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Abstract

Background: Time-course microarray experiments produce vector gene expression profiles
across a series of time points. Clustering genes based on these profiles is important in discovering
functional related and co-regulated genes. Early developed clustering algorithms do not take
advantage of the ordering in a time-course study, explicit use of which should allow more sensitive
detection of genes that display a consistent pattern over time. Peddada et al. [1] proposed a
clustering algorithm that can incorporate the temporal ordering using order-restricted statistical
inference. This algorithm is, however, very time-consuming and hence inapplicable to most
microarray experiments that contain a large number of genes. Its computational burden also imposes
difficulty to assess the clustering reliability, which is a very important measure when clustering noisy
microarray data.

Results: We propose a computationally efficient information criterion-based clustering algorithm,
called ORICC, that also takes account of the ordering in time-course microarray experiments by
embedding the order-restricted inference into a model selection framework. Genes are assigned to
the profile which they best match determined by a newly proposed information criterion for
order-restricted inference. In addition, we also developed a bootstrap procedure to assess
ORICC's clustering reliability for every gene. Simulation studies show that the ORICC method is
robust, always gives better clustering accuracy than Peddada's method and saves hundreds of times
computational time. Under some scenarios, its accuracy is also better than some other existing
clustering methods for short time-course microarray data, such as STEM [2] and Wang et al. [3]. It
is also computationally much faster than Wang et al. [3].

Conclusion: Our ORICC algorithm, which takes advantage of the temporal ordering in time-
course microarray experiments, provides good clustering accuracy and is meanwhile much faster
than Peddada's method. Moreover, the clustering reliability for each gene can also be assessed,
which is unavailable in Peddada's method. In a real data example, the ORICC algorithm identifies
new and interesting genes that previous analyses failed to reveal.
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Background
The development of microarray technology provides a
powerful analytical tool for large scale genomic research.
Its ability to simultaneously study thousands of genes
under amultitude of conditions presents a huge challenge
to comprehend and interpret the resulting mass of data.
An important application of microarray technology is to
study the dynamic patterns of gene expression across a
series of time points and find gene clusters within which
genes share similar patterns. The premise is that genes
sharing similar expression profiles might be functionally
related or co-regulated. Therefore, microarray data may
provide insights into gene-gene interactions, gene func-
tion and pathway identification. Examples of such studies
include response to temperature changes and other stress
conditions [4], immune response [5], developmental
studies [6], and various systems in the cell [7]. Early
clustering analysis of microarray data were mostly on
static microarray experiments, such as hierarchial cluster-
ing [8], the k-nearest neighbors method [9,10], and other
correlation-based methods [11,12]. These methods are
not designed for time-course microarray data and can not
effectively utilize the temporal information. Many clus-
tering algorithms for time-course microarray data have
been developed afterwards. Most of them view observed
temporal gene expression profiles coming from under-
lying smooth curves and cluster genes based on estimated
expression profiles obtained from nonparametric
smoothing [2,13-25]. While these algorithms work well
for relatively long time series data, they are not appro-
priate for short time-course microarray data often taken
on a small number of sparse time points. Generally, these
algorithms tend to overfit the data when the number of
time points is small [2]. A few clustering methods were
also proposed specifically for short time-course micro-
array data, such as [1-3,26,27]. Among them, Peddada
et al. [1] proposed an interesting idea of using order-
restricted inference in clustering short time-course micro-
array data. A set of candidate expression profiles is first
defined by inequality constraints among expression levels
at different time points, i.e. up and downs. This strategy is
less restrictive than those that define profiles via pre-
specified expression levels because only the general shape
of the profile is needed. Each candidate profile then
represents a potential gene cluster. For short time-course
data, the total number of candidate profiles is generally
not large. Peddada's method then assigns genes to the
cluster represented by its best matched candidate profile
determined by some order-restricted statistical inference
procedure. Two genes fall into the same cluster if their
best matched candidate profiles are the same. This profile
matching clustering strategy is different from most
unsupervised clustering where a representation of a
cluster is often calculated only after the cluster is formed.

This method requires no smoothing of the expression
profiles and was shown to discover more functionally
related genes when applied to a breast cancer cell-line
data in [28]. However, Peddada's method is computa-
tionally very costly when the number of genes is large.
According to our experience on a workstation with a 2.30
GHz AMD Athlon(tm) 64 × 2 Dual Core 4400+ processor
and a 2.00 GB memory, it took at least 72 hours to run
Peddada's method (implemented in Matlab) for the
breast cancer cell line data containing about 1900 genes.

In this article, from a different perspective to the order-
restricted inference, we propose a new order-restricted
information criterion-based clustering (ORICC) algo-
rithm, which is computationally much more efficient
than Peddada's method. Our method selects and clusters
genes using the ideas of model selection for order-
restricted inference, where estimation makes use of
inequalities that define the candidate profiles. The first
step is to define candidate profiles and express them in
terms of inequalities between the expected gene expres-
sion levels at various time points. For a given candidate
profile, we estimate the mean expression level at different
time points of each gene using the order-restricted
maximum likelihood [29]. The best fitting profile for a
given gene is then selected using an information criterion
for order-restricted inference. Due to the simplicity of our
algorithm, the analysis of the breast cancer cell-line data
in [28] can now be done in a few minutes using our
method.

Results and discussion
Inequality profiles
Suppose that a time-course microarray experiment
includes T time points, and at each time point there are
M arrays each with G genes. Denote ygti the expression
measurement of gene g at time point t on the ith array.
Suppose that the unknown true mean expression level of
gene g at time t is μgt, i.e. μgt = E(ygti) for all i. A candidate
gene expression profile of gene g is then given by
inequalities between the components of μg = (μg1, μg2, ...,
μgT)

T. In the following, we define some typical inequality
profiles, and we drop the subscript g for simplicity.

C0 profile :

C RT
T0 1 2= ∈ = = ={ : }.mm m m m (1)

C⊥ profile :

C RT
T⊥ = ∈ ⊥ ⊥ ⊥{ : },mm m m m1 2 (2)

where μi⊥ μj means that there is no defined inequality
constraint between μi and μj.

BMC Bioinformatics 2009, 10:146 http://www.biomedcentral.com/1471-2105/10/146

Page 2 of 20
(page number not for citation purposes)



Monotone increasing profile (simple order) :

C RT
T↑ = ∈ ≤ ≤ ≤{ : }mm m m m1 2 (3)

(with at least one strict inequality). Similarly, a monotone
decreasing profile C↓ is given by replacing ≤ by ≥ in (3).

Up -down profile with maximum at i (umbrella order) :

C RT
i i T∧ += ∈ ≤ ≤ ≤ ≥ ≥ ≥{ : }m m m m m m1 2 1 (4)

(with at least one strict inequality among μ1 ≤ μ2 ≤ ... ≤ μi
and one among μi ≥ μi+1 ≥ ... ≥ μT). Genes satisfying this
profile have mean expression values non-decreasing in
time up to time point i and non-increasing thereafter.
One may similarly define a down-up profile C∨.

Cyclical profile with minima at 1, j, and T and maxima at i
and k :

C RT
i i j j k k T∧∧ + + += ∈ ≤ ≤ ≤ ≥ ≥ ≥ ≤ ≤ ≤ ≥ ≥ ≥{ : }m m m m m m m m m m1 2 1 1 1 (5)

(with at least one strict inequality among each mono-
tone sub-profile). Cyclical profiles may be important in
relatively long time-course experiments where the mean
expression value could oscillate.

Incomplete inequality profiles :

C RI
T

i i j j k k T= ∈ ≤ ≤ ≤ ⊥ ≥ ≥ ⊥ ≤ ≤ ⊥ ≥ ≥+ + +{ : }m m m m m m m m m m1 2 1 1 1 (6)

(with at least one strict inequality among each mono-
tone sub-profile). Profiles (6) are useful when the
investigator is unable to specify inequalities between
certain means.

Information-criterion based clustering using order-
restricted maximum likelihood
Our procedure seeks to match a gene's true profile,
estimated from the observed data, to one of a specified
set of candidate profiles. Provided the relationship of a
gene's mean expression levels at different time points is
defined by a given candidate profile, we first obtain the
order-restricted maximum likelihood estimates (MLE) of
the gene's mean expression levels at all time points.
Details for simple order and umbrella order constraints
are given in the Methods section. A general discussion of
order-restricted MLE can be found in [29]. Some specific
examples can also be found in [1]. Peddada's method
then carried out a bootstrap-based likelihood ratio test
to decide a gene's best matched profile, which needs to
repeat computing the order-restricted MLEs at least
hundreds of times for each gene. We replace this very
time-consuming bootstrap procedure by computing an
information criterion function instead. The best matched
profile is given by the one with the smallest information

criterion function value. Information criterion functions,
such as Akaike information criterion (AIC) [30] and
Bayesian information criterion (BIC) [31], are widely
used in selecting a model from a set of potential models.
In our context, each candidate profile can be viewed as a
potential model for a gene's expression pattern, and
hence a properly defined information criterion function
can be used to decide the gene's best matched profile.
However, the widely used AIC and BIC are designed for
models with a fixed number of parameters, whereas the
inequality constraints do not really specify any para-
meters explicitly. Some information criteria for order-
restricted inference have been proposed recently [32,33],
but they only apply to simple order constraints (3). We
have recently proposed a new order-restricted informa-
tion criterion (ORIC) function for general inequality
profiles, which we show to always select the correct
profile when the sample size is large enough (unpub-
lished manuscript). Suppose that there are d candidate
profiles of interest. Let l(l) denote the maximum log-
likelihood under the l-th candidate profile, and ν1(l)
and ν2(l) are the number of ⊥ and {≥, ≤} specified in the
profile, l = 1, ..., d. Then, the ORIC function is

ORIC l p T M( ) ( ) | ( ) log( ),l l l= − ⋅ ⋅2 (7)

where M is the number of replicated arrays and

p
i

i

( ) ( ) .
( )

l n l
n l

= +
+

=
∑1

0

1
1

2

(8)

The ORIC function is similar to AIC and BIC in essence
with p(l) representing the model complexity. That is, the
more the inequality constraints in a profile, the more
complex it is as amodel. And a profile with a smallerORIC
value is regarded as a better match to the gene's expression
pattern. In the following, we describe our ORIC-based
clustering (ORICC) algorithm (one-stage ORICC) and its
computationally faster variant (two-stage ORICC).

One-stage ORICC
Step 1. Pre-specify a collection of candidate profiles,
{C1, ..., Cd}. To prevent genes with very little changes
over time matched to these profiles, we also include C0

defined in (1) into the collection.

Step 2. Compute p(l) in (8) for all candidate profiles.

Step 3. For gene g, compute the order-restricted MLE
( ˆ , ˆm mg gT1 ) of (μg1, ..., μgT) and the maximum log-
likelihood l(l) under each candidate profileCl,l=0, 1, ...,d.

Step 4. For gene g, compute the information criterion
function ORIC(l) in (7) for all l = 0, 1, ..., d. The best
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matched profile is then selected as that corresponds to

l̂ = arg min0 ≤ l ≤ dORIC(l), and gene g is assigned to
the l̂ th cluster if l̂ ≠ 0.

Step 5. Repeat Steps 3 and 4 for every gene.

Although our one-stage ORICC algorithm is hundreds of
times faster than Peddada's method, performing Step 3
for all genes can still cost a lot of computational time
even when only a moderate number of candidate
profiles are considered because the number of genes is
generally huge. This issue is more imminent for relatively
longer time course microarray studies as more candidate
profiles usually need to be considered. Next, we propose
a computationally more efficient two-stage algorithm by
adding a pre-screening stage.

Two-stage ORICC
Step 1. Pre-specify a collection of candidate profiles,
{C1, ..., Cd}. Here, we also add C0 and C⊥ defined in (1)
and (2) into the collection for screening purpose.

Step 2. Compute p(l) in (8) for all candidate profiles.

Step 3. For gene g, compute the order-restricted MLE
( ˆ , ˆm mg gT1 ) of (μg1, ..., μgT) and the maximum log-
likelihood l(l) under profiles C0 and C⊥.

Step 4. For gene g, compute ORIC(l) in (7) for l = 0, ⊥.
Exclude gene g for further consideration if ORIC(0)
<ORIC(⊥).

Step 5. Repeat Steps 3 and 4 for every gene. Denote the
set of remained genes by S.

Step 6. Run Steps 3–5 in the one-stage ORICC algorithm
for genes in S considering only {C1, ..., Cd} as candidate
profiles.

In the one-stage algorithm, the ORIC function is
evaluated for every gene under every candidate profile,
whereas the two-stage algorithm first screens out genes
that show no significant changes over time by comparing
between two profiles C0 and C⊥, and then applies the
one-stage algorithm to a much smaller set of remained
genes. As a result, the two stage algorithm is usually
much faster and report tighter clusters with less genes in
them.

Filtering genes with small expression levels
Some genes selected by the ORICC algorithm may have
small mean expression levels at every time point. Such
genes may not be of interest to some investigators.

Peddada et al. [1] suggested a simple step to remove
them. We include it here for completeness.

Let

v
Tg gt

t

T

= −
=

∑1 2

1

( ) ,
_

m m (9)

where ˆ ˆm m= =∑1
1T gtt

T . Large values of vg indicate that
the mean expression of gene g is high for at least one
time point. Arrange the genes that selected by the ORICC
algorithm in descending order of vg and retain the top R
genes.

Assessing the reliability of the oricc results
Microarray data are often noisy and hence it is important
to assess the reliability of the clustering results. Among
the recently developed methods for assessing clustering
reliability [34-38], we adopt a general bootstrap frame-
work proposed by Kerr and Churchill [36], in which the
clustering procedure is first applied to the original data
and then to a large number of bootstrap samples
obtained from perturbing the original data. Since
Peddada's method is computationally so costly, it is
impossible to put it into this framework. By contrast, our
ORICC method is computationally very efficient, and we
can easily embed it into this general framework.

In time-course microarray studies, we can use the
following analysis of variance (ANOVA) model to
account for sources of variation in microarray data.

ygti g t i gt gi ti gti= + + + + + + + ∈m a b g w f y , (10)

where ygti is the relative expression measurement from
array i, time point t, and gene g on appropriate scale
(typically the log scale). The terms bt, gi and ψti account
for all effects that are not gene-specific. We assume that
the error terms εgti are independent with mean 0 and
variance s e

2 but do not make any other distributional
assumption. The bootstrap assessment is then done as
follows.

Step 1. Estimate model (10), which can be done
straightforwardly in any statistics software, such as SAS
[39] and R [40].

Step 2. Generate B bootstrap samples by

ygti g t i gt gi ti gti
∗ ∗= + + + + + + + ∈˘ ˘ ˘ ˘ ˘ ˘ ˘ ,m a b g w f y

where a ^ over a term means the estimate from the
original model fit in Step 1, and ∈∗

gti are drawn with

BMC Bioinformatics 2009, 10:146 http://www.biomedcentral.com/1471-2105/10/146

Page 4 of 20
(page number not for citation purposes)



replacement from the studentized residuals of the
original model fit.

Step 3. Repeat the ORICC algorithm for each bootstrap
sample.

Now, the original clustering is accompanied by a
collection of bootstrap clusterings, which can be
regarded as a sample of clusterings that are close to the
original clustering in space of all possible clusterings.
When the level of noise in the original data is low, the
bootstrap clusterings tend to be more like the original
clustering. Then we can calculate a reliability measure for
each gene by counting the proportion in the bootstrap
clusterings it is attached to the same profile as in the
original clustering. The larger the measure, the more
reliable the gene's clustering membership.

Simulation studies
In this section, we use Monte Carlo simulation to
examine the performance of the ORICC method and
compare it with other clustering methods for short time-
course microarray data, including Peddada's method,
STEM [2], and Wang's method [3].

The STEM algorithm works by assigning genes to a pre-
defined set of model profiles that capture the potential
distinct patterns that can be expected from the microarray
experiment. Each gene is then assigned to the closest
model profile in certain distance measure, e.g. correla-
tion, and genes assigned to the samemodel profile consist
a cluster. Significant profiles/clusters are next determined
by hypotheses tests. As a result, genes in insignificant
clusters are usually not reported. Wang's method repre-
sents each gene's temporal profile by a polynomial model
and estimates the model using a Bayesian approach. A
heuristic search strategy [23] is then applied to obtain
clusters by repeatedly merging models to improve
marginal likelihood.

All simulations were carried out on a workstation with a
2.30 GHz AMD Athlon(tm) 64 × 2 Dual Core 4400+
processor and a 2.00 GB memory. Peddada's method,
Wang's method and the one-stage ORICC algorithm are
implemented in R [40], whereas the STEM software is in
JAVA written by its author.

Simulation 1
In the first simulation study, we consider ten inequality
profiles (C1–C10) plus a flat pattern (C0) to represent a
total number of eleven clusters. We set the number of
time points as T = 6. These numbers are set to be similar to
those in the real data set analyzed in the next section. The
eleven profiles are specified as follows. For compactness,

we drop μ Œ RT and the phrase 'with a strict inequality'
when defining the profiles. True values of μ = (μ1, μ2, μ3,
μ4, μ5, μ6) in each profile are also given.

C0: μ1 = μ2 = μ3 = μ4 = μ5 = μ6, μ = (0,0,0,0,0,0);

C1: μ1 ≥ μ2 ≥ μ3 ≥ μ4 ≥ μ5 ≥ μ6, μ = (0,-0.5,-1,-1.5,-2,-2.5);

C2: μ1 ≤ μ2 ≤ μ3 ≤ μ4 ≤ μ5 ≤ μ6, μ = (0, 0.5, 1, 1.5, 2, 2.5)

C3: μ1 ≤ μ2 ≥ μ3 ≥ μ4 ≥ μ5 ≥ μ6, μ = (0, 0.5, 0, -0.5, -1, -1.5)

C4: μ1 ≤ μ2 ≤ μ3 ≥ μ4 ≥ μ5 ≥ μ6, μ = (0, 0.5, 1, 0.5, 0, -0.5)

C5: μ1 ≤ μ2 ≤ μ3 ≤ μ4 ≥ μ5 ≥ μ6, μ = (0, 0.5, 1, 1.5, 1, 0.5)

C6: μ1 ≤ μ2 ≤ μ3 ≤ μ4 ≤ μ5 ≥ μ6, μ = (0, 0.5, 1, 1.5, 2, 1.5)

C7: μ1 ≥ μ2 ≤ μ3 ≤ μ4 ≤ μ5 ≤ μ6, μ = (0, -0.5, 0, 0.5, 1, 1.5)

C8: μ1 ≥ μ2 ≥ μ3 ≤ μ4 ≤ μ5 ≤ μ6, μ = (0, -0.5, -1, -0.5, 0, 0.5)

C9: μ1 ≥ μ2 ≥ μ3 ≥ μ4 ≤ μ5 ≤ μ6, μ = (0, -0.5, -1, -1.5, -1, -0.5)

C10: μ1 ≥ μ2 ≥ μ3 ≥ μ4 ≥ μ5 ≤ μ6, μ = (0, -0.5, -1, -1.5, -2, -1.5)

Figure 1 shows the inequality profiles C1–C10. We
generated a data set with 200 genes from each profile.
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Figure 1
Ten inequality profiles in Simulations 1 and 2.
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At each time point t, we generated M replicates for each
gene's expression level from normal distributions with
means μt and variance s2. To assess the effect of the data
variability and replicates on the clustering results, we
varied the variance s2 from 0.2 to 1.2 (by an incremental
of 0.2) and the number of replicates M from 2 to 10.

Next, we clustered the simulated data using Peddada's
method and the one-stage ORICC algorithm, consider-
ing ten candidate inequality profiles C1–C10. For
Peddada's method, we set the number of bootstrap
replications as 200 and the significance level of the
bootstrap based test as 0.025. Peddada et al. originally

proposed to use significance level 0.0025, and we have
observed that a large number of "non-flat" genes will be
clustered to C0 using this choice. Meanwhile, using the
common significance level of 0.05 tends to cluster many
genes from C0 to other "non-flat" profiles. Using
significance level of 0.025 offers a good compromise
between the two kinds of false clustering.

Let gi denote the number of genes with true profile Ci

and correctly clustered to profile Ci, i = 0, 1, ..., 10. The
overall error rate and the false positive rate are then given
by 1

0

10− =∑ g ii
/(11 × 200) and 1 -g0 = 200, respectively.

Let g i
∗ denote the number of genes with true profile Ci,
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Figure 2
Simulation 1: The overall error rate of Peddada's method and the one-stage ORICC algorithm. The horizontal
axis represents the number of replicates, and the vertical axis represents the overall error rate. Dashed lines are for the one-
stage ORICC algorithm, and solid lines are for Peddada's method.
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i = 1, ..., 10 and clustered to profile C0. The false negative
rate is then given by g ii

∗
=∑ 1

10 /(10 × 200).

We then use the overall error rate, the false positive rate
and the false negative rate to evaluate the accuracy of the
two algorithms. Simulation results are summarized in
Figures 2, 3 and 4. Figure 2 and Figure 4 show that the
overall error rate and the false negative rate of the one-
stage ORICC algorithm are always better than those of
Peddada's method. Figure 3 shows that the false positive
rate of the one-stage ORICC algorithm is better than that
of Peddada's method in most cases. The one-stage
ORICC algorithm not only provides good clustering

accuracy but also is much faster than Peddada's method.
For example, when s2 = 1 and M = 5, the run time for
Peddada's method and one-stage ORICC algorithm is
2979.29 seconds versus 25.55 seconds.

Simulation 2
In the second simulation study, we consider the same set of
inequality profiles and simulate the data in the same way as
in Simulation 1, but we fix the number of replicatesM to be
5. To study the effect of the true cluster size to the clustering
accuracy, we consider different cluster sizes, 50, 100, 150 and
200. Meanwhile, we also vary the variance s2 from 0.2 to 3.0
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Figure 3
Simulation 1: The false positive rate of Peddada's method and the one-stage ORICC algorithm. The horizontal
axis represents the number of replicates, and the vertical axis represents false positive rate. Dashed lines are for the one-stage
ORICC algorithm, and solid lines are for Peddada's method.
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with an incremental of 0.4. Then we cluster the simulated
data set usingmethods including Peddada'smethod,Wang's
method, STEM and the one-stage ORICC algorithm.

For Peddada's method and the one-stage ORICC algo-
rithm, we consider eleven candidate inequality profiles
C0–C10. For Wang's method, we set the prior hyper-
parameters (a1, a2) in the gamma prior distribution
Gamma(a1, a2) as (2, 2). For STEM, we assume 50
possible profiles and use the recommended default
settings in the package. To be consistent, we did not
filter out any genes in any of these analyses. Then we use

Rand's C statistic [41] to evaluate the similarity between
the true cluster assignment and the clustering results of
different methods. Rand's C statistic is defined as
follows. Given a pair of clusterings C and C' of the
same N objects, arbitrarily number the clusters in each
clustering and let nij be the number of objects
simultaneously in the ith cluster of C and the jth cluster
of C'. Then, Rand's C statistic is given by
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Figure 4
Simulation 1: The false negative rate for Peddada's method and the one-stage ORICC algorithm. The horizontal
axis represents the number of replicates, and the vertical axis represents the false negative rate. Dashed lines are for the one-
stage ORICC algorithm, and solid lines are for Peddada's method.
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which denotes the proportion of pairs of objects that are
assigned consistently in the two clusterings. Figure 5
gives Rand's C statistic from different clustering methods
for different s2 and cluster sizes. It shows that the
precision of all methods is decreasing for increasing
variance, and the cluster size has no obvious effect on the
clustering precision for Peddada's method, STEM and the
one-stage ORICC algorithm, but has an increasing effect
for Wang's method. This comparison shows an interest-
ing pattern. For larger s2, STEM performs the best,
Wang's method the worst, and Peddada's method and
the one-stage ORICC are in between. For smaller s2, the
result is reversed with STEM being the worst, Wang's
method the best, and Peddada's method and the one-
stage ORICC still in between. When the cluster size is
relatively small and s2 is large, Wang's method can have
quite low precision under 70%. Overall, the one-stage
ORICC algorithm is consistently more accurate than
Peddada's method by a slight margin, and provides good
precision under all scenarios. The performance of STEM
is also very stable, but tends to underperform when the
data are less noisy, i.e., s2 is small.

Figure 6 shows the simulated eleven clusters when M = 5,
s2 = 1 and the cluster size is 100. Figures 7, 8, 9 and 10
show the resulted clusters from the four different
methods, respectively. ORICC and Peddada's method

give similar clustering results that well match the true
pattern. While the true number of clusters is eleven,
STEM identifies six significant clusters and Wang's
method keeps eight clusters. In particular, Wang's
method did not cluster genes from the flat profile C0

into one cluster but assign them into different clusters.

In this simulation, Peddada's method, Wang's method
and the one-stage ORICC method are implemented in R,
whereas the STEM software is in JAVA written by its
author. So, we can only compare the computational
efficiency of the first three methods and the one-stage
ORICC method is much faster than the other two. For
example, when s2 = 3 and the cluster size is 200, the run
time for Peddada's method, Wang's method and the one-
stage ORICC algorithm is 3073.37 seconds, 10303.9
seconds and 24.72 seconds, respectively.

Simulation 3
In the third simulation, we examine the robustness of
the ORICC algorithm. We consider eleven inequality
profiles (C0–C10) plus a cyclical profile (C∧∧) to
represent a total number of twelve clusters. We set the
number of time points as T = 6. The eleven inequality
profiles C0–C10 and the true values of μ = (μ1, μ2, μ3, μ4,
μ5, μ6) in each profile are the same as in Simulation 1.
The cyclical profile C∧∧ and the true value of μ = (μ1, μ2,
μ3, μ4, μ5, μ6) in C∧∧ are given as follows:

C∧∧ ≤ ≥ ≤ ≥ ≤ = − − −: , ( . , . , . , . , . , . ).m m m m m m m1 2 3 4 5 6 0 5 0 5 0 5 0 5 0 5 0 5

We generate a data set with 200 genes from each profile of
C0–C10 and 200 × r genes from cyclical profileC∧∧. At each
time point t, we generated 5 replicates for each gene's
expression level from normal distributions with means μt
and variance s2. To study the robustness of the one-stage
ORICC algorithm, we consider different cluster sizes, 200
× r, r = 1, 2, ..., 10, for the cyclical profile C∧∧. Meanwhile,
we also vary the variance s2 from 0.2 to 3.0 with an
incremental of 0.4. Then we cluster the simulated data set
using the one-stage ORICC algorithm. For the one-stage
ORICC algorithm, we consider eleven candidate inequal-
ity profiles C0 – C10. Note that the cyclical profile C∧∧ is
not included in the candidate profiles.

Then we use Rand's C statistic to evaluate the similarity
between the true cluster assignment and the clustering
results from ORICC. Figure 11 gives Rand's C statistic
from the one-stage ORICC algorithm for different s2 and
cluster sizes of the cyclical profile C∧∧. It shows that the
precision of the one-stage ORICC algorithm as measured
by Rand's C statistic increases for decreasing variance,
and decreases when increasing the cluster size of the
cyclical profile C∧∧. The cluster precision is however
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always greater than 80%, thus suggesting that the one-
stage ORICC algorithm is very stable.

Simulation 4
In the fourth simulation, we further examine the
robustness of the ORICC algorithm. We consider the

scenario where a true profile is not explicitly included in
the candidate profiles but maybe viewed as a special case
of a more flexible candidate profile. Let the true
inequality profile be

C∧∧ ≤ ≥ ≤ ≥ ≤ = − − −: , ( . , , . , . , . , . ).m m m m m m m1 2 3 4 5 6 0 5 1 0 5 0 5 0 5 0 5
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Simulation 2: The simulated eleven clusters when M = 5, s = 1 and cluster size = 100.
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We generate a data set containing 2000 genes from this
profile. At each time point t, we generate M replicates for
each gene's expression level from normal distributions
with means μt and variance 0.5. Then, we consider
candidate profiles being C1, C2, C4 and C9 plus the profile
C⊥ and cluster the simulated data using the one-stage

ORICC algorithm. Note that the set of candidate profiles
does not contain the true one C∧∧, but C∧∧ may be viewed
as a special case of C⊥. Let g⊥ denote the proportion of
genes clustered to the profile C⊥, and define the detection
error as 1 - g⊥. The simulation results are summarized in
Figure 12. It shows that the detection error decreases
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Figure 7
Simulation 2: Temporal profiles for clusters from the ORICC analysis.
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rapidly as the number of replicates M increases. With 5
replicates, the detection error is below 30%, and with 10
replicates, it goes down to below 5%. This indicates that it
is quite safe to apply the ORICC algorithm even if some
true profile is missing from the candidate profiles but a
more comprehensive profile is considered.

Application to breast cancer cell line data
Next, we apply the ORICC algorithm to log-transformed
relative expression data from a breast cancer cell line
microarray study in [28]. The same data set was also
analyzed by Peddada et al. [1]. The experimentwas done as
follows. First, theMCF-7 breast cancer cell line was treated
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Simulation 2: Temporal profiles for clusters from Peddada's method.
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with 17b-estradiol or ethanol (vehicle control). Then,
samples were harvested at 1, 4, 12, 24, 36 and 48 hours
after treatment. At each time point, M = 8 replicate arrays
were prepared with each array consisting of G = 1901
genes. Similar as in [1], we assumed for each gene that the
variance of the log relative expression was homoscedastic
over time, and consider the following 10 candidate
profiles for clustering: monotone decreasing, C1;

monotone increasing, C2; four up-down profiles with
maxima at 4, 12, 24, 36 hours, C3 – C6, respectively; and 4
down-up profiles with minima at 4, 12, 24, 36 hours, C7 –

C10, respectively. Genes matched to these profiles will be
regarded estrogen responsive.

The original analysis in [28] used a simple confidence
interval approach [42], and identified 105 genes that
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Figure 9
Simulation 2: Temporal profiles for clusters from Wang's method.
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demonstrated estrogen responsive expression. From the
one-stage ORICC analysis, we finally had 981 genes in the
10 clusters, with 68 inC1, 24 inC2, 76 inC3, 44 inC4, 97 in
C5, 72 in C6, 35 in C7, 98 in C8, 409 in C9, and 58 in C10.
Due to limitation of space, we only present the top 50

genes ranked by the filtering criterion in (9) (Additional
file 1). The last column in Additional file 1 indicates
whether the gene was previously identified in [28].
Clustering reliability for each gene is also attached. Note
that these 50 genes come from only nine of the 10 clusters,
with none from C2. Figure 13 presents the estimated
profiles of these 50 genes from the order-restricted MLE.
Of the 105 genes identified in [28], 44 are among our top
50, 82 are amongour top 100, 94were amongour top 150,
and 101 were among our top 200. Most of the 44 genes in
the top 50 selected in common are involved in cell cycle
progression and DNA replication reflecting the known
sensitivity of MCF-7 cells to estrogen. Among the six genes
identified by our ORICC algorithm but not in [28]
(denoted by dashed lines in Figure 13), two have quite
high clustering reliability. The methylmalonyl Coenzyme
A mutase (Clone ID 35468 in C9) has reliability 0.9967,
and the deoxythymidylate kinase (Clone ID489092 inC5)
has reliability 0.7800. Both genes are known specific to the
metabolic process, and hence are very likely responsive to
the metabolism of estrogen when overdosed estrogen are
supplied to the cell. For example, the methylmalonyl
Coenzyme A mutase could be involved in the breakdown
of estradiol into smaller metabolic fragments. However,
this gene was not reported in the top 50 list by Peddada et
al. [1]. Estimated profiles in Figure 13 suggests this gene
matches very well with the candidate profile C9. An
interesting phenomenon about the deoxythymidylate
kinase is that this gene actually corresponds to two spots
on the microarray chips (Clone IDs 489092 and 248008).

Figure 10
Simulation 2: Temporal profiles for clusters from the
STEM analysis. The black curves are pre-specified model
profiles.
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Simulation 3: Clustering precision of the one-stage
ORICC algorithm. Numbers in the cells are Rand's C
statistics. The intensity of the color corresponds to the
magnitude of the number as shown by the legend. The
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The original analysis in [28] was only able to identify one
of them (Clone ID 248008) but not the other, whereas our
method identifies both in the same cluster with high
clustering reliability.

In [1], Peddada et al. reported that 39 genes in the top 50
were in common with the 105 genes selected in [28]. Our
ORICC result has a good overlap with Peddada's result,
with 32 genes in our top 50 also in the top 50 list reported
in [1]. Peddada et al. discussed in details several newly
identified genes in their top 50, such as replication factors
C4 and C5. Our ORICC analysis also cluster these genes
into the same clusters, but they are not in our top 50 list
due to relatively low clustering reliability, with replication
factor C4 ranked 75 and replication factor C5 ranked 148.

We further applied STEM andWang's method on the breast
cancer cell line data. Table 1 reports Rand's C statistics
among results from four clustering methods. It shows that
the three profile matching algorithms have results more
alike each other, while the unsupervised Wang's method is
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Figure 13
Breast cancer cell line data: Estimated profiles of the top 50 genes. Curves are given by the order-restricted MLE of
mean log expression ratios. Dashed lines indicate newly identified genes.

Table 1: Rand's C statistics among four clustering methods in the
breast cancer cell line example.

ORICC Peddada Wang STEM

ORICC 1.0000 0.7767 0.6313 0.7142
Peddada 0.7767 1.0000 0.5948 0.7694
Wang 0.6313 0.5948 1.0000 0.6025
STEM 0.7142 0.7694 0.6025 1.0000

A larger value indicates more overlap between two clustering results.
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less similar to the rest. This observation can also be seen in
the temporal profiles of the clusters given by four different
methods (Figures 14, 15, 16 and 17). While ORICC and
Peddada's method give ten clusters plus the 'flat' cluster,
Wang's method identifies seven clusters, and STEM reports
twelve significant clusters.

Discussion
In time-course microarray experiments, the ability to
exploit the temporal ordering information may be

especially valuable because genes whose expression levels
change over time may be involved in the same cellular
process or belong to the same regulatory pathway. Making
use of the valuable ordering information can improve
inference. Our proposed ORICC algorithm utilizes the
temporal ordering information in clustering time-course
microarray data using order-restricted maximum like-
lihood, while most existing clustering methods either can
not incorporate the temporal information or require long
time series to perform reliable nonparametric smoothing,
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Figure 14
Breast cancer cell line data: Temporal profiles of clusters from the ORICC analysis. Curves are given by
connecting the observed log expression ratios at different time points.
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e.g. spline smoothing, though most time-course micro-
array data are short time series. In our method, the
temporal ordering information is exploited through a set
of pre-defined candidate expression profiles given by
inequality constraints among the mean expression levels
at different time points. By viewing each candidate profile
as a potential model for the data and let each profile

represent a cluster, we transform the clustering problem
into a model selection problem. Using an ORIC function,
we decide the best matched profile for each gene and
hence determine the gene's clustering membership.
Peddada et al. [1] instead performed a likelihood based
test to decide the best matched profile. However, a
bootstrap procedure is needed to decide the threshold
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Figure 15
Breast cancer cell line data: Temporal profiles of clusters from Peddada's method. Curves are given by connecting
the observed log expression ratios at different time points.
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value on the test statistic, which makes Peddada's method
computationally very intensive.

In many situations, field researchers can have good ideas
on defining the inequality profiles. For example, when
studying the gene expression patterns for disease onset. It
is easy to postulate that gene expressions tend to go up
before the disease onset and then go down after certain
treatment is given. So, the inequality constraints allow an
easy adoption of a prior knowledge into the analysis,
whereas existing methods usually can not take such
information into consideration. In addition, when
inequality constraints are given, the order-restricted MLE
has some optimal properties and universally dominates
the unrestricted MLE [43]. Moreover, the candidate
profiles are defined only based on ranks instead of the
numerical value of the mean expression levels, hence our
model specification is robust to small perturbation in the
data. This feature is especially valuable in microarray
studies since it is well known that microarray data are
quite noisy. Furthermore, the rank-based specification is
often closer to the real meaning of 'coexpression' that
refers to two genes' expression levels changing in the same
direction instead of with the same magnitude.

In this paper, we present our algorithm under the context of
clustering time-course microarray data. Actually, it can be
applied to data from any experimentwith ordered treatment
or conditions, such as dose-response microarray experi-
ments where the dose levels provide the ordering.

Our current ORICC algorithm is based on order-restricted
MLE for gene expressions with a constant variance
through time. It can be generalized to handle situations
where the variances change or are subject to order
restrictions themselves. In such situations, the estimation
of mean expression levels outlined in this paper can be
modified according to the approach in [44]. However, it
remains a subject for future investigation to modify the
definition of the model complexity p(l) (8) accordingly.

Conclusion
We developed a new clustering algorithm, ORICC, for short
time-course microarray data, by taking a model selection
approach in order-restricted statistical inference. Our
method clusters genes into clusters represented by candidate
profiles defined through inequalities among mean expres-
sion levels at different time points. A newly proposed
information criterion function is used to determined the
cluster assignment. Compared with a previous clustering
method by Peddada et al. [1] that also uses order-restricted
inference, our method is computationally much more
efficient and provides an assessment of clustering reliability.

Figure 16
Breastcancercell linedata:Temporalprofilesofclusters
from the STEM analysis. Curves are given by connecting
the observed log expression ratios at different time points.
And the black curves are pre-specified model profiles.
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Figure 17
Breast cancer cell line data: Temporal profiles of
clusters from Wang's method. Curves are given by
connecting the observed log expression ratios at different
time points.

BMC Bioinformatics 2009, 10:146 http://www.biomedcentral.com/1471-2105/10/146

Page 18 of 20
(page number not for citation purposes)



Simulation studies indicate that the ORICC algorithm
possesses good clustering accuracy when a moderate
number of replicate arrays are available, and competes
well with other existing clustering methods, such as [2] and
[3]. Real data applications also indicate that ourmethod can
identify interesting genes that some correlation-based
methods have failed to identify.

Methods
Order-restricted maximum likelihood estimation
Here, we briefly present the order-restricted MLE under
simple order (3) and umbrella order constraints (4), which
are needed for ORICC analysis in our simulation and real
data example. For more general results, we refer to [29,45].
Suppose that yti's independent observations from normal
distributionswith unknownmeans μt and variances vt for t =
1, ..., T and i = 1, ..., nt. Then the data log-likelihood is
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When assuming the variances v are known, we have the
order-restricted MLE of μ as
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The maximum log-likelihood under the l-th candidate
profile is then obtained by plugging in the correspond-
ing order-restricted MLE into (11).

If the variances v are unknown, we need to impose the
assumption v1 = v2 = ... = vn = v. In microarray data, this
assumption is reasonable after the data are properly
normalized. Now, the data log-likelihood is
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Under this situation, the order-restricted MLE of μ can be
obtained similarly as in the known variance case by
letting wt = nt instead of wt = nt/vt. And the MLE of v is then
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Again, the maximum log-likelihood for the l-th candi-
date profile is then obtained by plugging in the
corresponding order-restricted MLE into (12).

Availability and requirements
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