Published online 1 June 2021

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 1
https./ldoi.orgl10.1093nargabllqab049

pyrpipe: a Python package for RNA-Seq workflows

Urminder Singh “1-2:3, Jing Li?3, Arun Seetharam* and Eve Syrkin Wurtele'-2:3"

'Bioinformatics and Computational Biology Program, lowa State University, Ames, IA 50014, USA, ?Center for
Metabolic Biology, lowa State University, Ames, IA 50014, USA, 3Department of Genetics Development and Cell
Biology, lowa State University, Ames, IA 50014, USA and “Genome Informatics Facility, lowa State University, Ames,

IA 50014, USA

Received January 27, 2021; Revised May 06, 2021; Editorial Decision May 16, 2021; Accepted May 18, 2021

ABSTRACT

The availability of terabytes of RNA-Seq data and
continuous emergence of new analysis tools, en-
able unprecedented biological insight. There is a
pressing requirement for a framework that allows for
fast, efficient, manageable, and reproducible RNA-
Seq analysis. We have developed a Python pack-
age, (pyrpipe), that enables straightforward devel-
opment of flexible, reproducible and easy-to-debug
computational pipelines purely in Python, in an
object-oriented manner. pyrpipe provides access
to popular RNA-Seq tools, within Python, via high-
level APIls. Pipelines can be customized by inte-
grating new Python code, third-party programs, or
Python libraries. Users can create checkpoints in
the pipeline or integrate pyrpipe into a workflow
management system, thus allowing execution on
multiple computing environments, and enabling effi-
cient resource management. pyrpipe produces de-
tailed analysis, and benchmark reports which can be
shared or included in publications. pyrpipe is im-
plemented in Python and is compatible with Python
versions 3.6 and higher. To illustrate the rich func-
tionality of pyrpipe, we provide case studies using
RNA-Seq data from GTEx, SARS-CoV-2-infected hu-
man cells, and Zea mays. All source code is freely
available at https://github.com/urmi-21/pyrpipe; the
package can be installed from the source, from PyPI
(https://pypi.org/project/pyrpipe), or from bioconda
(https://anaconda.org/bioconda/pyrpipe). Documen-
tation is available at (http://pyrpipe.rtfd.io).

INTRODUCTION

Since its inception, RNA-Seq has become the most widely
used method to quantify transcript levels (1,2). A researcher
can leverage the now-massive RNA-Seq data in public
databases, encompassing samples from multiple species, or-
gans, genotypes and conditions (3). Integrated reanalysis of

aggregations of these diverse RNA-Seq samples enables ex-
ploration of changes in gene expression over time and across
different biological conditions (4).

A major challenge in analysis of RNA-Seq datasets is im-
plementing data processing pipelines in an efficient, mod-
ular, and reproducible manner (5-8). Most bioinformatics
tools are executable programs, executed via a command-line
interface (CLI), that must be specified inside a scripting lan-
guage for automated execution. Thus, writing bioinformat-
ics pipelines as Perl, Bash or Python scripts is a common
practice among bioinformaticians. Scripting is powerful
and flexible. However, plain scripting has several significant
downsides (9). First, especially for complicated pipelines,
bash scripts can be difficult to develop or maintain. Sec-
ond, for beginners it is hard to write bash scripts in a robust
manner that can handle exceptions or resolve errors dynam-
ically. Writing multiple commands along with all the param-
eters in a single bash script often becomes hard to read, un-
derstand, and modify. Third, bash scripts do not provide
an easy-to-use framework for building modular pipelines.
Fourth reproducibility of methods is best-practice in com-
puting, being required by more and more journals (10), and
scripting alone has significant limitations for reproducible
bioinformatics (9). Fifth, scripts often contain significant
‘boilerplate code’ as the user repeats commands and pa-
rameters in the script. This results in challenges, particularly
for complex pipelines. Managing the tool’s parameters and
making changes becomes difficult and error prone. Control-
ling parameters is essential for reproduciblity but are diffi-
cult to document, and hard to track if not well documented.
Moreover, no straightforward framework exists to define
tools and parameters and modify them at runtime.

Here we present Python RNA-Seq pipeliner, pyrpipe,
a lightweight Python package for users to code and exe-
cute computational pipelines in an object-oriented manner,
in pure Python. No new workflow syntax that is specific to
pyrpipe isrequired. pyrpipe delivers an intuitive frame-
work to easily import any Linux/macOS executable com-
mand or third-party tool as reusable Python objects.

Using the pyrpipe framework, users can implement
RNA-Seq downloading and processing pipelines in a single
go, quickly and intuitively. In addition, we have designed

*To whom correspondence should be addressed. Tel: +1 515 708 3232; Email: mash@iastate.edu

© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-3703-0820
https://github.com/urmi-21/pyrpipe
https://pypi.org/project/pyrpipe
https://anaconda.org/bioconda/pyrpipe
http://pyrpipe.rtfd.io

2 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

APIs to popular RNA-Seq tools and incorporated these
into pyrpipe to enable coherent RNA-seq processing — from
managing the raw data, to trimming, alignment, and assem-
bly or quantification. pyrpipe’s simple API design allows for
automated access to publicly available NCBI-SRA RNA-
Seq data (11) allowing users to quickly implement pipelines
for harmonized re-analysis of these datasets (Figure 1).

pyrpipe will be helpful for users looking for a robust
approach to write pipelines in pure Python. Compared to
plain Bash, Perl, or Python scripting, pyrpipe provides
many helpful features for building reproducible and easy-
to-share pipelines. These features include: extensive logging
and reports; loading tool options from YAML files to easily
modify and document tool parameters; a dry-run mode to
check dependencies and targets before implementing large-
scale analysis; resuming of jobs if they are interrupted; and
saving pyrpipe sessions.

pyrpipe can be used for quick prototyping of RNA-
Seq processing pipelines because of the ease in swapping
out pyrpipe objects, such as substituting Stringtie (12) for
Cufflinks (13) for transcript assembly. pyrpipe pipelines
can be casily scaled using a workflow manager, including
the popular Snakemake (7), NextFlow (8) or Toil (14). The
workflow management system then can scale and manage
jobs on clusters and schedule independent jobs for paral-
lel processing, facilitating scalable pipelines and optimizing
resource usage. Meanwhile, pyrpipe, whether used inde-
pendently or as part of a workflow management system,
facilitates ease-of-implementation, reproducibility, under-
standability, and modification of the RNA-Seq processing
pipeline.

MATERIALS AND METHODS
Overview

We developed pyrpipe to provide a light-weight Python
framework for implementing bioinformatics or other com-
putational analysis pipelines. The pyrpipe framework in-
clude: (i) high-level APIs to popular RNA-Seq tools; (ii) a
general API to import any executable command/tool into
Python, enabling use of any bioinformatics tool and (iii) ex-
tensive monitoring and logging details of the commands
that are executed. Thus, pyrpipe allows users to im-
port any Linux/macOS executable command/tool into the
Python ecosystem and implement pipelines in pure-Python
incorporating their own Python code, existing Python Ili-
braries and third-party programs. To execute the com-
mands, pyrpipe uses Python’s subprocess library but adds
many useful features and options. The commands executed
via pyrpipe are automatically logged, monitored, and can
be flexibly controlled using pyrpipe options. pyrpipe is
packaged as a Python library and can be installed via PyPI
or conda. An advantage of using the Python platform is that
itis widely used, free, flexible, object-oriented, has high-level
data structures (15-18), and a growing repository of >200
000 packages and tools.

The pyrpipe framework

pyrpipe enables users to code pipelines in an object-
oriented manner, using specialized API ‘classes’ provided

by pyrpipe. Each class in pyrpipe is designed to work
with a particular processing tool, for example, the Star class
implements the necessary functionality to use the STAR
tool (19) for RNA-Seq alignment via pyrpipe. Users can
create specific objects of these classes and use the objects in
their Python scripts (Figure 1). Each RNA-Seq processing
tool is fully accessible via these objects and the user is not re-
quired to remember the full usage syntax of that tool, hence
promoting abstraction. Instead, the data and parameters re-
quired by these tools are encapsulated within the respective
objects. For example, when creating a Star object, its index
and other parameters are saved with the object (Figure 1).
pyrpipe provides flexible parameter management (Figure
1). If no parameters are provided by the user, the tool is
executed with its default parameters. We recommend that
users fully understand and use the best parameters for their
pipelines.

Tools performing similar types of RNA-Seq processing
steps are grouped together in a single pyrpipe module,
and are designed to have identical APIs. This enables their
objects to be easily interchangeable in pipelines, promot-
ing reusability and modification. For example, the classes
‘Star’ and ‘Hisat2’, both in the pyrpipe ‘mapping’ mod-
ule, implement the build_index and perform_alignment func-
tions. Thus, changing a Star object with a Hisat2 object is
straightforward. See Supplementary Data for implementa-
tion details.

APIs for RNA-Seq processing

pyrpipe provides high-level APIs, to access full function-
ality of 11 popular RNA-Seq analysis tools that expedite
and enhance implementation of RNA-Seq pipelines that
can be readily shared, modified, or reused, including a ded-
icated module to facilitate access and management of the
extensive RNA-Seq data available from the National Cen-
ter for Biotechnology Information Research Sequence Read
Archives (NCBI-SRA) database (3).

These API classes are implemented inside several highly
cohesive modules: (sra, mapping, alignment, quant, qc,
tools). Each module has been designed to capture steps inte-
gral to RNA-Seq analysis: (i) access NCBI-SRA and man-
age raw RNA-Seq data; (ii) quality control; (iii) read align-
ment; (iv) transcript assembly and (v) transcript quantifica-
tion. (Supplementary Table S1 and Supplementary Figures
S1 and S2). We have built and integrated these APIs into
the pyrpipe package, such that any RNA-Seq processing
pipeline can be intuitively executed by the researcher while
writing minimal code (Figure 1).

By default, all output files are consistently named and
managed by pyrpipe, and put in the same directory as the
RNA-Seq data files. Users can provide a different output di-
rectory.

Flexibility in pipeline execution, debugging, and pipeline
sharing

pyrpipe flexibility extends to enabling the user to choose
how to execute and handle exceptions and errors to modify
their pipeline’s behavior.

Users can create checkpoints in the pipeline, save the cur-
rent pyrpipe session, and resume later. This is particularly

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 3

%) Pvthon Python objects Parameters
Code Y @ @ /params @
#1 create an SRA object SIr P

srr=SRA('SRR976159') TP\ access fastq_/ | ¢ 1@Stera-dum.
#2 create trim_galore object bl
tgalore=Trimgalore() . Igalore ; trimgalore.
#3 create a STAR object P\ _lrim transcripts) | ¢ yaml
star=Star(index='star_index',genome='gen.fa') (star) star.yaml
#4 create StringTie object | \nap to genome /) < '

stringtie=Stringtie(guide='"ref.gtf")

#5 RNA-seq processing str_mgtl_e stringtie.yam(
srr.trim(tgalore).align(star).assemble(stringtie) 9| \(r2nscript assembly) i

#6 Import orfipy command in python
orfipy=Runnable(command='orfipy")
#7 pass stringtie.gtf to orfipy
orfipy.run(srr.assembly)

orfipy orfipy.yaml

- find ORFs

f

$ python script.py --threads 10 Sh eu@
E t $ fasterq-dump -O SRR976159 -o SRR976159.fastq -e 10 -f SRR976159
XeCULe| g im galore --cores 10 ~-paired -0 SRR976159 SRR976159/SRRI76159_1.fastq \
SRR976159/SRR976159_2.fastq
$ STAR --runThreadN 10 --genomeDir star_index --outSAMtype BAM SortedByCoordinate
\ --readFilesIn SRR976159/SRR976159_1_tg.fastq SRR976159/SRR976159_2_tg.fastq \
--outFileNamePrefix SRR976159/
$ stringtie -p 10 -G ref.gtf -o SRR976159/Aligned.sortedByCoord.out.gtf \
SRR976159/Aligned.sortedByCoord.out.bam
$ orfipy SRR976159/Aligned.sortedByCoord.out.gtf
I ' £ o * Analysis reports and summam@
RPN r © * Extensive debugging
logs : ‘ information.
eports + Benchmark stats and charts.
pyrpipe_diagnostic + MultiQC reports supported.

Figure 1. The pyrpipe framework. This very simple example illustrates the relationship between the Python code that the user writes for pyrpipe, the
corresponding Python objects, the YAML parameter files, the corresponding shell script, and the output. The user need only define the NCBI-SRA Run
Accessions and the tools to be used, the rest is automatic. Here, a single RNA-Seq run is specified; alternatively, thousands of runs could be processed.
A key advantage of pyrpipe is that it can be used to easily create complex workflows that are intuitive, understandable, reproducible, and modifiable.
pyrpipe can automatically load and resolve tool parameters from YAML files; this allows the user to facilely modify and document parameters (an
example of a YAML file is in Supplementary Figure S7). pyrpipe is represented by the green boxes. The user writes the code in Python (blue text),
creating Python objects of specific pyrpipe classes that provide APIs to RNA-Seq tools. To execute the full pipeline, the user need to run only the Python
file, e.g. “python script.py —threads 10", to designate executing the pipeline using 10 threads (Box A). Each object encapsulates specific methods and data
(Box B). For example, each SRA object stores the directory path for the associated raw RNA-Seq data that is used as the default directory by pyrpipe to
output files from different RNA-Seq processing steps, i.e., trimming, alignment, assembly or quantification. Tool parameters, if supplied in YAML files,
are automatically loaded and stored in the corresponding pyrpipe object (Box C). During processing, shell commands are automatically constructed
and executed by the pyrpipe APIs; pyrpipe provides this comprehensive output of bash commands so that the user can easily monitor the status of
the job. (Box D). After execution, the pyrpipe_diagnostic tool generates extensive data analyses and diagnostic reports from the logs. These enable users to
summarize, share, benchmark or debug their pipelines (Box E).

useful for running different blocks of a workflow in different
environments that can optimize resource usage. For exam-
ple, on a typical high performance computing (HPC) clus-
ter, a researcher might use a dedicated data-transfer node
to retrieve data from SRA and then use compute nodes for
data processing.

pyrpipe allow users to dry run the pipeline, during
which commands are printed to screen, but not executed;
thus, any potential error in the pipeline can be detected and
fixed before using it to process large amounts of data. In
addition, pyrpipe can skip execution of commands for

which the output files are already present, saving computer
time. Users can deploy the —force option to re-execute these
commands (See Supplementary Data).

pyrpipe’s logging features enable efficient error detec-
tion and reports (Figure 1). Errors and extensive environ-
ment information, such as operating system and Python
version, along with version and path information for each
program used within the pipeline, are all logged. pyrpipe
logs are saved in JavaScript Object Notation (JSON) format
for parsing by pyrpipe and other software (Supplemen-
tary Table S2).

4 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

The pyrpipe_diagnostic command can be invoked to gen-
erate comprehensive reports about the analysis, benchmark
comparisons (Supplementary Figure S3), shell scripts and
MultiQC reports (20). These reports, along with the Python
scripts, can be shared or included with publications to en-
sure reproducibility.

The default pyrpipe behaviour for logging, dry-run, and
reports, can be modified by supplying pyrpipe with specific
options via command-line or by specifying these in a pyr-
pipe_conf.yaml file.

Reproducible analysis

Reproducibility can be a major challenge in bioinformat-
ics studies because of heavy computational intensive tasks
that depend on a number of software and system libraries.
Reproducibility can be ensured by controlling execution en-
vironments via environment managers such as Anaconda,
container systems such a Docker, or isolated virtual ma-
chines (5).

pyrpipe is a Python package available through bio-
conda (21) and can be installed and managed within conda
environments, containers or VMs. We have included in pyr-
pipe documentation the recommended way of installing the
required tools, with version information (Supplementary
Table S1), for RNA-Seq analysis via bioconda (21).

Besides the user controlling the execution environment,
pyrpipe adds several layers to enhance reproducibility of
analysis. pyrpipe creates a local copy of the pipeline script
so that user has access to the exact pipeline code later. pyr -
pipe logs the MD5 checksums of the pipeline script and
any input files provided as arguments. Thus, the user can
verify which scripts and input files were used in the analy-
sis. We recommend users to use a version control software
such as Git to keep a track of the changes to the scripts.

pyrpipe allows and encourages users to define separate
YAML files for the tool parameters. This enables the user to
modify, manage, share and reproduce computational analy-
sis on different data and platforms. Further, pyrpipe logs
contain detailed information about all the tools/commands
used and their versions, which can be utilized to re-build the
environments.

RESULTS

We evaluated pyrpipe by three case studies, each illustrat-
ing a different aspect of what the tool can accomplish and
how new functionality can be added.

Case study 1: Scaling up pyrpipe to process 17 328 RNA-
Seq samples from non-diseased human tissues

This case study demonstrates the ability of pyrpipe to
process large amounts of data—17 328 human RNA-Seq
samples from the Genotype-Tissue Expression (GTEx V8)
(22). We developed and implemented our pipeline to iden-
tify expressed human orphan genes, as well as annotated
genes, in diverse tissues using pyrpipe. This pipeline co-
hesively automated the steps of RNA-Seq processing into
a single. It : (i) downloaded data from 17 328 raw GTEx
RNA-Seq samples via AnVil (anvilproject.org); (ii) aligned

the reads of each sample to the human reference genome
using STAR (19); (iii) assembled transcripts using Stringtie
(12); (iv) merged transcriptomes from individual samples
into a consistent assembly using orfipy (23), Mikado (24)
and Taco (25) and (v) quantified the annotated and unanno-
tated transcripts using Salmon (26) (see Supplementary Fig-
ure S4 for details). This pipeline was run on the PSC Bridges
HPC system (https://www.psc.edu/resources/bridges/). The
pipeline was scaled to run multiple batches of RNA-Seq
samples in parallel on multiple nodes. Code and data for
this project is available https://github.com/urmi-21/pyrpipe/
tree/master/case_studies/ GTEx_processing.

To assess the results of our pipeline, we have compared
the expression of annotated genes identified by the pyr-
pipe pipeline with those reported in GTEx (a pipeline
that only quantifies the annotated genes). This comparison
showed good accordance between expression values from
the two pipelines. We compare the median TPMs of anno-
tated genes for two types of adipose tissue, as processed by
pyrpipe and by the GTEx portal (Figure 2).

Case study 2: Integrating pyrpipe within a workflow man-
ager to quantify gene expression in COVID-19 samples for
exploratory analysis

We implemented pyrpipe within two workflow manage-
ment systems, Snakemake (7) and NextFlow (8), selecting
these specifically because they are widely used by the bioin-
formatics community (27). Snakemake and NextFlow were
independently used to implement, manage and execute the
pipeline for multiple RNA-Seq samples in parallel on a sin-
gle cluster.

We used this pipeline to quantify RNA-Seq data from a
COVID-19 study of circulating monocytes (28), and pro-
vide output that can be directly analyzed by biologists, us-
ing the versatile Java software for exploratory analysis of
large datasets, MetaOmGraph (MOG).

Specifically, we used pyrpipe to seamlessly down-
load 29 RNA-Seq samples from NCBI-SRA (accession
SRP287810) and quantify expression of annotated tran-
scripts using Salmon’s selective alignment approach (26,29).
This study analyzed RNA-Seq data from circulating mono-
cytes derived from individuals with COVID-19 and healthy
individuals, treated and untreated with hydroxychloro-
quine. The final transcript and gene level TPMs from each
sample are merged into a single file to create a MetaOm-
Graph (4) project (MOGproject-monocytes-60241genes-
29samples-HCQtreat-2021-1-17) for exploratory data anal-
ysis.

Using MetaOmGraph for rapid exploration of the data,
we identified genes that show differential expression pat-
terns between COVID-19-diseased individuals (n = 20) ver-
sus healthy individuals (n = 9).

Nine of the fourteen genes most highly overexpressed in
monocytes from healthy individuals are involved in the bio-
logical process, neutrophil chemotaxis (GO:0030593; Bon-
feroni corrected P-value of 5.229E-10); these include six
CCL- and CXL-type chemokines. Interestingly, in lung tis-
sues, CCL2 and other chemokine expression are decreased
by ACE2, but up-regulated during a COVID-19-induced
cytokine storm (30). Of the 14 genes highly expressed in

https://www.psc.edu/resources/bridges/
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/GTEx_processing

Pearson corr: 0.97

Adipose_Visceral_Omentum

) >
[
o

oo

log TPM (GTEX portal

W
=
o

log TPM (GTEXx portal)

0 2 4 6 8 10
log TPM (pyrpipe)

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 5

Pearson corr: 0.97

Adipose_Subcutaneous

0 2 4 6 8 10
log TPM (pyrpipe)

Figure 2. Comparison of median TPMs for two tissue types. (A) Visceral Adipose and (B) subcutaneous Adipose. Y-axis shows the logged median TPMs
computed by the GTEx portal pipeline. X-axis shows the logged median TPMs computed by our pipeline implemented with pyrpipe. Pearson correlations
are 0.97%. Differences in quantification of several 100 genes are likely due differences in reference annotations. Code and data to reproduce this plot and,
to compare other tissue types are available at https://github.com/urmi-21/pyrpipe/tree/master/case_studies/GTEx_processing.

monocytes from COVID-19-diseased individuals but not
in healthy indivduals (Figure 3C), 12 participate in im-
mune effector (GO:0002252; Bonferoni corrected P-value
of 3.161E~12), including nine defensins or immunoglobins.
These biological processes are also associated strongly with
COVID-19 in neutrophils (31). Functional designations
were obtained using ToppGene (https://toppgene.cchmc.
org) (Supplementary File 1).

The code, data, and MetaOmGraph project are avail-
able at https://github.com/urmi-21/pyrpipe/tree/master/
case_studies/Covid_RNA-Seq.

Case study 3: Use of pyrpipe for de novo transcriptome as-
sembly

We used a new, high-quality genome of Zea mays B73 cul-
tivar (https://doi.org/10.1101/2021.01.14.426684) as refer-
ence genome, and gathered RNA-Seq data from ten diverse
samples (B73 cultivar), representing different tissue and de-
velopment stages, for de novo transcriptome assembly (Sup-
plementary Figure S5). Our pipeline identified a total of 57
916 distinct transcripts. Of these, 38,881 transcripts were
homologous to UniProt proteins (32,33). These transcripts
could be non-coding RNAs (ncRNAs), low-level ‘noise’
(34), or pseudogenes; others might represent as yet unan-
notated genes encoding conserved proteins. The remain-
ing 6,306 transcripts, with no similarity to any protein in
the database, could be ncRNAs, ‘noise’; others are likely
to be as yet unannotated species-specific (‘orphan’) genes
(35). The transcript length and GC content distribution for
transcripts with conserved CDS and transcripts are shown
in Supplementary Figure S6. The mean length of non-
homologous transcripts (1290 nt) is shorter than conserved
transcripts (1981 nt); mean GC content is indistinguish-
able (50.8% versus 50.6%). The median expression of non-
homologous transcripts across the 10 RNA-Seq samples
analyzed is lower than the median expression of conserved
transcripts; however, in each sample, hundreds of non-
homologous transcripts are more highly expressed than the
mean of the conserved genes. These characteristics follow

the same trend as those of the conserved and orphan genes
in the well-characterized Arabidopsis thaliana genome (36).
Pipeline scripts, downstream analysis code and data are
available at https://github.com/lijing28101/maize_pyrpipe.

Comparison of pyrpipe to existing Python libraries that
can be used for RNA-Seq analysis

Several Python libraries enable workflows to be specified.
However, they do not provide a dedicated API suite for
RNA-Seq data analysis. Instead, these frameworks depend
on the user to explicitly write the commands and provide
data.

We compared pyrpipe with two such Python libraries
that allow specifying bioinformatics pipeline - Ruffus (37)
and Pypiper (http://code.databio.org/pypiper/). Ruffus is a
Python library for specifying and executing workflows. Ruf-
fus allows users to specify pipeline tasks using several ‘dec-
orator’ functions. Pypiper is a Python package for coding
pipelines in Python. It provides the ‘PipelineManager’ class
which a user can employ to execute commands in a serial
manner. Pypiper has a built-in toolkit, NGSTk, to allow
users to generate commonly used bioinformatics shell com-
mands. These functions return commands as string objects
that can be passed to ‘PipelineManager’ for execution. Ta-
ble 1 compares pyrpipe features with Ruffus and Pypiper.

DISCUSSION AND CONCLUSION

The pyrpipe package allows users to code and implement
RNA-Seq workflows in an object-oriented manner, purely
using Python. pyrpipe is intended for any user who ana-
lyzes RNA-Seq data- beginner or advanced. APIs to RNA-
Seq tools make it straightforward to code RNA-Seq pro-
cessing pipelines. Access to NCBI-SRA is automated, such
that users can readily retrieve raw read RNA-Seq data. The
downloaded raw RNA-Seq data and data files are automati-
cally managed, and consistently accessed through SRA4 ob-
jects. Users need not keep track of data files or paths, as

https://github.com/urmi-21/pyrpipe/tree/master/case_studies/GTEx_processing
https://toppgene.cchmc.org
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Covid_RNA-Seq
https://doi.org/10.1101/2021.01.14.426684
https://github.com/lijing28101/maize_pyrpipe
http://code.databio.org/pypiper/

6 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

W CCL2mmm CCLS mmm [CAM2 i |L4I1 msi S1PR2

Healthy | COVID-19

11

10

9

o7

o

_l6

5

3

1

O%ﬁ%‘%"ﬂ#@@%ﬁ"ﬁ%B%g“’VES:‘”QQB%SNQ
Vﬂ’Vgﬂ’VV?VV@@VVMV%%?V?@V?VMM@V
o o o @ 9o @ 9o @ 9 @ 9o @99 9 9o 9 9 9 9 9o 92 9 9 9 <9 9 9o o9 9 o°o o9 9o 9 9
2 2 2 8 8 2 8 8 8 8 2 8 8 8 2 88 8 8 2 22 8 8 2 2 8 8 2 2 =2
© ®o @ ®o o 9’ L ®L ® o o ©o ® ®» o 9’ o ®o o ® ®o 9w ®o o o ®L o »o o w0
NN N N N N N N N N N N N N NN NN N N NN NN NN N NN
8 8 § § 8 8 § § 8§ 8 8 § § 8 8 § § 8 8 8§ 8y 8 8 8 8§ 8 8 8§ 9
¢ &£ &£ £ £ ¢ £ @ ¢ £ £ £ @ @ @£ £ ¢ @£ @£ @ £ £ ¢ £ £ £ x @£ @«
¢ &£ 2&£ @£ 9« ¢ ¢ @£ &£ 9 &£ &£ £ &£ @9 &£ ¢ &£ 9 @ £ £ &£ &£ 9 &£ x &£ @&
n »u »un un un un un un un un un un un n un u un u u u u un un un un u u u un

B Bl Healthy) C o Ml Healthy _

13 | HE CcovID-19 Il coviD-19

12

13
- p
11 T I

Figure 3. Exploratory analyses and visualization using MetaOmGraph (4) of RNA-Seq data dervived from monocytes of COVID-19 diseased and healthy
individuals. The data were downloaded from NCBI-SRA and processed using pyrpipe integrated into the workflow manager, Snakemake. Raw reads
from 29 samples of monocytes derived from individuals with COVID-19 (n = 20) and healthy (z = 9) individuals (SRP287810) were downloaded and
processed. Over 60,000 genes are represented in each sample of processed data. For quick preliminary exploration of the data, using MetaOmGraph, we
identified genes with more than two-fold change in TPM values with Benjamini-Hochberg adjusted p-value <0.002 for the non-parametric Mann—Whitney
test. (A) Line chart showing expression pattern of genes non-linearly associated with CCL2 (estimated via Mutual Information (40)) in COVID-19 and
healthy individuals. (B) Fourteen genes with highest fold change in healthy versus COVID-19 diseased individuals. (C) Fourteen genes with highest fold
change in COVID-19 diseased versus healthy individuals.

=
(ST
!
-
—

-
o

L
I
L
o
-4
-
-
Log TPM

Log TPM

O = N W D U1 OO N 0 W

{

i

©O = N W A U1 O N ® O

L B
-
-
Ll
— -
HIH
k
-—
Hl—

MRC1
|
}
I
[
cw -
IGHJS |
DEFAL |l
IGH) | —
HP |

IGLV3-19 |
|

C1Sorf48
oxcLs
ccL24

GPNMB
oxcLs
ccL22
SPP1
FPR3
sbC2
PMP22
MMP9
ca
cc2
5S_rRNA
DEFA3 |
IGLV3-1 |
IGLCL
16LC2
DEFA1B |
IGHG1 |
1GLV3-25 |
RNASE2

Table 1. Comparison of pyrpipe features with Ruffus and Pypiper. *For parallel execution support, pyrpipe easily can be integrated with a workflow
management system, e.g. case study 2

Feature pyrpipe Ruffus Pypiper
Latest version 0.0.5 284 0.12.1
Latest update 2021 2020 2019
API to RNA-Seq tools v X X
Import tools as objects v X X
Auto-load tool parameters v X X
Dry run mode v X X
Resume Interrupted v v v
Exception handling v v v
Parallel execution support* X v X
Logs/reports VIV v /X VIV

these are integrated with pyrpipe objects. pyrpipe en-
hances the re-usability of the code-blocks, cutting down de-
velopment time for new pipelines from existing code base.
It also improves re-usability of the workflows, because all
the parameters that needs to be adjusted for new analyses
could be read from YAML files. pyrpipe workflows can
be modified using Python’s control flow abilities and a user
can create complex, reproducible, workflow structures. Any
third party tool, executable command, or script can be in-
tegrated into pyrpipe for additional data processing ca-
pability. pyrpipe logs and reports enable debugging and
reproducibility.

Analysis of the 17 328 GTEx RNA-Seq samples was eas-
ily scaled using pyrpipe alone, by creating smaller batches
of samples and submitting the processing jobs in parallel,
on an HPC system with a slurm job scheduler.

When building more complex and scalable workflows, it
may be more efficient to integrate pyrpipe into a work-
flow management system. This can easily be done, as shown
in our second case study. Workflow management systems
are developed for robust implementation of computational
pipelines; nevertheless, they differ significantly in terms
of workflows, definitions, job scheduling, and features (6—
8,14). For example, Snakemake uses a ‘pull-based’ strategy
to check for specific output files and schedule jobs accord-
ingly (6,7), whereas Nextflow uses a ‘push-based’ scheme in
which a ‘process’ defined in the workflow pushes its outputs
to downstream ‘processes’ (8,38). The SciPipe (6) workflow
library is written in the GO language; similar to Nextflow it
implements dataflow based task scheduling. Toil (14) pro-
vides explicit application programming interfaces (APIs)
for defining static or dynamic tasks and supports com-
mon workflow language (CWL) and multiple cloud envi-
ronments (9,14). Hence, users need to make informed deci-
sions if choosing a workflow management system (27) for
pyrpipe.

The modular design of pyrpipe permits users to write
pythonic code, which is designed to read, manage, and share.
Because of the rapid emergence of new bioinformatics tools,
this design feature is particularly important. From a devel-
oper’s perspective, pyrpipe’s modularity facilitates reuse
and extensibility; new tools/APIs can be easily integrated
into pyrpipe and promotes sustainability.

Compared to plain Bash or Python scripting, pyrpipe
provides many handy features for writing reproducible, ro-
bust and flexible pipelines in pure Python. Being simple,
powerful, and easy to learn, Python has become one of
the most popular languages among biologists and bioin-
formaticians; furthermore, a wide variety of tools are avail-
able in Python (15,16). Keeping this in mind, we designed
a general framework such that pyrpipe is fully extend-
able to include any third-party tool, while writing minimal
code. This design lets Python users integrate their own cus-
tomized APIs into the pyrpipe ecosystem and thus in-
corporate diverse functionality into their pipelines. We have
provided an example in the documentation (https://pyrpipe.
readthedocs.io/en/latest/tutorial/api.html).

pyrpipe will appeal to users who are looking for a
simple way to deploy small or large scale RNA-Seq pro-
cessing pipelines, and to make these pipelines accessible
to the community. pyrpipe supports the model of re-

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 7

producible open science. Straightforward and seamless in-
tegration, execution, and sharing of RNA-Seq workflows
make it an ideal choice for users with less computational
expertise, as well as seasoned bioinformaticians. Writing
Python code using pyrpipe is intuitive and maintainable.
Leveraging Python language’s flow control and exception-
handling abilities, users can quickly create complex and dy-
namic pipelines. Moreover, downstream analysis and data
manipulation steps can be directly integrated into pyrpipe
pipelines via Python.

DATA AVAILABILITY

We subscribe to FAIR data and software practices (39).
pyrpipe source code is available at https://github.com/
urmi-21/pyrpipe. pyrpipe source code (v0.0.5) can be
accessed via DOI: 10.5281/zenodo.4448373. The pyr-
pipe package can be installed from the source, from
PyPi (https://pypi.org/project/pyrpipe) or from bioconda
(https://anaconda.org/bioconda/pyrpipe). Extensive docu-
mentation to guide users on how to use pyrpipe and the
APIs implemented within it is available on Read the Docs
(http://pyrpipe.rtfd.io). We encourage contributions from
the bioinformatics community (Contribution guide along
with a Code of Conduct to guide new contributors is avail-
able at https://github.com/urmi-21/pyrpipe We hope to see
pyrpipe evolve as a community driven project.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.

FUNDING

National Science Foundation [IOS 1546858, in part]; Or-
phan Genes: An Untapped Genetic Reservoir of Novel
Traits; Center for Metabolic Biology, lowa State Univer-
sity; This work used the Extreme Science and Engineer-
ing Discovery Environment (XSEDE), which is supported
by National Science Foundation [ACI-1548562], in particu-
lar the Bridges HPC environment through allocations TG-
MCB190098 and TG-MCB200123. Funding for open ac-
cess charge: National Science Foundation [IOS 1546858].
Conflict of interest statement. None declared.

REFERENCES

1. Mortazavi,A., Williams,B.A., McCue, K., Schaeffer,L. and Wold,B.
(2008) Mapping and quantifying mammalian transcriptomes by
RNA-Seq. Nat. Methods, 5, 621-628.

2. Stark,R., Grzelak,M. and Hadfield,J. (2019) RNA sequencing: the
teenage years. Nat. Rev. Genet., 20, 631-656.

3. Kodama,Y., Shumway,M. and Leinonen,R. (2011) The Sequence
Read Archive: explosive growth of sequencing data. Nucleic Acids
Res., 40, D54-D56.

4. Singh,U., Hur,M., Dorman,K. and Wurtele,E.S. (2020)
MetaOmGraph: a workbench for interactive exploratory data
analysis of large expression datasets. Nucleic Acids Res., 48, €23.

5. Griining,B., Chilton,J., Koster,J., Dale,R., Soranzo,N., van den
Beek,M., Goecks,J., Backofen,R., Nekrutenko,A. ez al. (2018)
Practical computational reproducibility in the life sciences. Cell syst.,
6, 631-635.

6. Lampa,S., Dahlo,M., Alvarsson,J. and Spjuth,O. (2019) SciPipe: a
workflow library for agile development of complex and dynamic
bioinformatics pipelines. GigaScience, 8, giz044.

https://pyrpipe.readthedocs.io/en/latest/tutorial/api.html
https://github.com/urmi-21/pyrpipe
https://anaconda.org/bioconda/pyrpipe
https://github.com/urmi-21/pyrpipe
http://nargab.oxfordjournals.org/lookup/suppl/doi:10.1093/nargab/lqab049#supplementary-data

20.

21.

22.

23.

24.

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

. Koster,J. and Rahmann,S. (2012) Snakemake—a scalable

bioinformatics workflow engine. Bioinformatics, 28, 2520-2522.

. Di Tommaso,P., Chatzou,M., Floden,E.W., Barja,P.P., Palumbo,E.

and Notredame,C. (2017) Nextflow enables reproducible
computational workflows. Nat. Biotechnol., 35, 316.

. Leipzig,J. (2017) A review of bioinformatic pipeline frameworks.

Brief. Bioinformatics, 18, 530-536.

. Wittenburg,P. (2021) Open science and data science. Data Intell., 3,

95-105.

. Sherry,S. and Xiao,C. (2012) Ncbi sra toolkit technology for next

generation sequence data. In: Plant and Animal Genome XX
Conference (January 14-18, 2012). Plant and Animal Genome.

. Pertea,M., Pertea,G.M., Antonescu,C.M., Chang,T.-C., Mendell,J.T.

and Salzberg,S.L. (2015) StringTie enables improved reconstruction
of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290.

. Trapnell,C., Williams,B.A., Pertea,G., Mortazavi,A., Kwan,G., Van

Baren,M.J., Salzberg,S.L., Wold,B.J. and Pachter,L. (2010) Transcript
assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat.
Biotechnol., 28, 511.

. Vivian,J., Rao,A.A., Nothaft,F.A., Ketchum,C., Armstrong,J.,

Novak,A., Pfeil,J., Narkizian,J., Deran,A.D., Musselman-Brown,A.
et al. (2017) Toil enables reproducible, open source, big biomedical
data analyses. Nat. Biotechnol., 35, 314.

. Suarez,C.G.H., Burbano,M.E.G., Guerrero,V.A.B. and Tovar,P.A.M.

(2018) Bioinformatics software for genomic: a systematic review on
GitHub. PeerJ doi: https://doi.org/10.7287/peerj.preprints.27352v3,
19 November 2018, preprint: not peer reviewed.

. Mariano,D., Ferreira,M., Sousa,B.L., Santos,L.H. and de

Melo-Minardi,R.C. (2020) A brief history of bioinformatics told by
data visualization. In: Brazilian Symposium on Bioinformatics.
Springer pp. 235-246.

. Kossaifi,J., Panagakis, Y., Anandkumar,A. and Pantic,M. (2019)

Tensorly: tensor learning in python. J. Mach. Learn. Res., 20,
925-930.

. Kanterakis,A., latraki,G., Pityanou,K., Koumakis,L., Kanakaris,N.,

Karacapilidis,N. and Potamias,G. (2019) Towards reproducible
bioinformatics: the OpenBio-C scientific workflow environment. In:
2019 IEEE 19th International Conference on Bioinformatics and
Bioengineering (BIBE). IEEE Computer Society, pp. 221-226.

. Dobin,A., Davis,C.A., Schlesinger,F., Drenkow.J., Zaleski,C., Jha,S.,

Batut,P., Chaisson,M. and Gingeras,T.R. (2013) STAR: ultrafast
universal RNA-seq aligner. Bioinformatics, 29, 15-21.

Ewels,P., Magnusson,M., Lundin,S. and Kéller,M. (2016) MultiQC:
summarize analysis results for multiple tools and samples in a single
report. Bioinformatics, 32, 3047-3048.

Griining,B., Dale,R., Sjodin,A., Chapman,B.A., Rowe,J.,
Tomkins-Tinch,C.H., Valieris,R. and Koster,J. (2018) Bioconda:
sustainable and comprehensive software distribution for the life
sciences. Nat. Methods, 15, 475-476.

Aguet,F., Guigo6 Serra,R., Montgomery,S.B. ez al. (2017) Genetic
effects on gene expression across human tissues. Nature, 550,
204-213.

Singh,U. and Wurtele,E.S. (2021) orfipy: a fast and flexible tool for
extracting ORFs. Bioinformatics, btab090.

Venturini, L., Caim,S., Kaithakottil, G.G., Mapleson,D.L. and
Swarbreck,D. (2018) Leveraging multiple transcriptome assembly

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

methods for improved gene structure annotation. GigaScience, 7,
giy093.

Niknafs,Y.S., Pandian,B., Iyer,H.K., Chinnaiyan,A.M. and
Iyer,M.K. (2017) TACO produces robust multisample transcriptome
assemblies from RNA-seq. Nat. Methods, 14, 68-70.

Patro,R., Duggal,G., Love,M.I., Irizarry,R.A. and Kingsford,C.
(2017) Salmon provides fast and bias-aware quantification of
transcript expression. Nat. Methods, 14, 417.

Jackson,M., Kavoussanakis,K. and Wallace,E.W. (2021) Using
prototyping to choose a bioinformatics workflow management
system. PLoS Comput. Biol., 17, e1008622.

Rother,N., Yanginlar,C., Lindeboom,R.G., Bekkering,S., van
Leent,M.M., Buijsers,B., Jonkman,I., de Graaf,M., Baltissen,M.,
Lamers,L.A. et al. (2020) Hydroxychloroquine Inhibits the trained
innate immune response to interferons. Cell Rep. Med., 100146.
Srivastava,A., Malik,L., Sarkar,H., Zakeri,M., Almodaresi,F.,
Soneson,C., Love,M.I., Kingsford,C. and Patro,R. (2020) Alignment
and mapping methodology influence transcript abundance
estimation. Genome Biol., 21, 1-29.

Merad,M. and Martin,J.C. (2020) Pathological inflammation in
patients with COVID-19: a key role for monocytes and macrophages.
Nat. Rev. Immunol., 20, 355-362.

Aschenbrenner,A.C., Mouktaroudi,M., Kraemer,B., Oestreich,M.,
Antonakos,N., Nuesch-Germano,M., Gkizeli,K., Bonaguro,L.,
Reusch,N., BaBler,K. et al. (2021) Disease severity-specific neutrophil
signatures in blood transcriptomes stratify COVID-19 patients.
Genome Med., 13, 1-25.

Bateman,A., Martin,M.-J., Orchard,S., Magrane,M., Agivetova,R.,
Ahmad,S., Alpi,E., Bowler-Barnett,E.H., Britto,R., Bursteinas,B.

et al. (2020) UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res., 49, D480-D489.

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403-410.
Pertea,M., Shumate,A., Pertea,G., Varabyou,A., Breitwieser,F.P.,
Chang,Y.-C., Madugundu,A.K., Pandey,A. and Salzberg,S.L. (2018)
CHESS: a new human gene catalog curated from thousands of
large-scale RNA sequencing experiments reveals extensive
transcriptional noise. Genome Biol., 19, 1-14.

Singh,U. and Wurtele,E.S. (2020) Genetic novelty: how new genes are
born. Elife, 9, e55136.

Arendsee,Z.W., Li,L. and Wurtele,E.S. (2014) Coming of age: orphan
genes in plants. Trends Plant Sci., 19, 698-708.

Goodstadt,L. (2010) Ruffus: a lightweight Python library for
computational pipelines. Bioinformatics, 26, 2778-2779.

Strozzi,F., Janssen,R., Wurmus,R., Crusoe,M.R., Githinji,G., Di
Tommaso,P., Belhachemi,D., Mdller,S., Smant,G., de Ligt,J. ez al.
(2019) Scalable workflows and reproducible data analysis for
genomics. In: Evolutionary Genomics. Springer, pp. 723-745.
Wilkinson,M.D., Dumontier,M., Aalbersberg,l.J., Appleton,G.,
Axton,M., Baak,A., Blomberg,N., Boiten,J.-W., da Silva Santos,L.B.,
Bourne,P.E. ez al. (2016) The FAIR Guiding Principles for scientific
data management and stewardship. Scientific Data, 3, 1-9.
Daub,C.O., Steuer,R., Selbig,J. and Kloska,S. (2004) Estimating
mutual information using B-spline functions—an improved similarity
measure for analysing gene expression data. BMC Bioinformatics, 5,
118.

https://www.doi.org/10.7287/peerj.preprints.27352v3

