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ABSTRACT

A complex organ contains a variety of cell types,
each with its own distinct lineage and function. Un-
derstanding the lineage and differentiation state of
each cell is fundamentally important for the ultimate
delineation of organ formation and function. We de-
veloped SLICE, a novel algorithm that utilizes single-
cell RNA-seq (scRNA-seq) to quantitatively measure
cellular differentiation states based on single cell en-
tropy and predict cell differentiation lineages via the
construction of entropy directed cell trajectories. We
validated our approach using three independent data
sets with known lineage and developmental time in-
formation from both Homo sapiens and Mus muscu-
lus. SLICE successfully measured the differentiation
states of single cells and reconstructed cell differen-
tiation trajectories that have been previously experi-
mentally validated. We then applied SLICE to scRNA-
seq of embryonic mouse lung at E16.5 to identify
lung mesenchymal cell lineage relationships that
currently remain poorly defined. A two-branched dif-
ferentiation pathway of five fibroblastic subtypes was
predicted using SLICE. The present study demon-
strated the general applicability and high predictive
accuracy of SLICE in determining cellular differen-
tiation states and reconstructing cell differentiation
lineages in scRNA-seq analysis.

INTRODUCTION

Organogenesis is dependent on the progression of cells
from less to more differentiated states (1). Cell fate de-
cisions during differentiation are largely operative at the
level of individual cells. Each cell has its own dynamically
programed lineage trajectory path that is influenced by its
developmental stages, epigenetic status, cell cycle, biologi-
cal function and microenvironment (2,3). Determining the

differentiation/stemness states of individual cells enables
prediction of the dynamic genetic networks regulating cellu-
lar activities during organogenesis, repair and disease. Tra-
ditionally, the status of cell differentiation or stemness is de-
termined by the expression of known differentiation mark-
ers (1) or by morphological features of cells (4,5) (e.g. size
and shape). As such, these measurements rely on previ-
ous characterizations of known cell types, which may not
be suitable for the study of novel or dynamically changing
cell populations during organogenesis or in disease. Recent
advances in single-cell RNA-seq (scRNA-seq) provide the
feasibility of measuring the cellular heterogeneity and dy-
namic changes of individual cells during organ formation
(6–8). Several algorithms, e.g. Wanderlust (1), Monocle (7),
SCUBA (9) and Waterfall (10), have been developed to re-
construct lineage relationships of single cells from scRNA-
seq data. However, these methods pseudotemporally clas-
sify cells based on transcriptome similarity rather than in-
dividual cell states. As such, they still require the use of ex-
ternal knowledge, such as time information, cell identity or
marker gene expression, in order to determine the start and
end points of dynamic processes and the directions of in-
ferred pseudotemporal cell orderings.

We developed SLICE (Single Cell Lineage Inference
Using Cell Expression Similarity and Entropy), a novel
method for quantitatively measuring differentiation states
of individual cells and reconstructing their lineages from
scRNA-seq data. SLICE consists of two major functions:
measuring cell differentiation states based on the calcula-
tion of single cell entropy (scEntropy) and predicting cell
differentiation lineages by reconstructing cell trajectories
directed by scEntropy-derived differentiation states (Figure
1). Entropy has been widely used in statistical mechanics,
thermodynamics, and information theory as a measure of
disorder or uncertainty in a system. Entropy is also a use-
ful measure of cellular heterogeneity: cells with low entropy
exhibit narrow, well-defined patterns of mRNA and protein
expression (under strict regulatory constraints), whereas
those with high entropy have broad, diverse patterns of ex-
pression (under weaker regulatory constraints and therefore
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Figure 1. The design of the SLICE algorithm. (A) The schematic flow of the SLICE algorithm. (B) The schematic flow of scEntropy.

have multiple potentials) (11). Here, we propose that en-
tropy inversely correlates with cell differentiation state: high
entropy is associated with higher functional uncertainty and
more differentiation potential (cell stemness), while low en-
tropy is associated with more differentiated states with well-
defined cell fates and functionalities (Figure 1B). Here, the
term ‘entropy’ is not in reference to the noise or disorder
in gene expression, but rather refers to the multiple poten-
tials or uncertainty in a biological system. The algorithm
assumes that cell-selective gene expression patterns during
organogenesis are directly related to the diversity of active
cellular functions. Undifferentiated cells express genes as-
sociated with diverse and heterogeneous functions in or-
der to maintain multiple potentials of possible cell fate de-
cisions. These cells thus maintain high scEntropy that de-
rives from a more uniform distribution of functional activa-
tion, in which the activation probabilities of all functional
classes are relatively equally distributed. In contrast, more
fully differentiated cells express genes with restricted cel-
lular functions and cell type commitment, thus exhibiting
a skewed distribution of functional activation and a min-
imized scEntropy. Therefore, scEntropy quantifies the dif-
ferentiation state of a given cell by measuring the uncer-
tainty in the activation of its cellular functions. To calcu-
late scEntropy, SLICE first computes pairwise gene func-
tional similarities by applying Kappa statistics (12) to Gene
Ontology annotations of the human or mouse genome, and
then partitions genes into distinct functional clusters based
on their functional similarity. The association between the
functional clusters and gene expression in each single cell
is determined using a Bayesian inference model with multi-
nomial Dirichlet distribution as a prior to estimate the pos-
terior probability distribution of the functional activation.

The differentiation state of a cell represented by the degree
of uncertainty in functional activation is then quantified by
the entropy of its cell-specific posterior probability distribu-
tion. Using the differentiation states of individual cells mea-
sured by scEntropy, SLICE identifies relatively stable cell
states, defined as the centroids of the cells with local mini-
mum entropies, and then predicts transitional paths follow-
ing entropy reduction between stable cell states to recon-
struct cell lineages (Figure 1A). First, a cell–cell network
is constructed with edges weighted by cellular expression
profile similarity and nodes (cells) weighted by scEntropy.
Neighboring cells in the network are grouped into cell clus-
ters using a graph-based community detection algorithm,
and local minimums within individual cell clusters are iden-
tified as relatively stable cell states in the network. Next,
SLICE explicitly infers a lineage model from the data, rep-
resenting the differentiation pathway among the stable cell
states, and reconstructed the cell transitional path between
two stable states by exploring a shortest path in the net-
work, starting from the stable state with higher scEntropy,
through a series of related cells, to the one with lower scEn-
tropy.

To validate the accuracy and robustness of SLICE pre-
dictions, we applied SLICE to three independent scRNA-
seq data sets (7,13,14) with known lineage and develop-
mental time information. Results showed that scEntropy
decreased with the progression of cellular differentiation
stages; and the SLICE algorithm successfully reconstructed
entropy-directed cell transitional paths that have been pre-
viously experimentally validated (7,13,14). We then applied
SLICE to scRNA-seq data from fetal mouse lung to identify
novel lung mesenchymal cell lineage relationships. Among
five lung mesenchymal subsets identified in our previous
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scRNA-seq study (15,16), we determined the relative order
of cell differentiation status and identified a two-branched
lineage model for lung fibroblast differentiation at the sac-
cular phase of lung morphogenesis. SLICE offers unique
features and significant improvements over existing meth-
ods of in silico lineage mapping, allowing the determination
of cell differentiation states and differentiation lineage paths
without the use of any external information. Results of this
study demonstrated the general applicability and high pre-
dictive accuracy of SLICE in determining cellular differen-
tiation states and reconstructing cell differentiation lineages
in scRNA-seq analysis.

MATERIALS AND METHODS

SLICE consists of two major functions: quantitatively mea-
suring cell differentiation state using single cell entropy and
in silico reconstructing single cell lineages.

Single cell entropy (scEntropy) calculation

To calculate scEntropy, SLICE assumes that cellular gene
expression patterns during organogenesis are directly re-
lated to the diversity of cellular functions. The scEntropy
measurement derives from the level of uncertainty in the
activation of cellular functions as reflected by the gene ex-
pression in individual cells, and it reflects the differentia-
tion states of single cells. According to Boltzmann’s entropy
equation H = kB log W (where kB is the Boltzmann con-
stant), the entropy (H) of a system positively correlates with
the multiplicity (W) of the system, or the number of mi-
crostates corresponding to a given macrostate of the sys-
tem. When the microstates of the system do not occur with
equal probabilities, Boltzmann’s equation can be rewritten
to express entropy in terms of a probability distribution of
microstates, i.e., H = −kB

∑W
i=1 pi log pi , in which pi is the

occurring probability of microstate i. A system with a flat-
ter probability distribution has higher entropy, and a system
with a more skewed probability distribution has lower en-
tropy. SLICE applies this principle to calculate the entropy
of single cells based on their probability distributions of
functional activation. Less differentiated cells express genes
with more diverse and heterogeneous functions to maintain
the potential for multiple possible cell fate decisions, result-
ing in flatter probability distributions of functional activa-
tion and higher entropy. In contrast, more fully differenti-
ated cells primarily express genes associated with a specific
cell type commitment, therefore exhibiting a skewed proba-
bility distribution of functional activation, and establishing
a minimized scEntropy. In this way, the scEntropy of a cell
corresponds to the differentiation state of the cell.

Let S be the set of single cells from an scRNA-seq experi-
ment, G be the set of all annotated genes detectably mea-
sured in the experiment, and Ri j ≥ 0 be the RNA abun-
dance (e.g. measured by FPKM, RPKM, or TPM values)
of gene i ∈ G in cell j ∈ S. Given an abundance threshold
θ > 0, we consider that a gene i ∈ G is expressed in a cell
j ∈ S if Ri j ≥ θ . Thus, Gθ

j = {i |i ∈ G, Ri j ≥ θ} constitutes
the set of genes expressed in cell j and Gθ = ∪ j∈SGθ

j is the
set of genes expressed in at least one cell in S.

The scEntropy for each cell j ∈ S, denoted by Hj, is com-
puted as an expected value (E) according to

Hj = E
[
−

∑m

k=1
pk

j (B, F) log
(

pk
j (B, F)

)]

in which B is a bootstrap sample of Gθ , F = {F1, . . . , Fm}
is a partition of B into m distinct functional groups, and
pk

j (B, F) denotes the activation probability of functional
group Fk ∈ F based on the expression pattern of B in cell
j ∈ S. The more genes from Fk expressed in cell j, the higher
the probability that Fk is activated by the gene expression
in j. Assuming that the activation probabilities p1

j , . . . , pm
j

follow a multinomial distribution with a Dirichlet prior pa-
rameterized by α1, . . . , αm, the Bayesian estimate (17) of the
posterior probabilities is given by

pk
j (B, F) = ck

j (B, F) + αk

Cj (B, F) + A
, k ∈ {1, . . . , m}

in which ck
j (B, F) denotes the number of genes from func-

tional group Fk expressed in cell j that were included in
bootstrap sample B, Cj (B, F) = ∑m

k=1 ck
j (B, F), and A =∑m

k=1 αk. Cj (B, F) denotes the total number of genes from
all functional groups expressed in cell j that were included
in the bootstrap sample B, so Cj = |Gθ

j ∩ B|. The parame-
ters of the prior α1, . . . , αm are set to be proportional to the
number of genes in each functional group in order to reduce
the impact of the size imbalance of the functional groups on
the entropy calculation.

αk = |Fk|
/∑m

t=1
|Ft|, k ∈ {1, . . . , m}

To obtain F from B, SLICE first retrieves the func-
tional annotations associated with each gene in B. In the
present work, we used the DAVID Functional Annota-
tion(12) (subset: GOTERM BP FAT) dataset for calcula-
tions. The GO FAT database, developed as part of the An-
notation Tool of the DAVID suite of bioinformatics re-
sources terms (18), is derived from GO slim with addi-
tional filters to filter out the broadest terms so that they
will not overshadow the more specific terms. These annota-
tions are then used to compute κ(x, y) ∈ [0, 1], ∀x, y ∈ B,
the functional similarity between two genes x and y, us-
ing Kappa statistics (12). The functional similarity measure-
ment using Kappa statistics was proposed by Huang et al.
(18), and implemented in DAVID Bioinformatics Resource
(https://david.ncifcrf.gov/) to measure gene pair functional
similarity and identify functional clusters of genes. Based on
the genome-wide gene-to-gene functional similarity matrix,
SLICE then uses a K-means clustering algorithm to parti-
tion B into m distinct functional groups F with d(x, y) =
1 − κ(x, y) as the distance measure.

In our analyses of all the four datasets, scEntropies
were calculated using the following parameterization: θ =
1, |B| = 1000, m = √|B|/2, and 100 bootstrap samples. Ri-
bosomal genes were excluded from the scEntropy calcula-
tion.

https://david.ncifcrf.gov/
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Single cell lineage reconstruction

Cell differentiation is likely to transition through a sequence
of intermediate states on the way to becoming fully mature.
Single cells isolated at any particular developmental time
may yield a mixture of cells at different stages in an un-
synchronized manner: some cells are in more stable states
while others may be in a transitional phase from one sta-
ble state to another. Multiple stable states may co-exist in
a given scRNA-seq dataset. Using the differentiation states
of individual cells measured by scEntropy, SLICE can un-
biasedly determine the stable states in a given scRNA-seq
dataset and reconstruct cell differentiation lineages by dis-
covering entropy directed cell trajectories among the stable
states. This is achieved through the following steps: (i) stable
state identification, (ii) lineage model inference and (iii) cell
trajectory reconstruction. A detailed schematic flow of us-
ing SLICE for lineage reconstruction can be found in Sup-
plementary Figure S1.

Stable state identification. To identify stable states in a
given scRNA-seq dataset, SLICE first divides cells into dis-
tinct clusters, representing distinct cell states or cell types
in the dataset, and then identifies a closely-located core cell
set with local minimum scEntropies within each cluster to
define the stable state for the cluster.

We implemented two independent approaches for cell
cluster identification. The first one is a graph based ap-
proach, in which we first construct a cell–cell network with
edges weighted by cellular expression profile dissimilarity
and nodes (cells) weighted by scEntropy, and then use a
network community detection algorithm to partition the
nodes in the network into distinct cell communities (clus-
ters). We consider the set of single cells S as points in a re-
duced expression space obtained from a dimension reduc-
tion analysis (e.g. principal component analysis) of the full
expression space defined by all genes detectably measured in
scRNA-seq experiment. From this space, SLICE first con-
structs a complete weighted graph, where vertices represent
cells, and edges are weighted by the Euclidean distance be-
tween cells in the expression space. Next, SLICE finds T(S),
the minimum spanning tree on the complete graph. If S
contains a sufficient number of cells sampled without er-
ror from the cellular differentiation process underlying S,
T(S) is an accurate polygonal reconstruction of the differ-
entiation process (7). Nevertheless, most current scRNA-
seq datasets were under-sampled. For example, the C1 Flu-
idigm only captures 96 cells per run. Due to this sampling
issue in scRNA-seq, some transitional states between cells
may be missing. Therefore, SLICE performs a local wiring
procedure to extend the tree T(S) into a cell-cell network
N(S) by connecting cells in T(S) that have distances smaller
than a wiring threshold ϕ, thus rescuing cells representing
potentially missed transitions due to the aforementioned
cell sampling issue. By assigning the differentiation states
of cells (estimated using scEntropy) as the node weights in
N(S), the cell-cell network N(S) approximates the differen-
tiation landscape underlying S. After constructing the cell-
cell network N(S), the Louvain algorithm (19) was utilized
to partition the cells in N(S) into multiple non-overlapping
cell communities (clusters).

Alternatively, SLICE implemented a clustering based ap-
proach to partition cells into distinct groups. In this ap-
proach, we also consider the set of single cells S as points
in a reduced expression space, and apply the Partitioning
Around Medoids (PAM) algorithm (20) to divide cells into
distinct clusters. The number of clusters can be determined
by Gap statistic (20,21). We utilized the implementation of
PAM and Gap statistic in the R ‘cluster’ package (https:
//cran.r-project.org/web/packages/cluster). This alternative
approach is independent of the local wiring procedure and
graph construction, providing users with more options to
better fit individual datasets.

After identifying cell clusters, SLICE finds a closely-
located core cell set with local minimum scEntropies within
each cluster and identifies the centroid of the core cell
set as a stable state. The scEntropy of a constructed sta-
ble state is the mean scEntropy of the core cells that de-
fine the stable state. Similarly, the expression of a gene in
a stable state is the mean expression of the gene in the
core cells that define the stable state. For the graph based
approach, SLICE uses the Linear Prize-Collecting Steiner
Tree (LPCST) problem (22) to identify the core cells in a
cell cluster. Given an undirected graph with vertices associ-
ated with non-negative profits (node-prizes) and edges asso-
ciated with non-negative costs, the LPCST problem finds a
connected subgraph that maximizes a profit metric defined
as the sum of all node-prizes taken into the solution minus
the costs of the edges needed to establish the network. Here,
to detect the core cell set in a cell cluster, SLICE considers
the sub-graph of the cell cluster in N(S) as the undirected
graph in LPCST. The profits associated with the cluster cells
(vertices) are set to be inversely proportional to their scEn-
tropies, and the profit of a cell is set to 0 if the scEntropy
of the cell is higher than the η quantile of the scEntropies
of all cells in the cluster (η = 0.25 in our current analy-
ses). SLICE then utilizes a fast heuristic approach imple-
mented in the Bioconductor ‘BioNet’ package (23) to find
a subnetwork that represents an approximated solution to
the LPCST problem. The core cell set of the cluster is thus
comprised of the cells in the subnetwork. For the clustering
based method, SLICE uses the cells with top 25% of low
entropy in each cluster as the core cell set.

Lineage model inference. Once we identified all the stable
states, SLICE explicitly infers a lineage model for the data
by constructing a directed minimum spanning tree among
the stable states. This step facilitates the uncovering of het-
erogeneous branched lineage relationships among individ-
ual cells in a scRNA-seq dataset. Let � = {ψ1, . . . , ψm} be
the set of identified stable states. SLICE constructs a com-
plete weighted graph, where vertices represent stable states,
and edges are weighted by the Euclidean distance between
stable states in the reduced expression space. The directions
of the edges are determined by scEntropy. According to
Waddington’s differentiation landscape, stable states with
higher scEntropies correspond to shallower valleys in the
landscape and represent less differentiated cell types. In con-
trast, stable states with lower scEntropy are the deeper val-
leys in the differentiation landscape and represent more dif-
ferentiated cell types. Since we focus on inferring differenti-
ation lineage model in this work, we keep the edges from

https://cran.r-project.org/web/packages/cluster
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the stable states with higher scEntropy to the ones with
lower scEntropy. SLICE then infers the differentiation lin-
eage model L(�) by finding the minimum spanning tree on
the complete directed graph of �. One can also use SLICE
to infer a dedifferentiation lineage model by setting the pa-
rameter to reverse the directions of edges.

Lineage dependent cell transitional path reconstruction.
SLICE implemented two approaches to reconstruct the
cell transitional paths: a shortest-path based approach and
a principal curve based approach. Let � = {ψ1, . . . , ψm}
be the set of stable states, L(�) be the inferred lineage
model, and ψx and ψy be any two stable states where the
scEntropy of ψx is higher than the one of ψy, SLICE
defines the differentiation lineage from ψx to ψy as the
shortest path from ψx to ψy in L(�), denoted by Pxy =
(ψx, ψ(1), ψ(2), . . . , ψ(k), ψy), where ψ(1), ψ(2), . . . , ψ(k) are
the intermediate stable states in the path.

Next, we used a shortest-path approach to reconstruct
the cell transitional path underlying the differentiation
lineage from ψx to ψy. We first identify the cell transitional
path between each pair of two successive stable states
ψ(q) to ψ(q+1) in Pxy as the shortest path from ψ(q) to
ψ(q+1) in T(S) or N(S) that we constructed in the ‘stable
state identification’ step, and then we concatenate these
individual pairwise transitional paths to form the full cell
transitional path from ψx to ψy. The dynamic expression
profile of a given gene following a specific cell transitional
path is constructed by merging its expression with the
neighboring cells along the path, addressing the high
variance of gene expression in scRNA-seq data. Assume
that the cell sequence (ψx, v1, v2, . . . , vq , . . . , vn, ψy)
represents the cells in the transitional path underly-
ing the differentiation lineage from stable state ψx to
stable state ψy, {v1, v2, . . . , vq , . . . , vn} ⊆ S, and Ri,q
represents the expression of gene i in cell vq in the se-
quence. SLICE first identifies D(q), the nearest neighbors
(distance smaller than a threshold δ) of cell vq in the
path, considers cells in D(q) as replicates of vq , and
then measures the gene expression along the path as
(R̄i,D(x), R̄i,D(1), . . . , R̄i,D(q) . . . R̄i,D(n), R̄i,D(y)) with variance
(var(Ri,D(x)), var(Ri,D(1)), . . . , var(Ri,D(q)), . . . var(Ri,D(n)),
var(Ri,D(y))), where R̄i,D(q) and var(Ri,D(q))are the mean and
variance of {Ri,t|t ∈ D(q)}, respectively. In our analyses, δ
was set to 0.8 quantile of the edge weights of T(S) or N(S);
expression values were increased by 1 and log2 normalized.

Alternatively, SLICE implemented a principal curve
based approach to reconstruct the cell transitional paths.
In this approach, SLICE also defines the differentiation lin-
eage from ψx to ψy as the shortest path from ψx to ψy in
L(�), denoted by Pxy = (ψx, ψ(1), ψ(2), . . . , ψ(k), ψy), where
ψ(1), ψ(2), . . . , ψ(k) are the intermediates stable states in the
path. Then SLICE identifiesSxy ⊆ S, the set of cells in the
cell clusters whose stable states are in Pxy, fit a principal
curve, fxy, through Sxy in the reduced expression space, and
project each cell in Sxy onto the principal curve in order to
assign each cell to a projection index. The cell transitional
path underlying Pxy is reconstructed by ordering cells in Sxy
according to their principal curve projection indexes. The
dynamic expression profile of a given gene following a spe-
cific cell transitional path is constituted by the expression

of the gene in the cells in the transitional path. The fitted
principal curve fxy is a smooth curve that passes through
the middle of Sxy in the reduced expression space in an
orthogonal sense, and the projection index for each cell is
the value λ where fxy(λ) is closest to the cell (24). We used
the R ‘princurve’ package (https://cran.r-project.org/web/
packages/princurve) for principal curve fitting and cell pro-
jection.

Identification of lineage dependent differentially expressed
genes. To identify lineage dependent differentially ex-
pressed genes, SLICE first smoothens the expression pro-
files of each gene using cubic regression splines and fits
to two models (model M1: gene expression changes in the
path; and model M0: gene expression does not change in the
path), assigns a P-value to each gene using the likelihood
ratio test to compare the goodness of fit of the two models,
and then identifies differentially expressed genes as the ones
with high variance and low P-value. The generalized addi-
tive models with integrated smoothness estimation method
(25) is utilized in SLICE for smoothening and model fitting.
In our analyses, lineage dependent differentially expressed
genes were identified using the following criteria: expressed
(> = 1) in at least two cells in the lineage, variance of the fit-
ted expression values greater than or equal to 0.5, and false-
discovery rate adjusted P-value <0.1.

Identification of lineage dependent temporal patterns. Once
we identified lineage dependent differentially expressed
genes, temporal gene expression patterns in a lineage can
be discovered by using a clustering algorithm to divide the
differentially expressed genes into clusters (patterns) based
on their model M1 predicted expression values.

Data sets, mRNA abundance estimates, and cell type/state
assignments

We demonstrated the utility of SLICE using four indepen-
dent scRNA-seq data sets from both Homo sapiens and
Mus musculus. Dataset 1 consists of 101 mouse lung alve-
olar type 2 (AT2) cells collected at four developmental
time points from the embryonic mouse lung, from E14.5
to adulthood (13). Dataset 2 consisted of 266 differentiat-
ing human skeletal muscle myoblasts (HSMM) (7). Dataset
3 consisted of 88 cells from seven stages in human early
embryos (HEE) (14) including oocytes, zygotes, 2-cell em-
bryos, 4-cell embryos, 8-cell embryos, morula and blasto-
cysts. Dataset 4 contained single cells (n = 79) of five pre-
dicted fibroblastic subtypes from mouse lung at E16.5, in-
cluding ‘proliferative mesenchymal progenitor’ cells, ‘inter-
mediate fibroblast 1’ cells, ‘intermediate fibroblast 2’ cells,
‘myofibroblast/smooth muscle-like’ cells, and ‘matrix fi-
broblast’ cells (15,16). The scRNA-seq and cell type infor-
mation of AT2, HSMM, HEE cells were obtained from
Treutlein et al. (13), Trapnell et al. (7), Yan et al. (14), re-
spectively. The scRNA-seq and cell type information of sin-
gle cells from embryonic mouse lung at E16.5 were obtained
from Du et al. (15); Guo et al. (16). The original quality con-
trol, alignment, quantification and cell type assignment of
scRNA-seq data of each dataset were described in the cor-
responding manuscripts.

https://cran.r-project.org/web/packages/princurve
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RESULTS

SLICE predicted differentiation states and lineages of mouse
lung alveolar type 2 cells

We first used the AT2 data set to validate the SLICE al-
gorithm. The scRNA-seq and cell type assignment of AT2
cells from four time points (E14.5, E16.5, E18.5 and adult)
of mouse lung were obtained from Treutlein et al. (13). Cells
(n = 101) with cell type assignments of ‘AT2’, ‘Sftpc+’ or
‘Sftpc+Scgb3a2+’ were selected for SLICE analysis. ERCC
spike-ins were excluded from the analysis. The scEntropies
of AT2 cells were calculated using the method and criteria
as described in the Materials and Methods section. To con-
struct the cell–cell network, SLICE first utilized the follow-
ing criteria to select potentially informative genes, i.e. genes
(n = 2973) expressed (FPKM > 1) in at least 30% of the
cells and with a non-zero variance (greater than 0.5 variance
in log2-transformed FPKM). Next, a principal component
analysis was performed using the log2-transformed expres-
sion values of the selected genes, and the first two principal
components were used to measure the Euclidean distance
between cells for the network construction. The local wiring
threshold ϕ was set to 0.5 fraction of the maximum weight
of the edges in the minimum spanning tree.

We found that the scEntropy of differentiating AT2 cells
consistently decreased along the four developmental time
points from embryonic day E14.5 to adulthood (Figure 2A).
When AT2 cells were ordered by their scEntropy in de-
scending order, lung epithelial progenitor cell markers, e.g.
Sox11 and Sox9, decreased, whereas mature AT2 markers,
e.g. Sftpb and Sftpc, increased (Figure 2B). Differentiation
stages of AT2 cells determined by scEntropy aligned well
with the known developmental times and the expression
profiles of the associated RNA markers. To predict AT2 cell
lineage transitions, SLICE first divided neighbouring cells
into four clusters, each mainly containing cells from dif-
ferent time points; and the stable state in each cluster was
also identified (Figure 3B). Then, SLICE inferred the lin-
eage model that contains a single lineage (Figure 3C) and
reconstructed its corresponding cell transitional path (Fig-
ure 3D) from the cluster C1, the stable state of which had
the highest scEntropy, through cluster C2 and C3, to clus-
ter C4, the stable state of which had the lowest scEntropy.
Along the predicted path, the expression of AT2 cell differ-
entiation markers, Sftpc, Sftpb, Napsa and Slc34a2, was in-
creased (Figure 3E), while the expression of progenitor cell
markers, e.g. Sox11 and Sox9, and cell cycle genes, Foxm1,
Bub1 and Top2a, was decreased (Figure 3E), indicating that
the reconstructed transitional path represents the progres-
sion of AT2 cell differentiation.

SLICE predicted differentiation states and lineages of single
cells from differentiating human skeletal muscle myoblasts

We then validated the utility of SLICE using human skele-
tal muscle myoblasts (HSMM). The scRNA-seq of HSMM
cells (n = 271) was obtained from Trapnell et al. (7). After
evaluating the number of expressed genes (FPKM > 1) in
each cell, we detected five cells (‘T0 CT A11’, ‘T0 CT E10’,
‘T0 CT C09’, ‘T48 CT C02’, ‘T48 CT H04”) as outliers
with a relatively low number of expressed genes. Outliers

were defined as values lower than the 0.75 fraction of the 0.1
quantile of all values. The remaining 266 HSMM cells were
used in the SLICE analysis. The scEntropies of HSMM
cells were calculated using the method and criteria as de-
scribed in the Methods section. To construct the cell-cell
network, SLICE first performed a principal component
analysis using the log2-transformed expression values of a
set of marker genes known to be important to the myoge-
nesis process (Supplementary Table S1), and then used the
first two principal components to define the Euclidean dis-
tance between cells for the network construction. The local
wiring threshold ϕ was set to the maximum weight of the
edges in the minimum spanning tree.

The differentiation states and lineages of HSMM cells
predicted by SLICE were consistent with previous anal-
yses based on Monocle (7). The ‘Proliferating cells’ (n =
96) assigned by Monocle (7) were associated with higher
scEntropy, while the previously defined ‘differentiating my-
oblasts’ (n = 127) were associated with lower scEntropy
(Figure 2C). Four clusters of HSMM cells and the stable
state in each cluster were identified (Figure 4B). Cluster C1
consisted of ‘proliferating cells’, cluster C2 contained both
‘proliferating cells’ and ‘differentiating myoblasts’, cluster
C3 was comprised of ‘differentiating myoblasts’, and cluster
C4 mainly consisted of the ‘interstitial mesenchymal cells’
previously defined by Monocle (7). SLICE inferred a two-
branched lineage model (Figure 4C). Since the cluster C4
mainly contained contaminated cells that were excluded af-
ter pseudotime inference in the original analysis (7), we also
only analyzed the lineage from cluster C1, through cluster
C2, to cluster C3 cells. The cell transitional path following
this lineage was reconstructed (Figure 4D). Expression pat-
terns of myogenic differentiation markers along the SLICE-
predicted transitional path (left, Figure 4E) largely repro-
duced the patterns according to pseudotime using Monocle
(7) (right, Figure 4E), suggesting that the path obtained by
entropy-reduction predicted the differentiation process of
HSMM cells from proliferating to more differentiated my-
oblast cells.

SLICE inferred differentiation states and lineages of single
cells from human early embryo development

Next we tested SLICE using single cells from very early
stages of human embryo development. The scRNA-seq of
single cells (n = 90) from seven stages of human early em-
bryonic development, including oocyte (n = 3), zygote (n
= 3), 2-cell embryo (n = 6), 4-cell embryo (n = 12), 8-cell
embryo (n = 20), morula (n = 16) and late blastocyst (n
= 30), were obtained from Yan et al. (14). Two cells from
the morula stage, ‘Morula #1 – Cell #3’, ‘Morula #1 – Cell
#8’, were excluded as outliers from our analysis since they
were consistently clustered with cells from the late blasto-
cyst stage in both the original analysis (14) and our previous
analysis (16). The scEntropies of HEE cells were calculated
using the method and criteria as described in the Methods
section. To construct the cell–cell network for the HEE cells,
SLICE first utilized the following criteria to select poten-
tially informative genes, i.e. genes (n = 10 601) expressed
(RPKM>1) in at least 30% of the cells and with a non-
zero variance (>0.5 variance in log2-transformed RPKM).
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Figure 2. Single cell entropy (scEntropy) measures differentiation states of individual cells. (A) The scEntropies of lung alveolar type 2 (AT2, n = 101)
cells significantly decreased along with mouse lung development. The cells were isolated from E14.5, E16.5, E18.5 and adult mouse lung (13). (B) The
decrease of scEntropies of AT2 cells correlates with the progression of AT2 differentiation. The expression patterns of early progenitor markers (Sox9 and
Sox11) and mature AT2 markers (Sftpb and Sftpc) were used to validate the order of scEntropies. (C) The scEntropies of human skeletal muscle myoblast
(HSMM, n = 223) cells significantly decreased during myoblast differentiation. The assignments of cells to proliferating cells (n = 96) and differentiating
myoblast cells (n = 127) were pre-defined by Trapnell et al. (7). (D) The scEntropies of human early embryonic (HEE, n = 88) cells significantly decreased
during human early embryo development. The cell developmental stages were defined by Yan et al. (14). E) The scEntropy measurement of the predicted
fibroblast subtypes from E16.5 mouse lung (FB, n = 79). Fibroblast subtypes were defined by Guo et al. (16); PMP: proliferative mesenchymal progenitor,
IF1: intermediate fibroblast 1, IF2: intermediate fibroblast 2, MyoF: myofibroblast/smooth muscle-like, MFB: matrix fibroblast. In (B), (C), (D) and
(E), orange lines represent the polynomial fits of degree 3 of scEntropies using least squares regression and P-values were obtained using the Analysis of
Variance (ANOVA), with P-value <0.0001 as the threshold for significance.

Next, a principal component analysis was performed us-
ing the log2-transformed expression values of the selected
genes, and the first two principal components were used to
measure the Euclidean distance between cells for the net-
work construction. The local wiring threshold ϕ was set to
0.2 fraction of the maximum weight of the edges in the min-
imum spanning tree.

Starting from zygote stage, the scEntropy of HEE cells
decreased throughout the progression of human embryo de-
velopment (Figure 2D). SLICE identified four distinct cell

clusters and reconstructed an entropy-reduction cell tran-
sition path that represented the progression of the human
early embryo development from zygote to late blastocyst
(Figure 5A–D), a prediction that was validated by the ex-
pression of marker genes associated with the inferred tra-
jectory (Figure 5E).
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Figure 3. SLICE reconstructed the differentiation lineage of mouse lung alveolar type 2 (AT2) cells. (A) Principal component analysis (PCA) of AT2 cells
(n = 101) isolated from E14.5, E16.5, E18.5 and adult mouse lung. Genes (n = 2973) expressed in at least 30% of the cells and with a non-zero variance in
log2-transformed expression were used in the PCA analysis. (B) Four cell clusters and their stable states were identified by SLICE. (C) The lineage model
of AT2 cells during lung development inferred by SLICE. (D) The reconstruction of transitional path from C1→C2 →C3→C4 of AT2 cells. The path was
reconstructed by concatenating pairwise shortest-paths between successive stable states (C1, C2, C3 and C4) in the minimum spanning tree of the cells. (E)
The expression patterns of known markers indicated that the reconstructed trajectory represented the progression of AT2 cell differentiation. In (A)–(D),
sizes of cells were proportional to the max-normalized scEntropies of the cells, and dark-gray nodes represent the detected stable states.

SLICE predicted a two-branched differentiation pathway of
lung fibroblasts at E16.5 mouse

While lineage relationships among pulmonary epithelial
cells are increasingly understood in the developing mouse
(13,26,27), identities and lineage relationships among mes-
enchymal cell populations remain poorly defined. Hierar-
chical relationships, dynamic gene expression patterns and
associated functions of the diverse cell types comprising the
fetal lung mesenchyme remain largely unknown. Here, we
applied SLICE to scRNA-seq of embryonic mouse lung at
E16.5 (15,16) to identify the lung mesenchymal cell lineage
relationships at a developmental stage during which lung
growth and differentiation associated with tissue morpho-
genesis are highly active. Unlike the AT2, HSMM and HEE
datasets, in which cases cell type and developmental time
stages are known, this is a cross-sectional dataset obtained
from single cells isolated from whole lung at a single time
point (E16.5 mouse lung). Since each single cell is a unique
entity and the differentiation states among closely related
individual cells are not synchronous, we believe that single
cells analyzed at a given developmental time, such as the
E16.5 time point in this dataset, will reveal cells represent-
ing distinct differentiation states.

Our previous analyses of scRNA-seq data from E16.5
mouse lung identified three distinct fibroblast subtypes and
two intermediate fibroblasts from a total of 148 lung single
cells, which we termed ‘Proliferative Mesenchymal Progen-
itor’ (PMP, n = 25), ‘Myofibroblast/smooth muscle-like’
(MyoF, n = 16), ‘Matrix Fibroblast’ (MFB, n = 23), ‘In-
termediate Fibroblast 1’ (IF1, n = 3), and ‘Intermediate Fi-
broblast 2’ (IF2, n = 12) (15,16). We termed cells largely
based on the marker expression; the real hierarchical re-
lationship among these cells is unknown. Signature genes
for each cell type were predicted (15,16). The scEntropies
of these FB cells were calculated using the method and cri-
teria as described in the Materials and Methods section. To
construct the cell-cell network for the E16.5 fibroblast cells,
SLICE performed a principal component analysis using the
log2-transformed expression values of the signature genes
predicted by the original analysis (15,16) for the five fibrob-
last subtypes and with a high variance (greater than 8 vari-
ance in log2-transformed FPKM) (n = 252, Supplementary
Table S1), and then used the first two principal components
to measure the Euclidean distances between cells for the net-
work construction. The local wiring threshold ϕ was set to
the 1.2 times of the maximum weight of the edges in the
minimum spanning tree.
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Figure 4. SLICE reconstructed the differentiation lineage of single cells from human skeletal muscle myoblasts. (A) Human skeletal muscle myoblast
(HSMM) cells (n = 266) in the two-dimensional space derived from a principal component analysis using a set of marker genes (Supplementary Table S1).
Cell states (indicated by three distinct colours) were defined by the original analysis (7). (B) Four cell clusters and their stable states identified by SLICE.
(C) The lineage model of HSMM cells inferred by SLICE. (D) The reconstruction of transitional path from cluster C1, through cluster C2, to cluster C3 of
HSMM cells. The path was reconstructed by connecting pairwise shortest-paths between successive stable states (C1, C2 and C3) in the cell-cell network.
(E) The expression patterns of myogenic differentiation markers along the reconstructed transitional path (left) were consistent with the patterns based on
pseudotime (right) using Monocle (7). In (A)–(D), sizes of cells were proportional to the max-normalized scEntropies of the cells, and dark-grey nodes
represent the detected stable states.
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Figure 5. SLICE reconstructed the differentiation lineage of single cells from human early embryo (HEE) development. (A) HEE cells (n = 88) with
development stage information in the two-dimensional space derived from a principal component analysis using genes (n = 10 601) expressed in at least
30% of the cells and with a non-zero variance in log2-transformed expression. (B) Four cell clusters and their stable states identified by SLICE. (C) The
inferred lineage model of HEE cells during human early embryo development. (D) The reconstruction of transitional path from cluster C1, through C2
and C3, to C4 of HEE cells. The path was reconstructed by concatenating pairwise shortest-paths between successive stable states (C1, C2, C3 and C4)
in the minimum spanning tree of cells. (E) The expression patterns of markers along the inferred transitional path (left) were consistent with the stages
defined in Yan et al. (14). TE, trophectoderm; PE, primitive endoderm; EPI, epiblast. In (A)–(D), sizes of cells were proportional to the max-normalized
scEntropies of the cells, and dark-grey nodes represent the detected stable states.

We calculated the scEntropy of lung fibroblastic cells
(Figure 2E). Highest entropy was found in PMP cells; inter-
mediate fibroblast subtypes (IF1 and IF2) had intermediate
levels of entropy; MFB and MyoF had relative low entropy
levels, support their more differentiated states. We project
the predicted cell states at E16.5 to the dynamic RNA ex-
pression patterns obtained from whole lung tissue during
perinatal mouse lung development (E15 to PN0) (28) to un-
derstand the ontogenic changes in gene expression in each
fibroblast subtype (Supplementary Figure S2). The expres-
sion of PMP signature genes decreased during lung develop-
ment, in a pattern similar to that of cell cycle genes, support-
ing their role as proliferative progenitors. In contrast, the ex-
pression of MyoF and MFB signature genes increased dur-
ing lung development. Thus, differentiation states of mes-
enchymal cell subtypes measured by scEntropy were cross
validated via the temporal changes in the expression of cell
specific signature genes during the perinatal period of lung
maturation using data from whole lung microarray (24).

A two-branched transitional trajectory consisting of five
fibroblastic subtypes was identified using SLICE (Fig-
ure 6A–F), predicting a branched differentiation path-
way of mesenchymal cells. In both branches, the fibrob-
last cell marker Pdgfra and the mesenchymal glucocorti-
coid receptor, Nr3c1, were expressed, while the expression
of cell cycle genes, including Foxm1 and Top2a, was de-
creased (Figure 6G), supporting the concept that the tra-
jectory represent the differentiation pathway of lung fi-
broblasts. Along the transitional path ‘ C1→C3→C4’ (Fig-

ure 6E), the expression of matrix fibroblast cell markers,
Fn1, Tcf21, and Vcam1, was increased, while the expression
of myofibroblast/smooth-muscle markers, Myocd, Myh11
and Actg2, was decreased (left, Figure 6G). This pattern
of gene expression was reversed along the other cell tran-
sitional path from the cluster C1 to C2 cells (Figure 6D
and right, Figure 6G). Expression patterns of cell-specific
marker genes were closely associated with the two branched
lineage predictions. To further validate the prediction, we
identified lineage dependent differentially expressed genes
using the method and criteria as described in the Methods
section and assessed their enriched functional annotations
using Toppgene suite (29). 1839 genes were identified as dif-
ferentially expressed in the transitional path from C1 to C4
and these genes were clustered into three temporal patterns
(top, Figure 6H): genes (n = 493) in ‘Pattern 3’ were mostly
induced along the path, and their enriched functional anno-
tations including ‘extracelluar matrix’, ‘collagen and elastic
fibre formation’ were closely associated with the functions
of matrix fibroblasts (top, Figure 6I), while genes (n = 979)
in ‘Pattern 1’ were mostly down-regulated along the path,
and they enriched functional annotations that were closely
related to ‘cell cycle’ or ‘proliferation’ (Supplementary Ta-
ble S2), therefore the cell transitional path from C1 to C2
represented the differentiation process of matrix fibroblast
cells. For the transitional path from C1 to C2, we identi-
fied 2,871 differentially expressed genes and clustered them
into three temporal patterns (bottom, Figure 6H): genes in
‘Pattern 3’ (n = 622) were mostly up-regulated along the
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Figure 6. SLICE predicted a two-branched fibroblast cell differentiation pathway at E16.5 mouse lung. (A) Principal component analysis of five fibroblast
(FB) subtype cells (n = 79) using a set of highly variable genes (n = 252, Supplementary Table S1). Our previous analyses of single cell RNA-seq data from
E16.5 mouse lung identified five distinct fibroblast subtypes, termed as PMP, MyoF, MFB and two unknown fibroblast (IF1 and IF2). Their hierarchi-
cal relationships are unknown. (B) Four cell clusters and their stable states identified by SLICE. (C) A two-branched lineage model of FB cells at E16.5
mouse lung inferred by SLICE. (D) and (E) showed the reconstructed cell transitional path for each branch, respectively. Each path was reconstructed
by concatenating pairwise shortest-paths between successive stable states in the minimum spanning tree of cells. (F) A schematic presentation of the in-
ferred two-branched differentiation pathway among the five predicted FB subtypes. (G) The expression patterns of markers along the two transitional
paths ‘C1→C3→C4’ (left) and ‘C1→C2’ (right) suggested a two-branched cell differentiation pathway of lung fibroblasts at E16.5 (i.e. PMP→MFB and
PMP→MyoF). (H) Temporal patterns of differentially expressed genes in transitional path ‘C1→C3→C4’ (top) and in transitional path ‘C1→C2’ (bot-
tom). In (H), temporal pattern 1 mainly consisted of differentially down-expressed genes while temporal pattern 3 is primarily comprised of differentially
up-expressed genes. (I) Enriched functions of genes (n = 493) induced in transitional path ‘C1→C3→C4’ (top) including ‘extracelluar matrix’ and ‘colla-
gen and elastic fiber formation’ which were closely associated with the functions of matrix fibroblasts. Enriched functions of genes (n = 622) induced in
transitional path ‘C1→C2’ (bottom) including ‘muscle development and differentiation’ and ‘smooth muscle contraction’. In (A)–(E), sizes of cells were
proportional to the max-normalized scEntropies of the cells, and dark-grey nodes represent the detected stable states.
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path, their enriched functional annotations include ‘muscle
development and differentiation’ and ‘smooth muscle con-
traction’ (bottom, Figure 6I). Genes (n = 1445) in ‘Pattern
1’ were mostly down-regulated along C1 to C2 and func-
tionally enriched in ‘cell cycle’ and ‘proliferation’ (Supple-
mentary Table S2). These analyses validated the functional-
ities of the two branched lineage prediction by SLICE, sup-
porting the concept that PMP represents a common lung
fibroblast progenitor from which two major lineages, MFB
and MyoF, are derived (Figure 6F).

Methodologies comparison and evaluation

SLICE performs two major functions: (i) measuring the
differentiation states of single cells and (ii) reconstructing
cell differentiation trajectories. Recently, several methods
(1,7,9,30–32) have been developed for determining cellu-
lar differentiation state or inferring lineage reconstruction
from single cell data. We performed a comparative evalu-
ation of SLICE using multiple scRNA-seq data sets pro-
duced by different techniques from a variety of contexts in
human and mouse. Supplementary Table S3 lists these re-
lated methods and their functions.

Among these, signaling entropy (32) and StemID (30) uti-
lized the concept of entropy to measure cell stemness or
differentiation states. Although the hypotheses and princi-
ples underlying the entropy calculations are different from
those of SLICE, the application concept is similar. We com-
pared the cell differentiation states measured by StemID,
SLICE and signaling entropy (32). Both SLICE and sig-
naling entropy successfully measured the known cell states
in all dataset, while the transcriptome entropy proposed in
StemID failed to correctly measure the known differenti-
ation states (Supplementary Figure S3). Of note, StemID
was originally proposed to measure cell state using unique
molecular identifier (UMI) based scRNA-seq data, while
the data sets we collected for the present study were all read-
based; the results may be influenced by the compatibility of
the data. While the differentiation stages measured by scEn-
tropy and signaling entropy showed high consistency (Sup-
plementary Figure S3), signaling entropy and SLICE are
fundamentally distinct methods and complementary. Sig-
naling entropy uses gene expression patterns to measure
the amount of uncertainty in how information (signaling)
is passed on in the molecular interaction network and relies
on a fine-tuned protein–protein interaction (PPI) network
for the calculation, which limits the genes that can be anal-
ysed using this method to the genes within the PPI network.
Our approach enables an entropy calculation using the ex-
pression patterns of a larger portion of the transcriptome
(i.e. genes with GO annotations), reducing the information
loss in the calculation. Another advantage of using SLICE
over signaling entropy is that it will automatically lead to
the next step of performing single cell lineage reconstruc-
tion once the cell differentiation states are determined.

For the other methods that we listed in Supplementary
Table S3, including Monocle, SCUBA, Wanderlust and Wa-
terfall (1,7,9,31), none of them can quantitatively measure
the cell states and order them accordingly. All utilized tran-
scriptome similarity to reconstruct the temporal ordering
of single cells and relied on the known time information or

known markers expression to determine the direction of the
ordering. Here, we chose Monocle (version 1.6.1 from Bio-
conductor) as the representative algorithm of this class to
compare with the second part of SLICE function (i.e. re-
construct cell differentiation trajectories) using known lin-
eage or previously experimentally validated developmental
time information as common reference. As shown in Fig-
ure 4, SLICE reproduced the human skeletal muscle my-
oblasts lineage originally constructed by Monocle using the
HSMM dataset. In addition, we compared the performance
of SLICE and Monocle using three independent datasets,
including AT2 (n = 101) (13), FB (n = 79) (15,16), HEE (n
= 88) (14) and E18.5 mouse lung Epcam+ epithelial cells
(EPI, n = 80) (13). Among the four datasets, AT2 and HEE
contain relatively homogeneous cell populations, while FB
and EPI data contain more heterogeneous cell populations.
For the comparison compatibility, we selected the same set
of genes for Monocle and SLICE to perform dimension re-
duction and lineage reconstruction.

Both SLICE and Monocle correctly reconstructed the
differentiation pathway in the HEE data (Figure 5 and
Supplementary Figure S4). For the AT2 data, SLICE
correctly inferred the differentiation trajectory of AT2
cells from E14.5→E16.5→E18.5→adult mouse lung (Fig-
ure 3), while Monocle reconstructed the trajectory from
E16.5→E14.5→E18.5→adult mouse lung, mis-placed the
order of E14.5 and E16.5 cells (Supplementary Figure S5).
For the E18.5 EPI data set, Treutlein et al. identified five
distinct cell types, including alveolar type 2 cells, alveolar
type 1 cells, ciliated cells, Clara cells, and alveolar bipo-
tential progenitor (BP) cells and proposed a differentiation
pathway of BPs into alveolar type 1 and type 2 cell lin-
eages. Here, we selected the alveolar type 1, type 2 and BP
cells (n = 66) from the EPI data and aimed to reconstruct
the branched differentiation pathway. SLICE correctly clus-
tered cells into three corresponding populations, with high-
est scEntropy in BP cells to indicate the progenitor states,
and then unbiasedly reconstructed the branched differenti-
ation pathway from BP cells into alveolar type 1 and type
2 lineages (Supplementary Figure S6). On the other hand,
Monocle only partially uncovered the three cell popula-
tions and ordered all the cells into a single lineage (Supple-
mentary Figure S6). Similarly, for the E16.5 lung FB data,
SLICE predicted a two-branched differentiation pathway
of five fibroblastic subtypes, from PMP →IF2→MFB and
PMP→IF1→MyoF (Figure 6); while Monocle was able to
identify three major cell states (i.e., PMP, MyoF and MFB),
it failed to infer the hierarchical relationships among the
three cell states to reconstruct a branched tree lineage (Sup-
plementary Figure S7).

The comparative data analysis showing that the per-
formance of SLICE is comparable to Monocle when re-
constructing cell trajectories from scRNA-seq data sets
following a homogenous biological process. More impor-
tantly, SLICE can correctly infer branched lineage models
from cross-sectional scRNA-seq from heterogeneous popu-
lations and reconstruct cellular transitional path along each
branch, while Monocle did not resolve the complexity of the
branched models.
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DISCUSSION

Single-cell RNA-seq offers an unprecedented opportunity
to measure the molecular states of individual cells and elu-
cidate their lineage relationships, which is fundamentally
important for understanding the formation and functions
of complex organs. SLICE is a novel algorithm designed
for quantitatively measuring cellular transitional stages
and predicting cell differentiation lineages from scRNA-seq
data independent of external knowledge, such as cell iden-
tity, marker gene expression, or time information. Using
SLICE, we reproduced previously validated experimental
findings of three independent scRNA-seq datasets, which
supports the general applicability and high predictive accu-
racy of SLICE in determining cellular differentiation states
and reconstructing cell differentiation lineages. In addition,
we applied SLICE to scRNA-seq of embryonic mouse lung
at E16.5 to identify lung mesenchymal cell lineage relation-
ships which are largely unknown. SLICE predicted a two-
branched transitional trajectory from the common progen-
itor cell (PMP) to lung matrix fibroblast and myofibroblast.
The prediction may serve as an important lung mesenchy-
mal lineage model and merit further experimental valida-
tion.

The main tuning parameters in the scEntropy calculation
include: m - the number of functional groups, θ is the abun-
dancy threshold for determining the expressed genes and
|B| is the size of each bootstrap sample B. In the present
work, m was determined by the rule: m = √|�|/2, where �
is the set of genes for clustering. Alternatively, an optimal
m can be determined by a clustering validation criterion,
such as Bayesian information criterion (BIC), Akaike infor-
mation criterion (AIC), or Gap statistic (20,21). This opti-
mization may be computationally intensive due to the po-
tentially large size of �. In our analyses of all four datasets,
we set θ to 1 and |B| to 1000, and calculated the expected val-
ues using 100 bootstrap samples. We compared scEntropies
calculated using different choices of θ and |B| and showed
that the results were robust against perturbations of θ and
|B| (Supplementary Figures S8–S11). We also performed a
deterministic calculation of scEntropy by setting B as the
union set of the top expressed genes (n = 500) from each cell,
and found that the deterministic calculations of scEntropy
were consistent with the bootstrap estimates of scEntropy in
all four scRNA-seq datasets (Supplementary Figure S12).
We chose to use Gene ontology (GO) terms to represent
gene function because compared to Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway or Medical Sub-
ject Headings (MeSH), GO terms by far is more complete
and relatively unbiased for genome-wide gene functional
characterization. Nevertheless, we were fully aware that GO
terms are incomplete and have their own limitations. In the
future, we will test using combined annotation resources
and fuzzy clustering algorithms, such as fuzzy K-means (al-
low overlapping genes with different degree of memberships
in different functional clusters) (33,34) to test whether these
methods improve the gene functional classification of indi-
vidual cells. Identifying cell stable states and reconstructing
cell trajectory are two of the essential steps of SLICE. We in-
troduced two alternative approaches for each step: network
based and clustering based approaches for the cell states

identification, and shortest path based and principal curve
based approaches for cell trajectory reconstruction. These
approaches reached consensus in our analysis and lineage
prediction (Supplementary Figures S13–S16) and are inde-
pendent and complementary to each other; one can choose
different approaches for better data fitting, or use them in
combination to reach a consensus to improve performance.

Recently, several algorithms, e.g. Wanderlust (1), Mon-
ocle (7), SCUBA (9) and Waterfall (31), were developed
to infer temporal orderings of single cells from scRNA-seq
data, aiming to map individual cells onto specific points in
the progression of biological processes by connecting cells
based on gene expression similarity. Nevertheless, they do
not measure cell states, and therefore, require use of ex-
ternal knowledge, such as time information, cell identity,
or marker gene expression, to determine the start and end
points of dynamic processes, and the directions of the in-
ferred pseudotemporal orderings. In contrast, SLICE di-
rectly and quantitatively measures the entropy of individ-
ual cells and uses entropy to predict cell states and lineages
independently of experimental knowledge.

We performed a comparison of SLICE and Monocle us-
ing multiple datasets from both human and mouse (see
Methodologies comparison and evaluation). The perfor-
mance of SLICE is comparable to Monocle when the data
are from a homogeneous cell population. More impor-
tantly, this comparison demonstrated the unique advan-
tages of applying SLICE in two situations: (i) when dealing
with cross-sectional dataset with no sequential order or time
information, SLICE unbiasedly determined the end points
and the directions of the transitions; and (ii) when dealing
with dataset composed of heterogeneous cell population,
SLICE correctly discover the branched lineage models and
reconstruct cellular transitional paths along each branch. In
disease, injury or other specific stimulations, different cells
may have different dynamic responses to the stimulation
and not much is known about disease stages or stage depen-
dent activation markers. Therefore, SLICE has unique ad-
vantages to quantitatively measure the entropy changes of
cells of interest independent of external knowledge or data
structure, which will provide new insights into the signaling
mechanisms controlling cell fate and functions in relation
to disease pathogenesis and potential new therapeutics.

In summary, SLICE is generally applicable to single cell
transcriptomic data, provides comprehensive functionali-
ties and options for different data models, and presents
unique features and improvements over existing methods
for in silico lineage mapping, allowing the determination of
cell differentiation states and entropy-based lineage paths
without external information. While we demonstrated the
utility of SLICE using several developmental and differen-
tiation data sets, the approach can also be readily general-
ized to other biological processes. In the future, we plan to
apply SLICE to conditions other than developmental cues
including cancer, injury and other disease situations.

AVAILABILITY

SLICE was implemented in R. The source code and demon-
strations are available for download at http://research.
cchmc.org/pbge/slice.html.

http://research.cchmc.org/pbge/slice.html
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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