3 73 ± 4 23 ± 0 154 ± 4
Rooigrond beef SA20RB Myoviridae - 100 ± 0 129 ± 4 25 ± 2 134 ± 2
Rooigrond beef SA21RB Myoviridae - 82 ± 2 129 ± 4 25 ± 4 132 ± 2
Rooigrond dairy SA35RD Myoviridae - 95 ± 7 133 ± 2 24 ± 2 133 ± 2
Rooigrond dairy SA80RD Siphoviridae - 50 ± 6 67 ± 0 9 ± 2 200 ± 0
Koster dairy SA12KD Siphoviridae “Jerseyvirinae” 70 ± 0 78 ± 2 13 ± 2 197 ± 0
Vryburg beef SA126VB Siphoviridae “Jerseyvirinae” 67 ± 7 81 ± 4 12 ± 2 191 ± 2
Rooigrond dairy SA30RD Siphoviridae “Jerseyvirinae” 67 ± 0 67 ± 0 10 ± 0 200 ± 3
Rooigrond dairy SA32RD Siphoviridae “Jerseyvirinae” 67 ± 0 69 ± 2 10 ± 0 174 ± 2

Characterization of phage morphology by transmission electron microscopy identified a wide
range of diversity among isolated phages (Figure 1). All phages were members of the order Caudovirales.
Phages SA79RD, SA35RD, SA20RB, SA21RB and SA91KD had large icosahedral heads with long
contractile tails, indicative of the Myoviridae [32]. However, phages SA79RD, SA35RD, SA20RB
and SA21RB shared similar icosahedral head shape, diameter (82–100 nm by 129–133 nm) and tail
length (24–25 nm by 132–134 nm) with visible base plates and tail fibers. These four phages exhibit a
morphology similar to T4-like phages. Meanwhile, phage SA91KD had a head and tail with a diameter
of 70 by 73 nm and 23 by 154 nm, respectively, but lacked tail fibres and could not be classified using
existing criteria within the family Myoviridae. In contrast, phages SA12KD, SA80RD, SA126VB, SA30RD
and SA32RD had small (50–70 nm by 67–81 nm) icosahedral heads with the long non-contractile
tails (9–13 nm by 174–200 nm) indicative of the Siphoviridae [32]. These phages were characterized as
T1-like phages. Four of the 5 phages (SA12KD, SA126VB, SA30RD and SA32RD) of the Siphoviridae
family, possessed a long flexible tail with a terminal disk-like structure making them candidates for the
proposed subfamily “Jerseyvirinae” [33] Table 1.
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Figure 1. Transmission electron microscopy of 10 non-O157-infecting phages negatively stained with
2% uranyl acetate. (A) T1-like phage (SA12KD); (B) T4-like phage (SA79RD); (C) T1-like phage
(SA80RD); (D) no genus assigned (SA91KD); (E) T1-like phage (SA126VB); (F) T4-like phage (SA20RB);
(G) T4-like phage (SA21RB); (H) T1-like phage (SA30RD); (I) T4-like phage (SA35RD) and (J) T1-like
phage (SA32RD). Bar represents 20 nm.
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3.2. Host Range

All but one phage (SA80RD) showed activity to at least one strain of non-O157 E. coli (Table 2).
However, E. coli serotypes O76:H34, O99:H9, O129:H23 and O136:H30 were found to be insensitive to
all phages tested. Four phages (SA35RD, SA79RD, SA20RB and SA21RB), had the broadest host range
as these phages could lyse non-O157 across serotypes including wzx-Onovel5:H19, O17:H18, O22:H21,
wzx-Onovel24:H20, O26:H11, O40:H19, O87:H7 O156:H25, O108:H2, O116:H21, O140:H21, O154:H10
and O163:H19. Serotype wzx-Onovel5:H19 was the most sensitive bacteria since it was lysed by 7
different phages. Myoviridae (SA20RB and SA21RB) and Siphoviridae (SA30RD and SA32RD) phages
exhibited halo zones around the plaques with larger plaque sizes being associated with Siphoviridae
phages than Myoviridae phages (Figure 2).

Table 2. Lytic ability of 10 non-O57 E. coli phages.

Serogroup Bacteriophage

SA20RB SA79RD SA126VB SA30RD SA32RD SA35RD SA21RB SA80RD SA12KD SA91KD

O156:H25 + + - - - + + - - +
O108:H2 + + + - - + + - - +
O136:H30 - - - - - - - - - -
O99:H9 - - - - - - - - - -

wzx-Onovel24:H20 + + - - - + + - - -
O140:H21 + - - - - + + - - -
O102:H4 - - + - - - - - - -
O129:H23 - - - - - - - - - -
O17:H18 - + - - + + - + - -
O76:H34 - - - - - - - - - -
O26:H11 - + - - - + - - - -
O129:H23 - - - - - - - - - -
O154:H10 + - - - - - + - - -
O116:H21 - + - - - + + - - -

wzx-Onovel5:H19 + + + + - + + - - +
O87:H7 + + - - - + + - - -

O129:H21 - + - - - + + - - -
O26:H11 - + - - - + - - - -
O26:H11 - - - - - - + - - -
O163:H19 + + + + - + - - - +
O40:H19 + + - - - + - - - -
O22:H21 + - - - - - - - - -

+ = lytic activity; - = no lytic activity.
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3.3. Phage Genome Size and Restriction Fragment Length Polymorphisms Analysis

Based on PFGE, the genome size of phages ranged from 44 to 184.3 kb (Figure 3). Some phages
shared a common genome size of about 184.3 kb (SA35RD, SA21RB, SA79RD and SA20RB), 44 kb
(SA30RD, SA32RD and SA12KD), with phage SA91KD, SA80RD and SA126VB having genome sizes of
about 47.5, 54.7 and 60.5 kb, respectively. Genomic DNA from phage (SA80RD) of the Siphoviridae
family was cleaved by EcoRI-HF and HindIII, while SA126VB was only cleaved by HindIII. In contrast,
only to EcoRI-HF restricted DNA from Myoviridae phage (SA91KD) (Figure 4).
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4. Discussion

This is the first study to isolate and characterize phages with potential activity against a diverse
group of non-O157 STEC isolated from South Africa. All E. coli and phages were isolated from
cattle faeces collected in the North-West Province of South Africa. Phages isolated in this study
possessed either a long flexible tail or double layer contractile tail with spikes and belonged to the
order Caudovirales and family Siphoviridae or Myoviridae as described by Ackermann [32]. Similar to
the present study, phages targeting the “big six” non-O157 E. coli (O26, O45, O103, O111, O121, O145)
were also members of the Siphoviridae and Myoviridae families and were isolated from cattle faeces in
Canada [24], the USA [25] and from water samples in the USA [26]. As well as the recent report of Korf,
Meier-Kolthoff, Adriaenssens, Kropinski, Nimtz, Rohde, van Raaij and Wittmann [34], which indicates
a diverse group of myoviruses and siphoviruses from various sources such as surface water, manure
sewage and animal faeces with lytic capability for different non-O157 E. coli from human origin.

Although phage were classified into Siphoviridae and Myoviridae families, two phages (SA30RD
and SA32RD) of the family Siphoviridae showed a long flexible tail with a terminal disk-like
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structure while two (SA12KD and SA126VB) possessed club-shaped spikes and may belong to
the proposed genus “K1glikevirus” of the subfamily “Jerseyvirinae” [33]. Besides being isolated in
Canada [33], Jerseyvirnae-like phages have been isolated from swine lagoon effluent in England [35],
chicken by-products in South Korea [36], sewage in the USA [37], and humans with diarrhea in
Bangladesh [38]. These phages are known to be strictly lytic [39] and thus are potentially good
candidates for the control of STEC. The presence of T4 phages (SA79RD, SA35RD, SA20RB and SA21RB)
and Jersey-like phages in cattle faecal samples from the North-West South indicate that these phages
with lytic activity are good candidates for biocontrol of diverse pathogenic non-O157 E. coli strains.

A halo surrounding the lysis zone is commonly associated with phages in the order Caudovirales [40].
The halos result from enzymes (depolymerase) encoded by phages that have the ability to degrade
exopolysaccharide substances (EPS) on the surface of bacterial cells or embedded within biofilms [41].
Anti-biofilm effects on E. coli [42], Staphylococcus epidermidis and Staphylococcus aureus [43] have been
associated with depolymerase activity as these enzymes can facilitate phage absorption and infection by
degrading the EPS in biofilms. In this study, two phages each from the family Myoviridae (SA20RB and
SA21RB) and Siphoviridae (SA30RD and SA32RD) showed depolymerase activity. These phages were
capable of lysis of multidrug resistant (O154:H10) and novel (wzx-Onovel5:H19) serotypes indicating
that they could potentially control these non-O157 E. coli pathotypes. Other than a single-dose
application of phage as biocontrol agents, combined treatment with antimicrobials is promising [44] as
a depolymerase-secreting phage can degrade the ESP exposing cells to antimicrobials. This could be
exploited using the depolymerase-secreting phages obtained in this study.

Phage particle size (genome, capsid and tail size) is a contributing factor to plaque size as smaller
phages can migrate or diffuse faster after lysis as compared to larger phages [45,46]. The larger plaque
size observed with the depolymerase-secreting phages SA30RD and SA32RD compared to SA20RB and
SA21RB in this study is in agreement with the finding of a previous study of Siphoviridae phages from
cattle faeces which found that they generated larger plaque sizes [47]. Furthermore, this observation is
in line with the above contributing plaque factor as phage SA30RD and SA32RD possessed a smaller
genome (about 44 kb) and capsid (67 nm) size compared with larger genome (about 184.3 kb) and
capsid (100 and 107 nm) of the SA20RB and SA21RB phage.

Phages that display broad lytic spectra either resist host strains defense mechanisms or infect
members of the same species or bacteria which have common targets (receptors) such as pili, teichoic
acid, flagella, lipopolysaccharides and outer membrane proteins [48]. The phages with highest lytic
spectra in this study belonged to the Myoviridae family and were capable of lysing 13/22 (phage
SA35RD), 12/22 (phage SA79RD) and 10/22 (phage SA20RB and SA21RB) non-O157 E. coli. Compared
to Siphoviridae, others have found that Myoviridae phages possess a broader activity against non-O157
E. coli in Canada [24] and the USA [47]. Also the recent studies of Korf, Meier-Kolthoff, Adriaenssens,
Kropinski, Nimtz, Rohde, van Raaij and Wittmann [34] revealed that myoviruses lysed 39.1% of E. coli
tested compared to 17.2% for siphoviruses. Coliphages unlike other phages, do not preferentially bind
to bacterial proteinaceous or polysaccharide receptors [49], thus the ability to recognize a range of
receptors might contribute to the broader lytic ability of Myoviridae as the Siphoviridae associate with a
single receptor [48]. While broad-spectrum phages are preferred candidates for biocontrol as they can
overcome mutant or resistant strains [50], narrow-spectrum phages could be used to target a specific
host or to be used synergistically with other phages. This raises the possibility that the SA35RD and
SA32RD, narrow spectrum infecting-phages (wzx-Onovel5:H19, O102:H4 and O17:H18 serotypes)
could be used synergistically with broad spectrum non-depolymerase producing phage(s) to yield a
much broader lytic spectrum.

Restriction of phage DNA to prevent the expression of phage early proteins is one of the defense
mechanisms used by bacteria to overcome phage infection [51]. Phages have also developed methods
to evade degradation in the host cell by either lacking enzymatic restriction sites or modifying
restriction sites so that they are no longer susceptible to cleavage [52]. All but one phage (SA91KD)
from the Myoviridae family were resistant to EcoRI-HF and HindIII, as SA91KD was susceptible to
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EcoRI-HF only. A similar lack of restriction sites for these enzymes (EcoRI-HF and HindIII) has been
reported in other studies of non-O157 E. coli T4-like infecting-phages [24] and an O157 T4-like infecting
phage from water samples in Iran [53]. The resistance to restriction enzymes might be due to the
absence or modification of the restriction site to make it unavailable for digestion by specific enzymes.
In T4 phages, beta-glycosyltransferase is an enzyme responsible for DNA methylation, which aids
in the glycosylation process of a methylated hydroxymethylcytosines (HMC) found in dsDNA [54].
Some bacterial restriction systems can bind to hydroxymethylcytosine-containing DNA, preventing
infection by phages having HMC [51]. A glycosylated T4 DNA, a product of methylcytosine blocks the
binding of specific restriction enzymes [51,55] and might have been responsible for insensitivity of
Myoviruses (SA79RD, SA20RB, SA35RD and SA21RB) to restriction enzymes in this study. Similarly,
Siphoviruses (SA12KD, SA30RD and SA32RD) were also insensitive to EcoRI-HF and HindIII, while
phage SA80RD was sensitive to EcoRI-HF and HindIII and SA126VB to HindIII only. The sensitivity of
these two phages to the restriction enzymes can be attributed to a lack of restriction sites, as glycosylated
DNA defence mechanisms are not commonly associated with T-odd phages [56]. The ability to resist
these digestion enzymes also makes these phages potential agents for phage-based biocontrol.

5. Conclusions

Phages are potential alternatives to antimicrobials as they are natural killers of bacteria. Non-O157
E. coli phages have been given little attention in South Africa, and this study isolated diverse phages
from cattle faeces collected in the North-West Province of South Africa that can lyse STEC and
antimicrobial resistant strains with biofilm-forming ability. The heterogeneous nature of these phages,
the lytic spectra and ability to secret depolymerase enzymes and to resist restriction digestion enzyme
EcoRI-HF and HindIII activity makes some of these phages good candidates for biocontrol. Whole
genome sequencing of these phages to determine a lack of virulence factors is the next step in their
evaluation as biological control agents.
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