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Abstract: Photogrammetric processing is available in various software solutions and can easily deliver
3D pointclouds as accurate as 1 pixel. Certain applications, e.g., very accurate shape reconstruction
in industrial metrology or change detection for deformation studies in geosciences, require
results of enhanced accuracy. The tie-point extraction step is the opening in the photogrammetric
processing chain and therefore plays a key role in the quality of the subsequent image orientation,
camera calibration and 3D reconstruction. Improving its precision will have an impact on the
obtained 3D. In this research work we describe a method which aims at enhancing the accuracy of
image orientation by adding a second iteration photogrammetric processing. The result from the
classical processing is used as a priori information to guide the extraction of refined tie-points of better
photogrammetric quality. Evaluated on indoor and UAV acquisitions, the proposed methodology
shows a significant improvement on the obtained 3D point accuracy.

Keywords: tie-points; bundle block adjustment; image orientation; camera calibration; precision mapping

1. Introduction

Products of photogrammetric processing are nowadays used across many domains, and are
available via commercial and open-source software tools. The quality demands of such products
vary with applications, e.g., from millimetric accuracy in industrial metrology [1] to centimetric
or decentimetric accuracies in applications concerning indoor mapping [2], cultural heritage
documentation [3], mobile mapping [4] or airborne surveys [5,6]. Typically, as the accuracies grow,
so does the on-site labour to prepare an acquisition.

3D measurements derived from images are a product of several successive operations:
image tie-point extraction, camera calibration and orientation, 3D triangulation. As they are all
functionally related, the tie-point measurement precision will have an impact on the precision of the
calculated calibrations, orientations and ultimately the triangulated 3D points. The importance of
image observations on the camera modelling has been long known and proven empirically [7]. Poor
precision and spatial distribution of the tie-points inhibits both: reliable estimation of the camera
orientation and proper modelling of the systematic errors produced by the optics. As a consequence,
output pointclouds become deformed and inaccurate [8,9]. To fight against this effect, a lot of research
has been focused on utilizing only those tie-points that guarantee the so-called photogrammetric
quality, i.e., (i) favour image points with low re-projection errors, (ii) keep good point distribution
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in image and object spaces, (iii) maintain reasonable intersection angles, and (iv) maximize points’
manifold [3,10–12].

In this research we address totally the above aspects in a novel processing framework that is
capable of furnishing 3D accuracies improved by a factor of two with respect to the state-of-the-art.
Starting from the result of the classical processing (i.e., tie-point extraction, camera calibration
and orientation, dense image matching), the method automatically generates a new set of tie-points
that maintains the optimal distribution, good manifold and enhanced measurement precision.

The publication is structured as follows. A concise review on state-of-the-art tie-point extraction
approaches is presented below, followed by the mention of the research contributions. In Section 2
the detailed theoretical and algorithmic base is given. Finally, Section 3 describes the performed
experiments and discuses the obtained results.

1.1. Related Works

The tie-points are the interest points (or keypoints) that had been extracted and subsequently
matched with their correspondences. Interest points alone are salient features (e.g., points or regions)
that are distinctive in their immediate neighbourhood. The performance of an interest point detector
is evaluated in terms of repeatability and information content [13]. A good interest point detector is
invariant to a class of transformations: translation, rotation, scale and perspective distortions. It is also
insensitive to illumination change.

Over the course of the last twenty years many different interest operators have been invented
that would implement these properties. The distinctiveness of a pixel can be measured by its
local dissimilarity, e.g., with the auto-correlation function to determine the signal changes [14,15]
(e.g., Moravec, Harris), with covariance matrices [16] (Foerstner), using comparison functions on
circular masks [17,18] (e.g., SUSAN, FAST), or the spatial gradient distribution [19] (e.g., Scale
Invariant Feature Transform or SIFT). To include scale invariance, the notion of 3D scale-space
representation was introduced [20]. The images would be represented by a pyramid of, e.g.,
Laplacian-of-Gaussians (LoG) or difference-of-Gaussians (DoG), where the pyramid’s maxima were
the characteristic points [19,21,22] (e.g., SIFT; Speeded-up robust features or SURF). Scale invariant point
detectors, however, assume a uniform scale-change in both directions therefore do not model
perspective (or affine) deformations induced by the imaging process. The end effect is that the
aforementioned operators identify corresponding points between image couples with very small
base-to-height ratios and fail at wide-baseline scenarios. To address this shortcoming, the known
operators were affine-adapted and new affine-invariant operators were devised. Affine-invariant
point detectors often delineate the so-called distinguished regions (DR) of stable properties and high
repeatability. The DRs can be, for instance, parallelograms built on the Harris points and their nearby
edges [23], elliptical blobs calculated from Harris-Laplace operator and the local structure described
by the second moment matrix [21] (Harris-Affine, Hessian-Affine) or blobs of arbitrary shapes [24,25]
(Maximally Stable Extremal Regions or MSER). Description of such regions is accomplished by identifying
a local affine coordinate system or by geometric normalising, and establishing a description vector
from the intensities within the region.

Out of the most popular affine-invariant region detectors, the MSER is said to be the most
repeatable in the presence of changing viewpoint angles, scales, blur and illumination [26]. As proved
experimentally [10], a notable point detector robust to changing viewpoints is the SIFT, and its
affine adaption affine-SIFT (ASIFT) [27]. In the latter, the authors combine the concepts of simulation
and normalization to simulate all distortions a patch can undergo when tilting the image. Next,
they compare the totality of the generated images with SIFT. Computational time turns to be a
restraining issue of the algorithm.

Regarding the measurement precision of the most popular tie-point extraction algorithms,
the bundle block adjustement (BBA) reprojection errors place in the range of 0.5–1 pixel [10,11].
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Higher precision (≈0.1 pixel) can be obtained by coupling interest point detectors with e.g., Least Squares
Matching (LSM) [3,28,29].

1.2. Contributions

The aforementioned algorithms extract image tie-points without making any a priori on the camera
or the geometry of the 3D scene. In this research work, our hypothesis is that the camera orientations
and approximate 3D geometry is known, and then we exploit it to guide and calculate a new set of
tie-points of improved quality. Accordingly, we call it the Second Iteration to Refine image Orientation
with improved Tie-Point (SIROP). More precisely, contributions of this research work are as follows

• the tie-point extraction is free from seed points contrary to [3,28], and produces regularly
spaced points, also in areas of low-contrast regions where classical tie-point extractors typically
fail to identify salient points;

• contrary to [30], our algorithm is not constrained by the presence of dominant 3D planes in
the scene, therefore is not constrained to urban reconstructions;

• our initial structure is represented in form of a triangulated mesh, and the re-projection to images
of each mesh entity is rectified to a pre-selected geometry; as the perspective deformations
are removed, the algorithm is apt to handle wide baseline acquisitions;

The method can be equally used as an alternative to Iterative Closest Point (ICP) algorithm [31]
for automated alignment of two individual 3D pointclouds captured from very different viewpoints.
See Figure 1 for a summary of the proposed processing. All concieved algorithms were implemented
in MicMac—the free, open-source software for photgorammetry [32,33]. This paper is an extended
version of our preliminary work published in [34].

Figure 1. A second iteration processing with refined tie-points.

2. Materials and Methods

2.1. An Overview

SIROP enhances the obtained result precision by performing the second iteration of
photogrammetric processing using the new tie-points (see Figure 1). These new tie-points are extracted
based on 3D scene information i.e triangulated mesh. The image orientations and calibrations are
used to predict the keypoint matching position and correct the perspective deformation between
images before extracting the new tie-points. To assure that the algorithms work properly, it is expected
that the approximate (i.e., initial) camera orientation predicts the image points’ positions within
10 pixel precision. SIROP method can be described in 3 separate steps as presented in Figure 2:

• Image selection and scene partition.
• Detection of interest points (keypoints).
• Matching by correlation and LSM.
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Figure 2. Three general steps of the tie-point extraction method: Image selection, Detection of interest
points and Matching.

The sequence of steps is applied to each triangle. By iterating over each triangle in the mesh,
SIROP ensures a homogenous distribution of tie-points in the object space.

2.2. Image Selection and Scene Partition

The purpose of this phase is to designate for each triangle a master image and a set of
secondary images. The retained images must fulfil two conditions of:

• visibility (here implemented by a Z-buffer filter), and
• minimum resolution (triangles with surface area below 100 pixels will be filtered-out).

Out of all images, the master image will be the one with the most optimal resolution. Under
perspective deformations, the resolution of a projected surface-element changes according to the
observation direction (see minimal resolution direction in Figure 3) within the plane of the 3D triangle.
We use here a cautious strategy by defining the minimal resolution obtained among all possible
directions, and the master image is the image with the highest minimal resolution value (i.e the optimal
resolution). With the optimal resolution one wants to favour a selection of images that are:

• fronto-parallel with respect to the 3D triangle in question, which results in least deformed triangle
back-projections, and

• nearer to the triangle in question, which is equivalent of higher resolution.

Figure 3. The observation direction and minimal resolution of back-projected triangle.

To relate an ellipse defined within the triangle’s plane, and its back-projection in an image,
an affine transformation is calculated. The 6 parameters of an affine transformation are estimated from 3
corresponding triangle’s vertices in 3D space and in the image. Rigorously speaking, this plane to plane
mapping is described by a homography, but since the mesh elements are small an affine approximation
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is justified. The errors in image position prediction induced by the adopted approximations are shown
in Figure 4. For a triangle of 9000 pixels, the average prediction discrepancy does not exceed 0.08 pixel.
The histogram of maximum difference values proves that 99% of discrepancies falls below 0.13 pixel.

Figure 4. (Left): The difference of predicted pixel coordinate between affine and homography
transformation in triangle. (Right): histogram of maximum difference value in the range of [0,0.2] pixel.

Mathematically speaking, let Pn be the plane of image n, PTri the 3D plane containing the triangle
and C the circle inscribed in the triangle (see Figure 5). The projection function is approximated
by the affine transformation between the 3 vertices of the triangle in its plane in object-space and
their back-projections in image n. Only ATri2n, the linear part of this transformation, is used for
image selection. The 6 parameters are computed from the (2 dimensions) × (3 points) observations
with a direct inversion. En is the ellipse transformed from circle C to plane image Pn by the affine
transformation ATri2n denoted as follows:

ATri2n =

[
Axn Bxn

Ayn Byn

]
=

[
~un ~vn

]
(1)

Figure 5. Optimal resolution condition in the selection of master image and scene partition. (Left):
tensor ellipse in images. P1 will be chosen as master image. (Right): Scene partition between 6 master
images in a dataset. Each color presents a corresponding scene part with each master image.

For each point (cos(θ), sin(θ)) on circle C, we have a corresponding point on the ellipse En

mapped by an affine transformation ATri2n:

ATri2n ∗
[

cos θ

sin θ

]
=

[
~un ~vn

] [cos θ

sin θ

]
= ~un cos θ +~vn sin θ = ~Vn(θ)

(2)
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Value min( ~Vn(θ)) Equation (3) represents the minimal possible resolution obtained across all
directions in image n of circle C:

min(‖ ~Vn(θ)‖2) =
~un

2 + ~vn
2 −

√
(~un

2 − ~vn
2) + 4(~u·~v)2

2
(3)

The master image is selected as the maximum of all possible minimal resolutions across all images:
Master = max(min(‖ ~Vn(θ)‖2)).

A set of secondary images is chosen by applying a threshold on the minimal possible resolution
min(‖ ~Vn(θ)‖2) between each candidate image and the master image. Finally, after the selection of
images for all 3D triangles in mesh, the scene has been partitioned between different master images.

2.2.1. Region of Interest Rectification

For each triangle back-projected to an image, a region of interest (ROI) is defined in its
surroundings. All ROIs found in the secondary images are rectified to the geometry of the master
image (see Figure 6) using the 6-parameter affine function form master image to the secondary image
for this triangle. By doing so, all perspective distorsions due to 3D scene geometry and perspective
imaging are removed.

Figure 6. An example of ROI on each images. (Second line): triangle ROI projected on images. (Bottom
line): normalized triangle ROIs. In the green frame is the master image.

If (xs, ys) is the pixel coordinate in secondary image ROI, the affine mapping is expressed
as follows: [

xm

ym

]
=

[
a1 b1

a2 b2

] [
xs

ys

]
+

[
a0

b0

]
(4)

2.3. Detection of Interest Points

This step generates a set of interest points for all back-projected and rectified triangles. In the
subsequent steps the found interest points will guide the sub-pixel matching (see Section 2.4).

Firstly, local intensity maxima/minima points are adopted as candidate points. Then,
these candidates are filtered by several criteria such as contrast quality, risk of repetitive patterns and
spatial distribution. The general workflow is presented in Figure 7, each filter will be detailed in the
following section.

Figure 7. An overview of the interest point detection algorithm.
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2.3.1. Contrast Quality Filter

The purpose of this filter is to eliminate low-contrast candidate points. The idea of this filter is
based on the FAST [35] and SUSAN [17] detectors, by examinating the neighboring points to decide if
a point is contrast enough. There are three main reasons for this approach selection:

• Fast processing speed: in comparing to Difference of Gaussian approach detector such as SIFT.
• Perform on non-perspective ROI: as presented in Section 2.2.1, perspective in ROI is eliminated.

Therefore, a scale rotation invariant approach is unnecessary.
• Interest point localization: interest points are detected at pixel exact and FAST filter-based

approach work on pixel exact also. Therefore, we avoid the sub-pixel point localization problem
in SIFT approach [36]. Region-based matching method by correlation and Least Square Matching
in matching step will localize tie-point at sub-pixel precision.

The intensity value of a candidate point is denoted as p, and we examine its neighboring points
(1...n) with intensity values (p1...pn), respectively. There are a total of 24 neighboring points located
on a circle with a radius R = 4. A difference in the intensity value di is computed for each neighboring
point at i and the central point as |p− pi| (see Figure 8).

Figure 8. The Contrast Quality Score (CQS). p is the intensity value, d is the difference in intensity
value. CQS1 is the contiguous contrast and CQS2 is the global contrast score.

To evaluate the contrast quality of a candidate point, a Contrast Quality Score (CQS) is computed.
The CQS is composed of two terms:

• contiguous priority contrast score CQS1, and
• global contrast score CQS2.

A candidate point is considered to be of good contrast if at least 75% of differences di pass an
appropriate threshold. The 75th percentile value in the ascending sort difference intensity vector Vd is
then taken as CQS2 score. Then, a sliding window scans through the vector Vd. Each window score is
taken as the maximum value of all elements within the window. CQS1 score is the minimum value
among the window scores (see Figure 8). Candidate points are considered to be contrasted if CQS1

passes a certain threshold. Figure 9 illustrates the performance of the contrast filter on an example.
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Figure 9. An example of Contrast Quality Score and contrast filter performance.

Finally, a combination of two terms CQS1 and CQS2 with a weighting factor give a final Contrast
Quality Score for each point.

CQS = CQS1 + 2× CQS2 (5)

This score will be used in the following interest point reduction step to determine the
point’s priority.

The figure below presents an example of Contrast Quality Score for interest point and contrast
filter performance. On the left image, interest points are colorized as blue/red circle corresponding to
local intensity minima/maxima points. A green bar represents contiguous contrast score term CQS1.
The middle image represents Global contrast score term CQS2 with a yellow bar assigned to each point
in triangle. Finally, the right-most image represents points rejected by the filter, which are colorized
in yellow.

2.3.2. Non-Repetitive Pattern Filter

To make the subsequent matching procedure more robust, candidate points with adjacent
repetitive patterns are rejected. To do that, for each candidate point, a circle of neighboring patches
around at a certain radius is chosen (see Figure 10). Then, a correlation score is computed between the
center patch and each of the neighboring patches. A point is eliminated if the high-score normalized
correlation Equation (6) is found along any direction. In this implementation, we chose 0.85 as the
high-score value.

Figure 10. An example of non-repetitive patterns filter.

Figure 10 shows an example of the performance of this filter. The upper image line presents an
ambiguity of interest point located on a linear pattern (red rectangle), which can cause a false-positive
in correlation (yellow rectangle). On the bottom image, blue/red circles represent minima/maxima
local points, respectively. The yellow points are rejected by the filter because they lie on a linear pattern
that may cause an ambiguity in correlation.
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2.3.3. Interest Point Reduction

After the interest points are selected, a filter is applied to reduce their quantity. The interest
points are sorted by CQS to form a processing list, with the priority corresponding to the score value.
For each master image, for all interest points, the filter then defines a circular region centered at a point
(see Figure 11). Only one point with highest CQS within the circle is retained. The circular region size
is chosen relatively to image resolution.

Figure 11. An illustration of the interest point reduction. (Left): original points. (Center): filter area
(yellow). (Right): filter result.

2.4. Matching

The interest points in master images must now be assigned their correspondences in the
secondary images, i.e., the tie-points are created. Because our image patches are rectified to the
geometry of the master image, an area-based matching method can be used to find the correspondences.
SIROP adopts the normalized cross-correlation technique, followed by least squares matching.

2.4.1. Matching by Correlation

Zero Mean Normalized Cross-Correlation (ZNCC) (see Equation ( 6)) is adopted to provide the
initial tie-point’s position. For each interest point in the master image, ZNCC is computed for all
potential interest points in the secondary images. Finally, the point with the highest matching score is
selected as the tie-point. In analogy to interest points in the master images, the potential interest points
in secondary images are found as maxima/minima within specified circular regions (see the search
region in Figure 12).

ZNCC f g =
∑N

i=1 ∑M
j=1( f (xi, yj)− f̄ ) ∗ (g(xi, yj)− ḡ)√

∑N
i=1 ∑M

j=1( f (xi, yj)− f̄ )2 ∗∑N
i=1 ∑M

j=1(g(xi, yj)− ḡ)2
(6)

where f and g as two image patches of size N ∗ M, f̄ and ḡ are the corresponding patch average
intensity values.

Figure 12. The search region (yellow circle in secondary image ROI-right) and potentially matching
points (same characteristic point: max (red), min (blue)) correspond with considered interest point in
the master image (left-green). The green triangle frame is ROI normalized.
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To speed-up the processing, the correlator operates in a multi-scale approach [37]. Three main
ZNCC calculation phases can be distinguished:

• at 2-times down-sampled resolution (every other pixel is discarded),
• at the nominal resolution, and
• at sub-pixel resolution (up to 0.1 pixel).

2.4.2. The Tie-Point Spatial Filter

The spatial filter decimates the tie-points previously matched so that their homogeneous
distribution in image space is maintained. The following selection criteria are imposed:

• prioritisation of points with high ZNCC scores,
• prioritisation of points with with high manifold,
• even distribution of points in both master and secondary images.

Please note that our tie-points are manifold points (i.e., observed on more than two images).
To determine which is the better correlated multiple point, for each tie-point in the master image,
a Global Correlation Score CGCS

i is computed (see Figure 13 and Equation (7)). This score includes
all multiple correlation scores between points in the master image and all of its matched points in
secondary images.

CGCS
i =

M

∑
t=1

(
1

ε + (1− Ci_St)
) i f

1
(1− Ci_St)

== 0→ ε = 0.02 (7)

where Ci_St as a correlation score Equation (6) for tie-point i between master image and secondary
image St, with t = [1 : M] and M is the manifold.

Figure 13. Computation of Global Correlation Score (CGCS
i ) for one tie-points.

Equation (7) can be interpreted as a quality indicator composed of the correlation score and
the manifold. Points with higher manifold and good correlation will have higher score, hence higher
position in filter processing queue. For each current point in queue, neighbor points are picked as
all points lying within a radius R around it (see blue circle in Figure 14). All points retained from
the circle will be tested with Equation (8) which is a function of a correlation score between two
potentially corresponding points (i.e., Ci_St calculated with Equation (6)) and the normalized distance
di_ip

R between the neighbor ip and the current point i. In other words, points that are close to point i
and with poor correlation scores will more likely be filtered out. Figure 15 visualizes intermediary
results of the described approach. Pseudocode of tie-points spatial filter is described in Algorithm 1.

Cip_St < Ci_St + (1− (
di_ip

R
)2) ∗ 0.2 (8)
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Algorithm 1: Tie-point spatial filter
input : Master_image, triangle, R
output : Result = Retained tie-points after spatial filter
TiePointHeap← GetAllTiePointsOnMasterImage (triangle);
Sort TiePointHeap in descending order by CGCS

i value;
secImages← GetAllSecondaryImages(triangle);
while TiePointHeap not empty do

// Point with highest CGCS
i will be poped out of heap

point_i← TiePointHeap.pop();
Result.push(point_i);
// Get all neighbor points lying within a radius R
neighbors_i← GetNeighbors(point_i, R);
for point_ip ∈ neighbors_i do

for Image_St ∈ secImages do
Ci_St ← GetCorrelationScore(point_i, Master_Image, Image_St);
Cip_St ← GetCorrelationScore(point_ip, Master_Image, Image_St);
di_ip ← EuclideanDistance(point_i, point_ip);

isReject = Cip_St < Ci_St + (1− (
di_ip

R )2) ∗ 0.2;
if isReject then

TiePointHeap.delete(point_ip);

Figure 14. An illustration for terms in Equation (8). Ci_St is the correlation score between point i on
master image and its matched point on secondary image St.

Figure 15. Tie-point spatial filter applied in the priority of points score CGCS
i : (Left): matched points

with their score illustrated in green line, (Middle): filter space area in the yellow circle, (Right): Points
after filter.
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2.4.3. Matching Refinement by Least Square Matching

In the final step, LSM [28] is used in combination with SIROP to compensate for unmodelled
image orientation errors (i.e., y-parallax), see Figure 16.

Figure 16. Minor error in image orientation may cause errors in ROI normalization. (Left): master
image, (Right): the blue frame is an image orientation with a minor parallax error, the red one is a
corrected orientation. If we normalize the geometry of the ROI in the right image (green triangle region)
with respect to the left image by an affine transformation estimated from triangle vertices, they are not
exactly in the same geometry.

Pixel intensity values in image patches are used as observations. Both the affine transformation
(6 parameters as previously discussed) and the radiometric model (2 parameters including the contrast
and brightness) are the unknowns in the least square adjustment model:

g1(x1, y1) = A ∗ g2(a0 + a1x1 + a2y1, b0 + b1x1 + b2y1) + B (9)

where g1, g2 as two same size image patches of a tie-point given by correlation. A linear model with
the contrast (named A) and the brightness (named B) is adopted to model the intensity variation
between the two patches.

To transfer the non-linear model in Equation (9) to a linear one, Taylor linearisation is adopted.
All parameters are estimated across several iterations. The stop condition is a pre-defined maximum
number of iterations or convergence error estimation between two consecutive iterations.

To evaluate the gain of employing the LSM, an experiment involving 5 images was performed.
Figure 17 shows a bundle block adjustment (BBA) reprojection error improvement of 0.02 pixel, and a
minor change in the estimated camera parameters. Given a typical acquisition with thousands of
tie-points, the additional LSM processing times should not be neglected. Accordingly, in the current
MicMac implementation, the LSM is an optional parameter, and the parameter was inactive in all the
experiments presented in the next section. LSM refinement is said to improve the SIROP’s tie-points
precision but it has a drawback of longer computation times.
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Figure 17. The evaluation of LSM efficient on SIROP tie-point. (Left): reprojection error histogram.
(Right): difference in camera calibration with LSM refinement.

3. Experiments and Results

3.1. The Evaluation Procedure

The evaluation is carried out on four datasets with different 3D scene types, cameras and
acquisition geometries. To obtain 3D accuracy measures, several Ground Control Points (GCPs)
were measured in each scene. Each dataset is processed with two methods: the classical processing
with SIFT tie-points (implementation of [38]) (Classical) and the SIROP method, which only uses its
own-detected points. In any case, grayscale images are used to extract tie-points.

The difference between the two processing methods is in the employed tie-points. In both
scenarios the camera parameters are estimated in a self-calibration BBA (i.e., the Fraser camera
model [39]). The BBA computation is first carried out in a relative coordinate system, and further
transferred to the coordinate system of the GCPs with the 7-parameter transformation estimated from
all GCPs. Three case studies are summarized in Table 1.

Table 1. Description of four datasets used to evaluate the method.

Dataset Name Hallway Viabon 1 Corridor

Type Terrestrial/Indoor Drone/Outdoor Drone/Outdoor
Camera IGN Camlight IGN Camlight IGN Camlight
Focal Length 18 mm 35 mm 35 mm
Images 179 118 77
Scene Size
• (L ∗W)m 30 × 1.5 140 × 140 437 × 65

Nb GCP
• Type
• Incertitude

33
Tophography

σXYZ = [0.8, 1, 0.4] mm

7
GPS RTK

σXYZ = [1, 1, 2] cm

10
GPS RTK

σXYZ = [1, 1, 2] cm

Each case study was processed according to the workflow presented in Figure 1. Due to repetitivity
of the obtained results, only one detailed outcome analysis is presented—the terrestrial Hallway dataset
in Section 3.2. As for the UAV datasets (Viabon1, Corridor), a compiled presentation of the obtained
results is given in Section 3.3.

The evaluation is carried out by looking at the following accuracy measures:

• euclidean distance between GCPs resulting from image triangulation and their true values (d).
• the BBA standard deviation.
• color-coded error map of tie-points residuals.
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Additionally, histograms of tie-point residuals and their manifold are reported.

3.2. The Hallway Dataset

A snapshot of the dataset and the distribution of GCPs are shown in Figures 18 and 19, respectively.
In Figure 20 one clearly sees the advantage of the proposed methodology. The extracted tie-points are,
as expected, well distributed in both object and image spaces. The optimal resolution criteria for master
image selection, according to which a triangle is assigned its master favouring large image scale, is
also kept as revealed in Figure 21.

SIROP reduces the tie-point residuals (see Figures 22 and 23) on average by almost a factor of two.
Tie-points manifold is slightly less favourable which is due to the specificity of the long-corridor
acquisitions. Throughout the acquisition the camera points at infinity whereas SIROP privileges points
close to the camera. As a result, the far points are ignored (see Figure 24 for evidence). Finally, Figure 25
reports on distances between the true value and the photogrammetrically-predicted positions of all
GCPs in the Classical and the SIROP processing scenarios. An average the distances decreased by a
ratio of 1.2, 2.1 and 3.7 respectively in X, Y and Z, which is equivalent of 1.4σx, 3.6σy, 15.8σz.

Figure 18. Some images from the Hallway dataset. Photogrammetric ultra light Camera IGN
CamLight [40], 18 mm focal length.

Figure 19. The Hallway dataset acquisition with GCP points (red).
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Figure 20. Comparison of the tie-points distribution. These are tie-points between one image with all
others images in the dataset. (Left): Classical method by SIFT, (Right): SIROP. Tie-points distribution
with SIROP is better. Tie-points in the “far” scene part (the red frame in right image and the red points
in left image) with low ground resolution is ignored by SIROP.

Figure 21. The scene partition and optimal resolution scene part chosen for one master image.
(Top row): Scene partition. Each color presents the part for one master image in the dataset. (Bottom
row): (Right): Demonstration for one master image (red) with its scene part and secondary images
(blue). (Left): The scene part on master image.

Figure 22. Comparison of the statistics of tie-points properties between two processing methods.
SIROP produces tie-points with smaller re-projection error but less multiplicity in this specific case.
(Left): re-projection error histogram. (Right): Multiplicity.
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Figure 23. Tie-points in 3D space with its re-projection error coded in color. The color scale bar presents
a histogram of re-projection error in range [0,1] pixel. (Top): classical processing with SIFT, (Bottom):
by SIROP. The holes in the model caused by very low dynamic image in these scene parts.

Figure 24. An explanation for the reduction of tie-points multiplicity by SIROP in Hallway dataset.
These are tie-points in one image couple in the dataset. (Left): SIFT detects tie-point at the far end of
the scene, so these tie-points have a high multiplicity because it appears on almost all image couples.
(Right): our method extracts tie-points in the optimal resolution of scene, so all the “far” scene part
is eliminated.

Figure 25. Cont.
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Figure 25. Comparison with GCPs—the Hallway dataset. From the top: Euclidean distance, in X, in Y,
in Z. In the red frame: average distance value.

3.3. UAV Datasets

The aim of this section is to asses the performance of SIROP in an aerial acquisition. Two
UAV-acquisitions were processed: a block acquisitions (Viabon1—see Figure 26), and a corridor
acquisition (Corridor).

As detailed in Table 2, SIROP outruns the Classical method in all the tested scenarios. The accuracy
gain is observed particularly along the Z component, i.e., along the coordinate with the highest
estimation uncertainty due to the imaging configuration. Global increase in tie-points manifold is
also observed.

Figure 26. The Viabon 1 dataset.
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Table 2. Comparison between two methods on two datasets: euclidean distance on GCPs, average
tie-point reprojection error and manifold.

Datatset Method
Value

d [cm] d_x [cm] d_y [cm] d_z [cm] Rep_Err [pxl] Multiplicity [Points]

Viabon 1 Classical 3.43 0.71 0.71 3.17 0.59 5.2
SIROP 1.21 0.64 0.69 0.52 0.31 5.6

Corridor Classical 2.13 0.86 0.8 1.44 0.29 3.2
SIROP 1.45 0.66 0.75 0.82 0.13 4.2

The Corridor dataset uncovers another beneficial aspect of SIROP, i.e., the capability of suppressing
the “dome” effect. It has been stated by many researchers [8,41,42] that under certain imaging
configurations the self-calibrating BBA is suboptimal. The arising correlations between the camera
internal parameters and the exterior orientations lead to incorrect modelling of both. As a result,
one observes the so-called “dome” effect in the reconstructed pointcloud. One way to overcome is
to employ a denser network of GCPs or include oblique views. However, it is not always possible.
In such circumstances, SIROP proves that higher accuracy and well distributed tie-points can equally
mitigate the effect (see Figures 27 and 28).

Figure 27. The non-linear distortion effect correction on Corridor dataset. (Left): Linear acquisition
protocol and GCPs distribution (red point). (Right): comparison of 3D uncertainty on Z shows the
dome effect with classical processing, and the correction obtained by SIROP.

Figure 28. The difference of camera center positions in X,Y,Z of Corridor dataset after SIROP processing.

The study of the evolution of the camera’s internal parameters confirms that with the SIROP’s
tie-points one is able to model the camera’s systematic errors more efficiently. Please note the difference
in residuals at the margins of the image for the Classical and SIROP processing, as is presented
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in Figure 29. Stability of the estimated parameters is also tested by running a second and third
SIROP iteration.

Figure 29. The evolution of internal camera parameters in Corridor after second and third
SIROP iteration. (Left): The radial distorsion. (Right): The camera focal length.

4. Conclusions and Discussion

In this article, a novel photogrammetric processing chain called SIROP and aimed at enhanced
precision 3D reconstruction is proposed. The algorithms make use of the approximate 3D scene
geometry and the known camera orientations to generate a new set of optimal tie-points. With the
new tie-points a more precise camera parameters and orientation are estimated, and therefore more
accurate 3D measurements can be done. The methodology is implemented in the free open-source
software for photogrammetry—MicMac.

The performance of the introduced algorithms was assessed in three different scenarios:
an indoor acquisition (Hallway), and two UAV acquisitions (Viabon1, Corridor). The outcome accuracy
were investigated on several GCPs, giving an improvement by a ratio of 2.09, 2.83, 1.46 for the
respective datasets. The tie-points manifold was increased in all but the Hallway dataset where far
points were eliminated contributing to a slightly lower points’ redundancy. To alleviate the issue and
the potential camera’s rotational drift, the low-resolution tie-points from the Classical method could be
integrated with the SIROP tie-points (see Figure 30).

Figure 30. Completion of tie-point extractions by SIFT in low resolution scene part and SIROP in
optimal resolution part. (Left): tie-points by SIFT. Middle: tie-points by SIROP. (Right): SIROP and
SIFT points are taken to complete the “far” low resolution scene part (red frame).

Inspection of the UAV datsets revealed that SIROP tie-points contribute to a better estimation
of the camera internal parameters and thus are capable of eliminating the systematic “dome” effect.
Stability of the internal camera parameters calculated with SIROP has been also verified (see Figure 29).

The processing time of SIROP is also evaluated by the Corridor dataset (see Figure 27 and Table 2)
containing 77 panchromatic 20-megapixel images. The classical framework at full-resolution, from the
tie-points extraction to 3D mesh generator requires 234 minutes. SIROP is then applied using the
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3D mesh and image orientation derived from the classical round. SIROP time consuming essentially
depends on the number of images in dataset and the number of triangles in the 3D mesh. In this test,
the 3D mesh contains 18021 3D triangles and SIROP processing takes 18 minutes.

Overall, the method proved its efficiency and could be adopted as a post-processing step for fine
metrology applications. Furthermore, SIROP could be used to accelerate the classical processing by
using a very low resolution scene geometry calculated with a SIFT-like method at its input.
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Abbreviations

The following abbreviations are used in this manuscript:

SIROP Second Iteration to Refine image Orientation with improved Tie-Point
ICP Iterative Closest Point
LSM Least Square Matching
ROI Region of interest
CQS Contrast Quality Score
ZNCC Zero Mean Normalized Cross-Correlation
BBA Bundle Block Adjustment
GCP Ground Control Point
UAV Unmanned aerial vehicle
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