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Abstract

Atherosclerosis (AS) is a complex inflammatory process and is cat-
egorized as a multifactorial disease involving the interplay of ge-
netic and environmental factors. There are many factors which play 
role in predisposition and development of AS. In this review we 
have tried to address the basic pathophysiology of AS lesions and 
the role played by two important factors - telomeres and estrogens 
in the development of this disease.
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Introduction

Atherosclerosis (AS) is a multifaceted inflammatory process 
that involves the interaction of both adaptive and innate im-
mune system of human body [1]. AS is categorized as a mul-
tifactorial disease in which genetic as well as environmental 
factors play a major role. AS is the single largest cause of 
death and disability in the western world [2]. AS is derived 
from the Greek words “athere” meaning gruel (accumulation 
of lipid) and “sclerosis” meaning hardening. AS is identi-
fied by the cholesterol deposition, macrophages infiltration, 
smooth muscle cells (SMCs) proliferation, connective tissue 

accumulation and thrombus formation [3]. A number of gen-
eralized or systemic factors have been identified as potential 
risk factors for the predisposition and development of AS. 
The disease is known to preferentially affect particular re-
gions of the circulatory system especially heart and arteries. 
AS usually follows a well-defined progression in the circu-
latory system, usually in early stages the growth of the AS 
lesion is abluminal, and the progress may vary from total 
cessation in some cases [4]. AS starts early in life; AS ap-
pears first in the aorta (during fetal life) in its earliest stage, 
in the second decade of life it appears in the coronary arteries 
and in the third decade it makes its manifestation visible in 
the cerebral arteries [5].

The development and progression of AS as a disease is 
due to the interactions of numerous complex processes tak-
ing place in the individual [2, 6, 7]. AS lesions are actually 
the manifestation of the critical interactions of the various 
gene products of a number of patho-physiological pathways 
with the modulation by ambient environmental factors in a 
time-dependent manner. A number of processes are of cen-
tral importance in the pathogenesis of AS especially endo-
thelial cell (EC) dysfunction triggered by the atherogenic 
stimuli (i.e., increased plasma cholesterol and LDL levels), 
hypertension, diabetes and smoking. The presentation of the 
end points of AS has an astounding similarity among suf-
ferers; however, the factors that have a role in influencing 
the progression of AS within an individual do not have any 
similarity [2].

 
Classification of Atherosclerotic Lesion (AL)

According to the Committee on Vascular Lesions of the 
Council on Arteriosclerosis [8], the ALs have been classified 
into six types. This classification is based on a number of 
factors like the histological and histochemical composition, 
the structure and ultrastructure of both the cell and matrix 
components of the lesions. These types are described below.

Type I: This lesion is identified by the accumulation of 
atherogenic lipoproteins (apoB-containing lipoproteins) in 
the intimal space and infiltration of mononuclear leukocytes 
into the intimal space [1, 9]. This lesion is present at birth 
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[2].
Type II: This lesion contains layers of macrophages or 

foam cells with SMC infiltration from the media into the in-
tima of the vessel wall. The lesion has a distinguishing struc-
ture known as a “fatty streak” which is formed by the aggre-
gation of foam cells and leukocytes within the intimal space. 
This is the earliest stage of AS which is visible to the naked 
eye and is unique to this stage of disease [1, 2, 8].

Type III: This lesion is an intermediary stage between 
types II and IV, which is identifiable by scattered coarse 
granules of lipid, accumulated foam cells or particles that 
disrupt the SMC integrity and distinct intimal thickening [1, 
2].

Type IV: These lesions are characterized by “athero-
mas” which have a distinct structure of large extracellular 
lipid core and the abluminally growing AL. The extracellular 
lipid accumulation is termed as the lipid core. Severe intimal 
disorganization occurs due to the lipid core which appears 
to develop from an increase and the consequent union of the 
small secluded pools of extracellular lipid that characterizes 
type III lesion. Thus initially, atheroma is an eccentric lesion 
[1, 8]. In between the lipid core and the endothelial surface, 
the tissue layer is mostly intima that preceded lesion devel-
opment. Between the lipid core and the endothelial surface, 
the intima contains macrophages and SMCs with and with-
out the inclusions of lipids [8].

Type V: These lesions are characterized by atheromas 
containing large extracellular lipid cores and the developing 
of a prominent fibrous connective tissue which forms caps 
on or around the lipid core. This type of morphology may be 
referred to as fibroatheroma (Va lesion). A type V lesion can 
also be type Vb, in which the lipid core and other parts of the 
lesion are calcified and/or type Vc, in which a lipid core is 
absent and lipid in general is minimal. Type Va lesions are 
usually multilayered, having several lipid cores separated by 
thick layers of fibrous connective tissue [1, 8].

Type VI: These are complicated lesions with type IV/V 
morphology with ruptured atherosclerotic plaque. These are 
characterized by subsequent fissure formation or hematomas 
in the arterial lumen. These are usually formed when throm-
bogenic lipid core comes into contact with the blood result-
ing in platelet aggregation thus causing thrombosis. Type 
VI may be subdivided by the various special and common 
features. Thus, disruption of the surface may be labeled type 
VIa; hematoma or hemorrhage, type VIb; and thrombosis, 
type VIc. Type VIabc indicates the presence of all three fea-
tures [1, 8].

 
Telomeres and AS

In mammals, the ends of chromosomes contain a specialized 
region which protects the sub-telomeric region of the chro-
mosome from wearing down and also prevents any abnor-

mal associations between chromosomal ends. The telomeric 
DNA is composed of non-coding double stranded repeats of 
G-rich tandem DNA sequences (TTAGGG in vertebrates) 
[10]. These tandem repeats are extended several thousand 
base pairs (10 - 15 kb in humans and 25 - 40 kb in mice) and 
end in a 150 - 200 nucleotide 3’ single-stranded overhang. 
Telomeric DNA is also associated with several specific DNA 
binding proteins, which include telomerase and the telomeric 
repeat binding factors 1 and 2 (TRF1, TRF2) which associ-
ate with the TTAGGG repeat directly and interact with other 
factors forming large protein complexes that regulate telo-
mere length and structure [11, 12]. Mammalian telomerase 
consists of an RNA component (telomerase RNA component 
(TERC)) that serves as a template for the synthesis of new 
telomeric TTAGGG repeats by the telomerase reverse tran-
scriptase component (TERT) [10-12].

Functional telomeres are required for preserving ge-
nome integrity and stability by playing role in preventing the 
recognition of chromosomal ends as double-stranded DNA 
breaks [13, 14]. The protection of telomere depends on sev-
eral factors, including the precise composition of telomere-
associated proteins, the level of telomerase activity and telo-
mere length itself [10]. Cells which contain sufficiently long 
telomeres do not require avid telomerase activity, but cells 
with critically short telomeres with low or lack of telomerase 
activity tend to have chromosomal fusions, replicative senes-
cence and apoptosis [10, 11, 14]. The expression and activity 
of telomerase as well as the length of telomere which it syn-
thesizes are both regulated in a tissue-specific and develop-
mental manner in several species, including humans. During 
the embryonic development these parameters are greater and 
become low or undetectable after birth [15, 16]. In humans 
for instance, telomeric DNA length progressively shortens at 
a rate of 29 - 60 base pairs per year (bp/year) in many tissues 
like liver, renal cortex and spleen, but length of telomere re-
mains stable in cerebral cortex [17]. In adult cell populations 
with high proliferative potential, human telomerase activity 
(hTERT) remains detectable, e.g. activated lymphocytes and 
certain types of stem cells [18-20]. Moreover, the occurrence 
of regulation of telomerase activity in tissue-specific man-
ner, both during embryonic development and in adulthood 
is supported by an important body of evidences [21-23]. Ac-
celerated rate of telomere attrition is characteristic feature 
of many premature aging syndromes like Werner syndrome, 
dyskeratosis congenital and ataxia telangectasia [14]. In sev-
eral adult normal and tumor tissues, alternatively spliced 
human TERT (hTERT) transcripts have been detected and 
their expression as well has been shown to be regulated in a 
tissue-specific manner during development [24]. It has also 
led to the expression of hTERT isoforms which are known 
to lack functional reverse transcriptase domains, including 
dominant negative inhibitors of telomerase activity (e.g. 
hTERTα) [24-27].

Telomeres undergo wear and tear with each cycle of cel-
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lular replication until a critical telomere length is reached 
at which the cells experience replicative senescence. Thus, 
telomere length not only serves as an index of the replicative 
history of the cell but also is a key determinant of replica-
tive senescence [28]. A number of observations are in sup-
port of this hypothesis which has been recently defined as 
the “telomere hypothesis of cellular aging” [29]. 1) Cancer 
cells, germline cells and immortalized cell lines usually ex-
press robust activity of telomerase, a reverse transcriptase. 
Thus, these types of cell continue to proliferate without evi-
dence of replicative senescence and telomere erosion. 2) The 
ectopic expression of the catalytic subunit of telomerase in 
somatic cells expressing little or no telomerase activity re-
sults in the phenotypic transformation of these cells. 3) The 
inhibition of telomerase prevents the continuous growth of 
cancerous cells. 4) There is compelling evidence that reac-
tive oxygen species (ROS) and sex are the two inter-related 
factors that accelerate the rate of telomere attrition in differ-
ent cell types including vascular endothelial cells (VECs). 5) 
The telomere-mediated senescence of VECs may result in 
endothelial dysfunction particularly ALs.

Telomeres in essentiality record the replicative history 
and replicative potential of human somatic cells in vitro as 
well as in vivo. In human beings the telomere is relatively 
short, inversely correlated with age, highly heritable and lon-
ger in women than men. With each replication of somatic 
cells the telomere length becomes shorter and in cultured 
somatic cells from human beings. The “telomere hypothesis 
of cellular aging” states that telomeres serve as a “mitotic 
clock” of the cells [30]. Telomere attrition in cultured human 
somatic cells essentially follows the teleonomic behavior 
in that it ultimately leads to a well-defined outcome, i.e. a 
critically shortened telomere length signals replicative se-
nescence. It is noteworthy that recent evidence indicates that 
replicative senescence may not be strictly related to telomere 
length but to the status of the telomeric DNA in relation to its 
telomeric protein complex, given that shortened telomeres 
appear to lose the protective shield of their binding proteins 
[29].

Estrogens and AS
  
Estrogens represent the group of steroid compounds, named 
for their function in the estrous cycle, as primary female sex 
hormones. Estrogens exist in three forms: E2, estrone (E1) 
and estriol (E3). Among the estrogens E2 is the most es-
sential compound as it is known to stimulate EC migration, 
proliferation and survival in ECs [31]. In the cardiovascular 
system, estrogen is activated by binding to estrogen recep-
tors (ERs) in the ECs. There are basically two classical ER 
subtypes which are ERα and ERβ and a non-classical ER 
GPR30. ERs function in regulating the transcriptional pro-
cesses in cells by binding to the ER in the nucleus which 

mediates dimerization and binding to specific response ele-
ments (EREs) to promote its target gene [32]. Estrogen me-
diates protein reactions within the cell by binding to the ER 
through protein-protein interactions with ERE in the nucleus. 
This stimulates the activator protein 1 (AP1) or SP1 sites in 
the promoter region of estrogen-responsive genes to activate 
coregulator proteins to the promoter, regulate mRNA levels 
and other protein production [31]. ER mediates the action of 
estrogens and the regulation of its gene expression by acting 
as ligand transcription factors. Estrogen is mediated selec-
tively via ERα and ERβ in uterine artery and uterine artery 
endothelium. Physiological studies showed that ERα is more 
potent in stimulation of estrogen than ERβ ligands in VECs. 
ERα up-regulation in human dilated cardiomyopathy brings 
about increase in mRNA which was higher in women than 
men. The transcription factors of ER can interact with cyto-
plasmic proteins and activate signaling pathways [33, 34].

E2 stimulates ERs and HIF to the VEGF gene promot-
er in the endothelium. It has been observed that when the 
VEGF mRNA levels decline, ERα persists in its activity. 
HIF1 mediates phosphatidyl inositol 3-kinase (PI3K) path-
way in estrogen induction of VEGF expression in the endo-
metrium [31, 35]. Estrogen also mediates the signaling of tis-
sue factory pathway inhibitor-I (TFPI) of blood coagulation. 
TFPI has been found to be involved in angiogenesis due to 
its stimulation with ER ligands. The regulation of TFPI in-
volves post-transcriptional effects mediated by the one ver-
sion of ERα which is amino-terminally truncated with mo-
lecular weight of 45 kDa. Its involvement in angiogenesis 
is due to its stimulation with ER ligands [36, 37]. TFPI may 
affect angiogenesis through peptides within its carboxyl ter-
minus which may directly block VEGF2 activation, thereby 
hindering the migration of ECs [38].

Estrogen mediates its cardioprotective effect via ER-me-
diated non-genomic signaling pathways [37]. Membrane ER 
binding results in rapid, non-genomic actions and is mediat-
ed by several pathways, some important of which are recep-
tor tyrosine kinases and protein kinases including PI3K, Akt, 
mitogen-activated protein kinase, Src protein kinase A and C 
and by increasing the concentration of intracellular calcium 
[39]. With regard to cardiovascular events, direct membrane 
signaling causes vasodilatation through nitric oxide release 
and opening of the calcium-activated potassium channels 
through an NO and cyclic GMP pathway [39]. A number of 
studies have observed that acute addition of 17β-estradiol 
to either ovary-intact females or ovariectomized females 
reduces the avidity of ischemic reperfusion. Some studies 
suggest location of ERs at the plasma membrane, where they 
could elicit rapid protective effects via the activation of non-
genomic signaling pathways [40].

Estrogen critically binds at different to initiate acute 
signaling pathway. It alters different levels of proteins and 
signaling pathways, leading to post-translational modifica-
tions that alter protein activities [41]. A direct protein-protein 
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interaction between ligand-activated ERα and the regulatory 
subunit p85 of PI3K in ECs through a non-genomic mecha-
nism by which E2 rapidly stimulates eNOS via the activa-
tion of PI3K/Akt would lead to downstream activation of 
NOS/NO/SNO signaling. This clearly suggested that ERα 
activation of PI3K might play a role in cardio-protection 
[42]. NOS can be signaled via S-nitrosylation (SNO) and 
SNO levels are mediated by activation of estrogen. Some re-
search work also suggested that ERβ agonist could increase 
the SNO of a series of proteins in ovariectomized females 
[43].

Estrogens usually exert a protective effect against ROS-
induced DNA damage, because of its anti-oxidant properties 
[44]. Estrogens are also known to induce TERT transcrip-
tion, and hence enhancement of the telomerase activity, in 
MCF-7 cells via an estrogen response element within the 
TERT promoter [45]. Estrogens also stimulate the phospha-
tidylinositol 3 kinase/Akt pathway via post-transcriptional 
modifications of a number of mediators including Akt pro-
tein kinase [28, 46, 47]. Estrogens also stimulate nitric oxide 
production in VECs, which in turn has been found to stimu-
late the telomerase activity in these cells [28].

Numerous evidences have been provided both in vitro 
and in vivo for direct effects of estrogens on telomerase activ-
ity. First, in the endometrium telomerase activity varies with 
the stage of the menstrual cycle [48], being negligible dur-
ing menstruation but increases during the follicular phase, 
reaching maximum levels immediately before ovulation, co-
inciding with a peak in estrogen levels and proliferative ac-
tivity, and then falls during the luteal phase. Postmenopausal 
endometrium and endometrium from women treated with 
antiestrogens exhibit decreased telomerase activity [12].
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