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Abstract
Background: Owing to rapid expansion of protein structure databases in recent years, methods
of structure comparison are becoming increasingly effective and important in revealing novel
information on functional properties of proteins and their roles in the grand scheme of
evolutionary biology. Currently, the structural similarity between two proteins is measured by the
root-mean-square-deviation (RMSD) in their best-superimposed atomic coordinates. RMSD is the
golden rule of measuring structural similarity when the structures are nearly identical; it, however,
fails to detect the higher order topological similarities in proteins evolved into different shapes. We
propose new algorithms for extracting geometrical invariants of proteins that can be effectively
used to identify homologous protein structures or topologies in order to quantify both close and
remote structural similarities.

Results: We measure structural similarity between proteins by correlating the principle
components of their secondary structure interaction matrix. In our approach, the Principle
Component Correlation (PCC) analysis, a symmetric interaction matrix for a protein structure is
constructed with relationship parameters between secondary elements that can take the form of
distance, orientation, or other relevant structural invariants. When using a distance-based
construction in the presence or absence of encoded N to C terminal sense, there are strong
correlations between the principle components of interaction matrices of structurally or
topologically similar proteins.

Conclusion: The PCC method is extensively tested for protein structures that belong to the same
topological class but are significantly different by RMSD measure. The PCC analysis can also
differentiate proteins having similar shapes but different topological arrangements. Additionally, we
demonstrate that when using two independently defined interaction matrices, comparison of their
maximum eigenvalues can be highly effective in clustering structurally or topologically similar
proteins. We believe that the PCC analysis of interaction matrix is highly flexible in adopting various
structural parameters for protein structure comparison.
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Background
Conformational resemblance between proteins, whether
remote or close, is often used to infer functional proper-
ties of proteins and to reveal distant evolutionary relation-
ships between two proteins exhibiting no similarity in
their amino acid sequences. Traditionally, high-resolution
structure determination succeeds the biological and bio-
chemical studies of proteins to further provide mechanis-
tic details of the function of proteins. The biological
function of these proteins have usually been suggested
prior to their structural studies by in vitro binding assays,
in vivo gene knock-out experiments, and sequence homol-
ogy with proteins of known function. However, with the
completion of the sequencing of the genomes of human
and other organisms, major structural biology resources
have been harnessed to solve structures of large numbers
of proteins encoded by the genomes in a high throughput
but less specific fashion, under the name 'structural
genomics' [1]. Subsequently, large sets of protein struc-
tures are accumulated in the public domain databases for
which we know little about their biological roles. This
shortfall calls for the development of cost-effective com-
putational methods to predict protein function based on
three-dimensional structures, with the aim of providing
preliminary information to guide biological experiments
later.

In the post-genomic era, large amounts of new protein
sequences are available for statistics-based recognition of
their biological properties. It has been shown in many
cases that with the help of elegant computational algo-
rithms, amino acid sequence information alone can be
used to successfully predict a protein's structural class [2-
4], sub-cellular location [5,6], and even enzymatic activi-
ties [7-10]. These approaches, however, are often limited
by sequence noise arose from natural mutations through-
out the evolutionary path, in which proteins are structur-
ally and functionally conserved, but divergent in amino
acid sequences. It is a recurring theme in structural biol-
ogy that proteins with completely different sequences can
adopt very similar global fold. Hence, incorporating struc-
tural information into functional genomics would poten-
tially upgrade predictions to the next level of accuracy.
Owing to the rapid technical advances in X-ray crystallog-
raphy and liquid-state NMR spectroscopy, protein struc-
ture determination becomes more routine than before. It
is reasonable to predict that full-scale structure determina-
tion can be the first step towards characterizing the bio-
logical role and mechanism of a newly sequenced protein.
In the 13,000-large protein structure database (PDB),
there are only approximately 4,000 different folds repre-
sented in the PDB, with a fold/structure ratio of approxi-
mately 1/5 (in the protein data bank) [11]. Therefore,

(a) Ribbon representation of 1IP9, showing two α helixes and four β strands, and (b) the corresponding symmetric interaction matrix (defined in eq. 2), where h3 and h5 are the two α helices, and h1, h2, h4 and h6 are the four β strandsFigure 1
(a) Ribbon representation of 1IP9, showing two α helixes and four β strands, and (b) the corresponding symmetric interaction 
matrix (defined in eq. 2), where h3 and h5 are the two α helices, and h1, h2, h4 and h6 are the four β strands. The gray-level val-
ues denote the distance between any two Cα atoms with white corresponding to the shortest distance, i.e., 0.
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given a new protein structure determined experimentally,
chances are high that its topological arrangement of sec-
ondary fragments already exists in PDB either as an indi-
vidual protein, or as a domain within a larger protein.

Structure comparison is traditionally based on coordinate
RMSD [12,13]. While the RMSD approach is effective in

comparing two close topologic structures with similar
chain length, it fails when proteins are of different shapes
or lengths. One outstanding example is Calmodulin, a
ubiquitous Ca2+ binding protein that plays a key role in
numerous cellular Ca2+-dependent signaling pathways
[14]. The backbone RMSD between the Ca2+-bound and
apo states of individual calmodulin domain (~64 resi-
dues) is as large as 4Å, despite the fact that they are the
same molecules with the same topology. When using the
Ca2+-bound structure as a starting model, a homology
based NMR residual dipolar coupling (RDC) refinement
scheme, which relies heavily on the model having the cor-
rect topology, is able to converge the model to an accurate
apo structure using RDCs measured for the apo state [15].
There are numerous proteins with similar secondary ele-
ment arrangements in the 3D space yet acquire different
overall shapes. Clearly for these proteins, algorithms dif-
ferent from the RMSD must be used to reveal their topo-
logical similarities. Another well-known software called
Matching Molecular Models Obtained from Theory
(MAMMOTH) is a sequence-independent protein struc-
tural alignment method [16]. It compares an experimen-
tal protein structure using an arbitrary low-resolution
protein tertiary model. The distance defined in MAM-
MOTH is quite different from our approach. There are
also many other methods of protein structure compari-
son, such as [17-21]. Note that all of the aforementioned
methods used sequence based comparison. In contrast,
our method adopts secondary structure based comparison
and focuses on extracting invariant topological features.

In our study, we measure structural similarity between
proteins by correlating the principle components of their
secondary structure interaction matrix. In this method,
referred here as the principle component correlation
(PCC) analysis, the symmetric matrix for an individual
protein is constructed with relationship parameters
between secondary elements that can take the form of dis-
tance, orientation, or other relevant structural invariants.
It is first demonstrated that the maximum eigenvalues of
these interaction matrices can be effectively used to group
structurally or topologically homologous proteins. Then
by taking into account both maximum eigenvalues and
their corresponding eigenvectors, a more refined pair-wise
structure comparison is performed, which is able to differ-
entiate structures of similar shape but different topologi-
cal backbone traces. It is also shown that the results of
PCC analysis are highly comparable to those given by the
scaled Gauss metric (SGM) calculations [22] for the data
sets studied. We believe the PPC method is flexible in
adopting various structural parameters for pair-wise struc-
ture comparison.

(a) The plot of scaled λ2 (the second largest eigenvalue) ver-sus λ1 (the maximum eigenvalue), calculated using the PD matrix, for all proteins in the four data sets, and (b) the plot of λ1 of PID matrix versus that of PD matricesFigure 2
(a) The plot of scaled λ2 (the second largest eigenvalue) ver-

sus λ1 (the maximum eigenvalue), calculated using the PD 
matrix, for all proteins in the four data sets, and (b) the plot 
of λ1 of PID matrix versus that of PD matrices. The symbol 

representations are: ❍  – structure set I; Ќ – set II;  – set 

III; � – set IV; � – set V; and  – set VI.
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Results
Materials
A total of fifty-six protein structures, grouped into 6 differ-
ent sets according to CATH [23,24] are used to test our
algorithms. Proteins in structure set I belong to the
"mainly alpha" class, including mostly apoptosis regula-
tors in the BCL-xL super family as well as others with
remote conformational resemblance; all have the
"Orthogonal Bundle" architecture. The atomic coordi-
nates were retrieved from PDB with accession codes 1A4F,
1A6G, 1COL (A), 1DDB (A), 1F16 (A), 1G5M (A), 1GJH
(A), 1MAZ, 1MDT (A), and 2BID (A), where (A) means
chain A. Set II is also "mainly alpha" and has the same
architecture as Set I, including structures 1CK7 (A), 1CXW
(A), 1E8B (A), 1E88 (A), 1J7M (A), 1KS0 (A), 1PDC, and
2FN2. However this set consists of DNA helicase domains
that have vastly different topology from Set I. Set II is used
here to test the ability of our method to separate proteins
that are in the same class of secondary structure but have
different topologies. Set III belongs to the "mainly beta"
class and has the barrel architecture, consisting of acid
protease structures 1A5T, 1BVS (A), 1CUK, 1DV (A), 1F4I
(A), 1G4A (E), 1G41 (A), 1HJP, 1IM2 (A), and 1JR3 (E).
Set IV consists of the "alpha/beta" class proteins with the
roll architecture, including structures 1FM0 (D), 1D4B
(A), 1C78 (A), 1LM8 (B), 1NDD (A), 1UBQ, 1IBQ (A),
and 1IP9 (A). The structures in set IV all have the Ubiqui-
tin-like topology. Set V consists of the "mainly alpha"
with the Alpha/alpha barrel architecture, including 1C82
(A), 1CB8 (A), 1EGU (A), 1F1S (A), 1F9G (A), 1HM2 (A),
1HM3 (A), 1HMU (A), 1HMW (A), 1HV6 (A), 1I8Q (A),
and 1QAZ (A). The structures in Set V all have the Glyco-
syltransferase topology. Set VI consists of the "mainly

beta" with the ribbon architecture, including 1AIW, 1E6N
(A), 1E6P (A), 1E6R (A), 1E6Z (A), 1E15 (A), 1ED7 (A),
and 1GOI (A). The structures in Set VI have the Seminal
Fluid Protein PDC-109 (domain B).

Clustering of structurally similar proteins by SMEC method
One of the goals of this study is to compare and identify
structurally or topologically similar proteins. In other
words, given a new experimentally determined protein
structure, the proposed method is expected to rapidly
place the structure into a group of structurally or topolog-
ically similar proteins in the database, thereby aiding in
correlating topological similarity with functional similar-
ity. To illustrate the application of the SMEC approach, we
compute the scaled eigenvalues of PD and PID interaction
matrices (Section Methods). Figure 2a shows the plot of
scaled λ2 versus λ1, calculated using the PD matrix, for all
proteins in the four data sets. Figure 2b shows the plot of
λ1 of PID matrix versus that of PD matrices. The different
symbols represent different structural groups. These plots
were used to resolve clusters of structurally similar struc-
tures.

Pair-Wise structural comparison by PCC method
In addition to correlating the maximum eigenvalues, the
PCC method described in Section Methods, which com-
pares both eigenvalues and eigenvectors, was tested for
the four selected data sets. Using the pair-wise distance
matrix defined in Section Methods, the difference metric
R defined in Eq. 5 between all pairs of protein structures
in the four data sets were calculated and shown in Tables
1-6. Additionally for the same data sets, writhing numbers
computed using the SGM method were presented in the
same corresponding tables. The R values between a few
selected proteins from different groups were also shown
to provide a negative control (Table 2).

Discussion
The concept of principle component analysis (PCA) is
widely used in mathematics and pattern recognition to
simplify a data set. In mathematical terms, it is a trans-
form that chooses a new coordinate system for the data
set, such that the greatest variance by any projection of the
data set comes to lie on the first axis (then called the first
principle component), the second greatest variance on the
second axis, and so on. Because of the large amount of
information stored along the first axis, the maximum
eigenvalue itself can be characteristic enough to represent
structural features of a protein. Figure 2a plots eigenvalues
λ1 versus λ2 derived from the PD matrices of all four sets
of structures under study. Clearly λ1 values alone are dis-
tinct enough from each other for grouping most of the
structures into their known conformation sets. The same
plot also illustrates that the second largest eigenvalue λ2 is
generally not powerful enough to accomplish the group-

The first number of SGM of proteins in all four structural setsFigure 3
The first number of SGM of proteins in all four structural 
sets. The symbol representations are the same as in Figure 2.
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ing. It is therefore expected that smaller components of
interaction matrices are not effective for this purpose.
Similarly, when using the first number computed with the
SGM algorithm, the four structure sets can be resolved
(see Fig. 3).

In addition to the PD matrix, PID matrix defined above
was used to provide further separation between clusters of
eigenvalues. This was demonstrated in Fig. 2b, in which
the plot of λ1 of PID matrices versus that of PD matrices
achieves a much better grouping of the four structural sets
in the vertical dimension as compared to the plot in Fig.
2a. This further emphasizes the importance of the maxi-
mum eigenvalues and variations in the definition of the
interaction matrix that provides independent structural
information. It does not escape our notice that even better
resolution can be achieved by correlating λ1 with three or
more different types of interaction matrices in a multi-
dimensional plot. The caveat, however, is that definitions
of invariant relation constructing the matrices should not
be redundant as there are a limited number of independ-
ent invariants in a protein structure. Nevertheless, the
results here show that the PCA method using secondary
interaction matrix is highly flexible in adopting various
structural parameters as a means of structure comparison.
We also investigate how much the first eigenvalue cap-
tures the eigenvalue spectrum in the BCL-xL family. We
found that the first eigenvalue captures 45.78% of the
sum of the 105 eigenvalues. That indicates that more
eigenvalues could be helpful in protein structure classifi-
cation in our future work.

A more elaborate method built on PCA is explored in this
study to utilize the directional information contained in

the eigenvector corresponding to λ1, named here as the
PCC analysis as described in Section Methods. This
method is particularly suited for the pair-wise structural
comparison. Using the simple PD matrix definition (Sec-
tion Methods), the pair-wise difference metrics, R, are all
small (< 0.4) within each of the four known structural sets
(Tables 1 and Figure 5(a)–(f)). The SGM score in Figure 5
is defined as the absolute difference between the SGM val-
ues of two proteins. The symbol 'o' denotes that the R
score is smaller than SGM score, and the '*' denotes the R
score is bigger than SGM score. Furthermore, as a negative
control, R values between structures from different sets are
much larger, typically greater than 2.0 (Figure 5(e)). Based
on the R values in Table 1 and Figure 5(a)–(f) , we found
empirically that by setting the cutoff R value to 0.4, the
PCC method can faithfully place all structures in their des-
ignated groups.

To provide a more in-depth view of the PCC method, the
analysis of data set I is described here in detail. This set
consists of mainly α helical structures having the "Orthog-
onal Bundle" architecture. Proteins 2BID, 1F16, 1G5M,
1GJH, 1MAZ, and 1DDB are apoptosis regulators of cell-
death pathways associated with mitochondrion. Since
mitochondria originated from prokaryotes, these proteins

Table 2: Pair-wise R values calculated using the PD matrix 
between representative structures from different structure sets.

2BID 1C78 2FN2

1A5T 2.1121 6.8168 5.8935
1C78 4.6893 8.3020
1FN2 7.6954

Table 1: Pair-wise R values calculated using the PD matrix and the first number of SGM for proteins in structure set I.

1F16 1G5M 1GJH 1MAZ 1DDB 1MDT 1COL 1A6G 1A4F

2BID PCC 0.0249 0.0188 0.2185 0.2676 0.0000 0.0093 0.0337 0.2452 0.2835
SGM 0.0530 0.3510 0.3510 0.5940 0.0210 0.1810 0.0031 0.4890 0.5420

1F16 PCC 0.1630 0.1248 0.1750 0.0000 0.3280 0.0005 0.2915 0.2780
SGM 0.2980 0.2980 0.5410 0.0320 0.1280 0.0530 0.4360 0.4890

1G5M PCC 0.2077 0.1836 0.0000 0.0013 0.0145 0.2943 0.2624
SGM 0.0005 0.2430 0.3300 0.1700 0.3510 0.1380 0.1910

1GJH PCC 0.1790 0.0000 0.0109 0.0327 0.2421 0.2899
SGM 0.2430 0.3300 0.1700 0.3510 0.1380 0.1910

1MAZ PCC 0.0031 0.0092 0.0303 0.0107 0.2537
SGM 0.5730 0.4130 0.5940 0.1050 0.0520

1DDB PCC 0.0054 0.0293 0.0068 0.2286
SGM 0.1600 0.0210 0.4680 0.5210

1MDT PCC 0.0112 0.2390 0.2904
SGM 0.1810 0.3080 0.3610

1COL PCC 0.0081 0.2496
SGM 0.4890 0.5420

1A6G PCC 0.1950
SGM 0.0530
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The plot of R score versus the SGM score: (a)-(f) are plotted for datasets from I to VI, respectivelyFigure 5
The plot of R score versus the SGM score: (a)-(f) are plotted for datasets from I to VI, respectively. The SGM score is defined 
as the absolute difference between the SGM values of two proteins. The symbol '*' denotes that the R score is smaller than 
SGM score, and the 'o' denotes the R score is bigger than SGM score.
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are believed to have evolved from the same ancient
design. Although they differ substantially in amino acid
sequence as well as in shape, the overall scaffold and
topology are similar. As expected, the R values among
them are all less than 0.4 (Table 1). Other proteins in this
set, including bacterial toxins that are capable of forming
membrane pores (1MDT and 1COL) and myoglobin
(1A6G), have remote conformational resemblance with
the BCL-xL proteins. The R values between these structures
and the apoptosis regulators are also less than 0.3 and are
comparable to those found within the BCL-xL family. It is
interesting to note that although 1MDT and 1COL are not
related to the BCL-xL proteins in terms of physiological
roles, they do share a similarity with the BCL-xL members
other than topology; that is, they all are able to form large
pores when inserted into cellular membrane.

In summing the results of Table 1 and Figure 5(a)–(f), the
R values within individual sets are on average very small,
with a mean of 0.1102 and standard deviation of 0.1269.
This is expected because the structures have been manu-
ally examined and pre-grouped into topologically similar
sets. The comparison results from PCC analyses are gener-
ally comparable to that of SGM for the data sets under
study (see Table 1 and Figure 5(a)–(f)). However, in a few
isolated cases, the difference in the scaled writhing num-
bers within the same structure set can exceed the thresh-
old of 0.4 that governs similarity (for example, protein
pairs (1MAZ, 2BID), (1F16, 1DDB) in Table 1, and pro-

tein pairs (1C78, 1FM0), (1C78, 1NDD), and (1C78,
1IBQ) in Figure 5(b). This is because the PCC analysis
using the PD matrix emphasizes more on spatial separa-
tion and orientation of secondary segments. It must be
mentioned that the PD matrix alone is not expected to
detect pure topological similarities. The results for struc-
ture sets with predominately β strands and mixed α/β pro-
teins show similar R values (Figure 5(c) and 5(d)),
indicating the generality of this method in protein struc-
ture comparison. We also tested these six data sets using
MAMMOTH, it can also separate the six classes well.

Another variation of the PD matrix definition is to take
into account the N – C terminal sense, in attempt to fur-
ther emphasize protein topological features. A good
example is the comparison between structures 1COL and
1DDB in data set I. A visual examination of the two struc-
tures reveals that they share similar shape, but are consid-
erably different in topological arrangement of helices 1
and 3. In protein 1COL, the first and third helices are anti-
parallel, whereas they are parallel in 1DDB (see Figure 4).
This is not identified by the PCC analysis using the PD
matrix as R = 0.029. The great similarity in shape prevailed
in the comparison. However, by applying the PDS matrix
defined in Section Methods, the R-value considerably
increases to 1.707, clearly highlighting the difference in
backbone topological traces. Finally we also would like to
pint out that the definition of R could be improved by
introducing more eigenvalues.

Ribbon representation of protein structures of (a) 1COL and (b) 1DDBFigure 4
Ribbon representation of protein structures of (a) 1COL and (b) 1DDB. The two proteins have similar shape, but different 
topological arrangements in helices 1 and 3.
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Conclusion
PCC analysis of secondary interaction matrix is a concep-
tually simple method that yields results highly compara-
ble to the SGM method. Both are able to distinguish
protein conformations based on the more subtle topolog-
ical features. While the SGM method compares structures
in a more topological sense, the outcome of PCC analysis
is more dependent on the definition of the interaction
matrix. With the PD matrix, the PCC analysis puts more
weight on the detailed structure and shape, while it is also
capable, to a certain extent, of distinguishing different
topological traces. In certain cases of pair-wise compari-
son, such as that between 1COL and 1DDB, protein
shapes can overwhelm their topological features in the
analysis; yet the PCC analysis of the PDS matrix is able to
completely differentiate between 1COL and 1DDB.
Owing to the flexibility offered by the new method, a
more effective definition of interaction matrix can be
explored to provide a more efficient structure comparison.
There exist many invariants in each protein. Some invari-
ants are important for protein classification, but some are
not. Hence, our future work will further explore feature
selection, automated classification of PDB, modeling and
statistical learning, as well as protein domain matching.

Methods
Principle component analysis of secondary interaction 
matrix

Assuming a protein having n secondary fragments
denoted by h1, h2,..., hn, and the number of residues in

each secondary structure denoted by l1, l2,..., ln, respec-

tively, the total number of residues belonging to second-

ary structures is given by . The invariant relation

between a pair of secondary elements (hi, hj) is described

by a block matrix F(hi, hj), in which the individual matrix

elements represent a particular relation between residues
of the two secondary structures. Since hi has li residues

(denoted by , ,..., ), and hj has lj residues (denoted

by , ,..., ), the elements of the li × lj F block matrix,

g( , ), are defined as

where 1 ≤ u ≤ li, 1 ≤ v ≤ lj, and d( , ) is a real number

representing an arbitrary invariant relation between resi-

dues of hi and hj. Note this approach allows the definition

of d( , ) to be rather arbitrary. The full interaction

matrix of a protein structure is square and symmetric and
is defined as

The principle components of the interaction matrix is
then obtained by orthogonal decomposition as shown
below:

where λ1 ≥ λ2 ≥ � ≥ λN are the sorted eigenvalues, the cor-
responding eigenvectors are e1, e2,..., eN, and E = [e1, e2,...,
eN] is an invertible matrix. Generally, the maximum
eigenvalue, λ1, and its corresponding eigenvector in N-
dimensional space encode the most dominant features in
the structure and therefore can be effectively used to
directly compare structures, as well as to identify the less
obvious topological features common to the proteins.
Since the eigenvalues depend largely on the dimension of
interaction matrix, they are divided by the matrix size N, a
treatment similar to the scaling of writhing numbers in
the SGM method (Rogen P. and Fain B., 2003). In a rela-
tively crude analysis, λ1 can be directly compared to infer
structural similarity. This method is referred here as the
Scaled Maximum Eigenvalue Comparison (SMEC).

In addition to the maximum eigenvalues, their corre-
sponding eigenvectors can also be used to correlate simi-
lar structures. Particularly for pair-wise structure
comparison, degree of similarity can be more accurately
measured by comparing both eigenvalue and eigenvector.
Since proteins are generally not of the same length, their
eigenvectors cannot be directly correlated due to different
dimensionality. Therefore, a "sliding window" approach
is employed to correlate the smaller protein to all match-
ing segments (length-wise) in the larger protein. Let us
consider two proteins, A and B, having N and M second-
ary structure residues, respectively, and N ≤ M. For the
protein having shorter secondary segments, λA and eA are
respectively the maximum eigenvalue and its correspond-
ing N-dimensional eigenvector. For the protein with more
secondary structure residues, M-N+1 interaction matrices
are decomposed, where (λB

1, eB
1) represent the principle

components of the interaction matrix constructed from
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secondary structure residues 1 ... N, (λB
2, eB

2) are from sec-
ondary structure residues 2 ... N+1, and so on. To quantify
structural similarity, we define a difference metric, R,
between Î of protein A and Î of the jth matching segment
of protein B as

Obviously, smaller Rj indicates better correlation or higher
degree of structural similarity. The overall difference
between the two proteins is defined as

R = min(R1, R2,..., RM-N+1).  (5)

The minimum of R1, R2, ..., RM-N+1 is used here to measure
similarity because this potentially allows mapping a
smaller structure onto a homologous domain within a
larger protein. This method is called the Principle Compo-
nent Correlation (PCC) analysis.

Defining the matrix elements

The definition of block matrix elements, d( , ),

depends on the desired structural features to be extracted.
In the current study, we focus structural comparison on
protein backbone conformation. Clearly the simplest
invariant describing the backbone conformation is the
Euclidian distance between a pair of Cα atoms from two
different secondary segments. Formally, the elements are

defined as d( , ) = ||  - || where  and  are

the coordinates of the two Cα atoms of residues u of hi and

v of hj, respectively. For conciseness, we name the interac-

tion matrix so defined as the Pair-wise Distance (PD)
matrix. For illustration purpose, the interaction matrix for
the structure of Pb1, Domain of Bem1P (PDB accession
code 1IP9), is shown in Fig. 1. This structure, consisting of

two α helices and four β strands (Fig. 1a), is used here to
provide distances between all pairs of Cα atoms in the six

secondary elements (Fig. 1b).

Furthermore, two variations of the PD matrix definition
are explored in attempt to provide a better resolution in
structural comparison and classification. Since physical
energy of interaction between a pair of atoms typically
increase monotonically as the inverse of their separation,
inverse of distance is used to mimic physical interactions
between secondary elements. Here the elements of F(hi,
hj) are defined as

where u0 represent a hard-sphere boundary below which
the interaction is constant. In this study, we arbitrarily set
u0 to 3Å. This definition is referred as Pair-wise Inverse
Distance (PID) matrix.

Another variation of the PD matrix definition is to take
into account the N – C terminal sense, in attempt to fur-
ther emphasize protein topological features. For a second-
ary element, hi, its direction vector vi is defined by two
points in Cartesian space: the center of mass of the five
consecutive N-terminal Cα and the center of mass of the
five consecutive C-terminal Cα atoms. Given a pair of sec-
ondary elements hi and hj, the new matrix elements are
defined as

d( , )' = d( , )sgn(vi·vj)  (7)

where sgn(x) is a symbol function which is 1 when x ≥ 0
and -1 when x < 0. This variation is referred as Pair-wise
Distance with Sense (PDS) matrix in this study.

Linking/Writhing numbers
To evaluate the ability of PCC analysis in extracting pure
topological features, the linking and writhing numbers,
which are good measures of global topology, are also cal-
culated for the four sets of structures for comparison. The
linking number of two curves is defined by the
Călugăreanu-Fuller-White formula [25-27]: Lk = Wr + Tw,
where the linking number Lk counts the sum of signed
crossings between the ribbon's two boundary curves, the
writhing number Wr counts the sum of signed self-cross-
ings of the curve, averaged over all projection directions
[28], and Tw is the twist number.Lk is an invariant to any
smooth deformation that avoids self-intersections [29],
and it is also independent of projection direction. Wr and
Tw are invariant to some transformations, such as rigid
body motions. Here we compute the writhing numbers
using the Scaled Gauss Metric (SGM) approach previously
described by Rogen and Fain [22].

Given two curves c1 and c2, which are two closed non-
intersecting curves in 3-dimentional space, and define e(s,
t) = (c2(t) - c1(s))/||c2(t) - c1(s)||, where ||·|| denotes the
Euclidean norm. For two closed curves, the vector field e(s,
t) is doubly periodic. Such mappings have an integer-val-
ued degree that is invariant under topological deforma-
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tions. The linking number of two curves is further defined
as

where es and et are the tangents of e(s, t) at point (s, t), as

well as (s) and (t) are the tangents along the c1 and c2

at s and t. Note that here es, et, (s), and (t) are vectors.

Define w(s, t) = (c1(t) - c1(s)/||c1(t) - c1(s)||. The writhing

number for a single curve c1 is defined as

where ws and wt are the tangent of w(s, t) at point (s, t).
Writhing number is not invariant under general smooth
deformations such as translations, rotations, re-parame-
terizations, and dilations (Murasugi, 1996). Since the
backbone of a protein is a polygonal curve, the writhing
number of c1(t) can be calculated by

where W(i1, i2) is the writhing number between the i1 th
and the i2th segment; s and t denote two different Cα

atoms, and N is the total number of Cα atoms. The SGM
method is defined as the normalized writhing number,
namely, Wr is divided by N [22]. The absolute difference
between their writhing numbers is used to infer topologi-
cal similarity.
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