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Abstract
A stochastic model of nuclear receptor-mediated transcription was developed based on ac-

tivation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzodioxin (TCDD)

and subsequent binding the activated AHR to xenobiotic response elements (XREs) on

DNA. The model was based on effects observed in cells lines commonly used as in vitro ex-

perimental systems. Following ligand binding, the AHRmoves into the cell nucleus and

forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT). In the model, a

requirement for binding to DNA is that a generic coregulatory protein is subsequently bound

to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus al-

tered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1

mRNA, a commonly used marker for activation of the AHR. Lowering the amount of avail-

able cofactor slightly increased the EC50 for the transcriptional response without changing

the efficacy or maximal response. Further reduction in the amount of cofactor reduced the

efficacy and produced non-monotonic dose-response curves (NMDRCs) at higher ligand

concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of

squelching. Resource limitations for transcriptional machinery are becoming apparent in eu-

karyotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be

a stochastic process; however, intercellular communication and other aspects of tissue co-

ordination may represent a compensatory process to maintain an organism’s ability to re-

spond on a phenotypic level to various stimuli within an inconstant environment.

Introduction
As science begins to comprehend the workings of transcription through new techniques such
as microarrays, chromatin immuno-precipitation (ChIP), and fluorescence visualization
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techniques, the overall and inescapable conclusion is that the inside of the nucleus is a very
busy place. Transcription factors appear to interact with DNA via a number of interdependent
mechanisms that occur on multiple time scales, and these complex dynamics may be important
for producing appropriate and coordinated gene expression programs;[1] these mechanisms
include chromatin and nucleosome remodeling, modulation of RNA polymerase activity, and
alterations in epigenetic features including acetylation and methylation. ChIP methods provide
a population-level approach to the interaction of proteins with DNA and show fluctuations of
DNA binding on a time scale of minutes or hours. Single cell methods typically use fluores-
cence microscopy and, in contrast with the ChIP results, suggest that interactions of regulatory
proteins with DNA are short-lived with dwell times on the order of milliseconds.[2–6] Multiple
and differing time scales and the number of unknown features of transcriptional regulation
present a challenge to the development of gene expression models.

The basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) family of transcription factors oc-
curs ubiquitously in eukaryotes. [7–9]. Cells rely on these transcription factors that dimerize
and then bind to response elements on DNA. The AHR is a member of the PAS Superfamily of
proteins that plays a role in the detection of and adaptation to environmental change. The
name “PAS” derives from the three founding members of the family, PER, ARNT and SIM.[7]
Unlike a number of the nuclear receptor transcription factors with identified endogenous li-
gands, e.g, hormones like corticosteroids, estrogen, testosterone, the AHR PAS protein is a
transcription factor without known endogenous or natural ligands or a well-defined physiolog-
ical role. [8–10] Also, the AHR has distinct evolutionary origins and protein folding patterns.
Up to now, the transcriptional response to AHR activation has been investigated largely by fo-
cusing on toxicity associated with chlorinated polyhalogenated hydrocarbons and not the mod-
ulatory role of natural or endogenous ligands in various tissues for either greater
understanding of normal physiology or pharmaceutical development.[11–13]

The molecular machinery of transcription also includes a number of cofactors.[14, 15] The
various functions of these cofactors include chromatin remodeling, histone modification, scaf-
folding to enable binding of yet other cofactors, and other necessary functions[16]. For exam-
ple, the Mediator cofactor is a large multi-subunit complex that produced transcription in
yeast and mammalian cell extracts reconstituted with RNA polymerase and other initiation
factors. Mediator appears to facilitate chromatin looping. [17, 18] Recently, the idea of “tran-
scription factories” has been advanced; these transcription factories are assemblies of nuclear
receptors, cofactors, RNA polymerases, and other co-regulatory proteins.[19–23] This organi-
zation would maximize the shared utility of transcriptional resources.

Despite these mechanisms for resource allocation, competition for transcriptional resources
among independent pathways of gene expression has been observed for a number of years.[24–
28] In the case of ligand-activated nuclear receptors such as the aryl hydrocarbon receptor
(AHR), a plethora of molecular interactions occur in simply moving the ligand-bound receptor
to the nucleus where it can dimerize with the aryl hydrocarbon nuclear translocator (ARNT)
and then the liganded dimer functions as a transcription factor.[29–33]

The aryl hydrocarbon receptor (AHR) is one of the most intensively studied transcription
factors. [13] After binding to a ligand, the AHR moves into the nucleus. Once there, the
liganded AHR sheds the chaperone proteins including a heat shock protein (HSP90), the phos-
phoprotein p23, and the hepatitis-B X-associated protein 2 (XAP2).[34] In the nucleus, after
losing the chaperones, the AHR binds to its heterodimer partner, ARNT.[35] The liganded
AHR-ARNT heterodimer recruits a number of transcription cofactors; these include steroid re-
ceptor coactivator 1 (SRC1), the nuclear receptor coactivator protein (NCoA), the histone ace-
tyl transferase p300/CBP, and the thyroid hormone-associated protein (TRAP220) subunit of
the Mediator complex.[36–38]
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Recently, there has been much discussion about nonmonotonic dose-response curves
(NMDRCs), especially with regard to endocrine disrupting chemicals (EDCs).[39–45] A highly
precautionary non-threshold framework approach to the regulation of presumed EDCs by the
European Union prompted a letter criticizing this approach from editors of 18 prominent toxi-
cology journals.[46] Evolutionarily, the ability to distinguish biologically relevant signals pro-
duced by endogenous hormones from signals produced by exogenous chemicals that may have
weak hormonal effects—or no effect at all—would be an adaptive trait. The ability to distin-
guish endogenous from exogenous signals is inherent in the differences in affinity of a receptor
for various ligands and the principles of chemical mass action.[47] Modeling chemical kinetics
with a macroscopic approach that uses time-dynamic differential equations cannot address the
stochastic nature of gene expression that has motivated concern about the lack of knowledge of
potential gene expression effects in the low dose region [36, 37].

Here, we chose to examine the binding of a ligand to a nuclear receptor and subsequent
transcription of mRNA to determine the likelihood of low dose effects. To do so, a model of
AHR-mediated transcription of mRNA from cytochrome p450 1A1 (CYP1A1) gene was devel-
oped. The model uses the Gillespie stochastic simulation algorithm (SSA) [48, 49] to keep track
of the changes in the number of molecules of the various reactants and products within a single
cell. The stochastic nature of the model is an attempt to capture the transcriptional “noise” that
may underlie some NMDRCs and provides another line of evidence to determine whether the
concerns about NMDRCs and potential low-dose effects are indeed warranted.[41, 46, 50–53]

While this model can faithfully reproduce some actual measurements of AHR activation
and resulting transcriptional activity, the real benefit of this exercise is the increase in under-
standing of the process of ligand-activated transcription. While this model may not be general-
izable to all nuclear receptors and co-regulatory proteins, competition for cellular transcription
resources demonstrated by the model results has been observed for other nuclear receptors. In
fact, competition for cellular transcription resources is one proposed mechanism that may ac-
count for thresholds and NMDRCs in ligand-induced transcriptional responses. Regarding this
competition, the relative scarcity of transcription cofactors, RNA polymerase and other tran-
scription-associated molecules within the nucleus or “transcription factory” is increasingly rec-
ognized as a mechanism for altering gene expression.[24–28, 54–56] Competition may be the
reason that these scarce resources are organized into “transcription factories” to be shared
amongst a number of genes.[19, 20, 57, 58]

The model is used to demonstrate that the efficacy and potency of transcriptional responses
may vary based on the availability of transcriptional resources. In some circumstances, the
modeled transcriptional response shows a biphasic response with decreasing transcription at
higher doses. This phenomenon, known as “squelching” has been observed for a number of
transcriptional responses.[59–63] Squelching is repression of transcription at high concentra-
tions of ligand by sequestering limiting components (e.g. coactivators) required for transcrip-
tional activation away from the promoter in the affected gene.[63]

Methods
The model simulates the effect of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) on transcription
in T47D cells.[64] The model includes binding of ligand to AHR, its movement into the nucle-
us and binding to the aryl hydrocarbon nuclear translocator (ARNT), binding of a generic co-
factor to the heterodimer, binding of the activated heterodimer to xenobiotic response
elements (XREs) associated with the CYP1A1 gene and those associated with other AHR-in-
duced genes, binding of RNA polymerase, transcription initiation and termination.
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Details of the Model
The model was developed from details of the well-known response of many cells to TCDD ap-
plication. The model was based on ChIP experiments using T47D cells.[37, 64]

TCDD enters the cell by diffusion and once inside binds to the AHR. The ligand-bound re-
ceptor can either undergo degradation or move to the nucleus where it binds to ARNT to form
a heterodimer. The ligand-bound AHR can also undergo degradation in the cytoplasm. AHR is
newly synthesized at a constant rate.

Ligand-bound AHR can also move to the nucleus where it can bind to ARNT or undergo
degradation. The ligand-bound dimer bind a generic cofactor to form a transcription complex.
The complex can then bind to xenobiotic response elements on DNA (XREs). Two of these
XREs are the TATA box and enhancer region associated with CYP1A1. [37] These response el-
ements are referred to as “XREs” throughout this paper as many different xenobiotic chemicals
in addition to dioxins bind to the AHR. [65, 66]

The transcription complex, consisting of AHR, ARNT and the cofactor, is also capable of
binding to other AREs regulating other genes. The model assumed 470 AREs for other genes
from estimates ranging between 400 and 900.[67–70]

The exact number of available RNA polymerase molecules available for AHR-activated gene
expression is not known. Some RNA polymerase molecules will be bound to chromatin and
transcribing genes associated with normal maintenance of the cell. Kimura et al. (1999) used
saponin lysis to release soluble RNA polymerase molecules from HeLa cells and observed be-
tween 2000 and 4000 soluble molecules of RNA Pol II that were the size expected of the holo-
enzyme.[71] Hence, a value of 4000 molecules of RNA polymerase was assumed to be the
upper limit for that available for AHR-mediated transcription.

Once the transcription complex is bound to an XRE, RNA polymerase II can also bind.
Then the XRE-bound transcription complex can undergo transcription initiation. Once initiat-
ed, the complex is capable of transcription. ARNT may dissociate and transcription may still
continue.[37] Transcription is terminated in a separate reaction. Within the transcription com-
plex, another co-regulator protein could reversibly bind to the initiated transcription complex
and slightly increase the rate of transcription.

We considered inclusion of negative feedback by the aryl hydrocarbon receptor repressor
(AHRR) in the model.[72] However, the role of the AHRR is not sufficiently well understood
that details of its action could be reproduced.[73] Further, AHRR may not play a role in the
modeled response: in MCF-7 cells, similar in origin to T47D cells modeled here, AHRR protein
expression in response to TCDD is not measurable before 24 hours and the simulation time
here was six hours.[64, 73]Also, AHRR expression does not correlate well with TCDD-induced
expression of CYP1A1 mRNA in a variety of mouse tissues and in human dermal fibroblasts.
[74, 75]

Transcription itself was modeled with irreversible mass action kinetics. Any transcribed
mRNA was subject to either degradation or export from the transcription complex. The kinet-
ics of transcription are complex and include both early termination, pauses and varying rates
of nucleotide addition to the end of the message.[76–84] The model includes four states of the
transcription complex capable of producing mRNA, each state having a slightly different rate
of transcription. These four states are included in the model in an attempt to reproduce, at
some level, the complexity of transcription.

The model consists of 4 compartments, 29 molecular species, and 32 reactions. Full details
of the model are provided in the Supporting Information.
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Simulation Methods
The model was developed and exercised with the Simbiology module of MATLAB. Simbiology
automates the use of compiled executable files and the model runs were much faster than with-
out compilation. Model code is available from the corresponding author and in the SI.

The simulation method used here is direct method (DM) of Gillespie’s stochastic simulation
algorithm (SSA).[49] This method relies on the fact that for any biochemical reaction (e.g., li-
gand binding), the time to the next transition will be an exponentially distributed random vari-
able with a mean value equal to the reciprocal of the rate constant. The Gillespie SSA is fully
implemented in Simbiology.[85] As noted, the use of ordinary differential equations (ODEs)
does not capture the stochastic nature of responses. Knowledge of the complexity of events oc-
curring in the crowded space of the nucleus remains incomplete.[1] However, the use of pro-
pensities as stochastic rate constants likely comes closer to reality than macroscopic kinetics.

For simple ligand binding, two mass action reactions are involved can be shown as revers-
ible as follows:

AHR½ � þ TCDD½ � $ AHR � TCDD½ �

The mass action expression for the forward reaction and the forward rate constant is in
units of (conc.-time)-1. Because there is only a single species participating in the backward reac-
tion the rate constant is in units of time-1. To use Gillespie’s method, the macroscopic rate con-
stants must be converted to propensities. The propensity of a reaction is defined as the
probability of the reaction occurring in the next time interval. [48, 49, 86] The time interval to
the next transition is an exponentially distributed random variable; the mean of this distribu-
tion is the reciprocal of the product of the rate constant and the concentration of one or more
reactants. [48]

100 runs of the model were conducted for each TCDD concentration. The simulation time
was 6 hours and time unit used was one second. Because the time vectors associated with each
run were different because of the probabilistic calculation for the propensity, linear interpola-
tion was used to obtain the mean and variance of the numbers of molecules for each species
throughout the course of the run from the 100 runs that represent a population of 100 cells.

Results

Comparison of Measured vs. Modeled Transcription
The model was exercised with a range of TCDD concentrations and a range of cofactor
amounts. The model faithfully reproduces the transcriptional dose-response for CYP1A1
mRNA at 6 hours from Powis et al. (2011)[64] when 1500 molecules of cofactor, 1535 mole-
cules of competing non-AHR binding proteins (Other) and 4000 molecules of RNA polymer-
ase are present in the nucleus (Fig 1). Also shown are the modeled transcription dose-response
curves for 2000, 1500 and 1200 molecules of cofactor. Fitting the Powis et al. (2011) data to a
Hill dose-response model yielded an EC50 value of 0.086 nM and a Hill coefficient of 1.12. Fit-
ting the model results with 1500 molecules of cofactor yielded an EC50 value of 0.094 nM and
a Hill coefficient of 1.35 (Table 1) and the two plots are almost indistinguishable (Fig 1). Esti-
mates of transitional dose values[87, 88] were determined by baseline projection from the li-
gand concentration needed to produce 21% of the maximal response (EC21) using S4
Equation in S1 File (Table 1).

Competition for Cofactors Alters Potency and Efficacy
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Comparison of Measured and Modeled Binding to DNA
A comparison of measurements of binding of both AHR and ARNT to XREs associated with
CYP1A1measured by ChIP experiments and corresponding model results is shown in Fig 2.
The modeled result was very close to the measured ChIP results.

The value of percent recruitment represents the fraction of a particular transcription factor
bound to DNA.[64] The calculation of percent recruitment from the model results is shown in
the Equation A in S1 File.

The Effect of Altering Cofactor Concentrations or the Number of Binding
Partners for the Cofactor other than AHR-ARNT
Squelching is apparent at cofactor amounts of 1000 molecules or less and appears as a reduc-
tion in the response at TCDD concentrations of 1 nM or greater (Fig 3A). The EC50 can
change approximately four fold between cofactor amounts of 1000 and 3000 molecules without
a change in the efficacy of the response (Table 1). When squelching occurs, the trend of EC50
values reverses and a reduction in EC50 values, i.e. higher potency, occurs with decreasing co-
factor amounts when cofactor amounts are less than 1000 molecules.

Squelching is a reduction in the response at higher concentrations and results in the appear-
ance of NMDRCs. Squelching was also observed to occur in the model in response to increas-
ing the cofactor binding species other than AHR-ARNT (Table 1; Fig 3B) (Species #8 in
Table A in S1 File). Squelching is a well-documented observation for the estrogen receptor and
has been observed in many ToxCast results.[89]

Increasing the number of competing non-AHR cofactor binding sites (Other), induced
squelching and NMDRCs at amounts of competing non-AHR binding sites at 7500 or more
(Fig 3B).

Fig 1. Measured andmodeled transcriptional dose-response to TCDD. The larger filled black circles
show the transcriptional response of CYP1A1 at 6 hours in T47-D cells. These data were digitally extracted
from Fig 1 in Powis et al. (2011). [64] The smaller symbols and dotted lines show the modeled transcriptional
dose response at three different amounts of cofactor present. When 1500 molecules of cofactor were
present, the modeled response is very similar to the observed response in T47-D cells by Powis et al. (2011).
[64]

doi:10.1371/journal.pone.0127952.g001
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The Roles of Cofactor and Competition in Squelching
To demonstrate the interaction of cofactor availability, the model was exercised at a range of
TCDD concentrations and various combinations of the amounts of cofactor and non-AHR co-
factor binding proteins that would compete with the AHR-ARNT complex for available cofac-
tor. With these model results, contour maps of the transcriptional response were developed for
varying amounts of both cofactor and non-AHR cofactor binding proteins (Fig 4) (Species #7
and #8 in Table A in S1 File). Squelching is apparent at all concentrations of cofactor. Hence,
squelching occurs as an interaction between the amount of cofactor and the amount of compet-
ing non-AHR binding proteins.

Table 1. Hill equation fits of modeled data at a range of cofactor amounts along with the fit to the transcriptional response in Fig 1 in Powis et al.
(2011) [61].

Altered Amount
(molecules)

Bmax (fold change)
(mean ± SE)1

Hill Coefficient
(mean ± SE)1

EC50 (nM)
(mean ± SE)1

Transitional Dose Value from
EC212 (nM)

Powis et al. data 11.18 ± 0.1880 1.212 ± 0.1202 0.08508 ± 0.00592 0.02580

Modeled results from altering cofactor amounts (Fig 1 and Fig 3A)

200 1.421 ± 0.0566 1.826 ± 0.2768 0.09873 ± 0.0091 0.04275

400 2.547 ± 0.1550 1.637 ± 0.3258 0.1050 ± 0.0153 0.04139

800 10.92 ± 0.2650 1.252 ± 0.0431 0.3134 ± 0.0164 0.07515

1000 10.33 ± 0.1531 1.418 ± 0.0684 0.2101 ± 0.0088 0.06443

1200 10.87 ± 0.0583 1.360 ± 0.0312 0.1659 ± 0.00327 0.05148

1300 10.94 ± 0.1599 1.310 ± 0.0826 0.1319 ± 0.0074 0.04105

1500 10.87 ± 0.2173 1.350 ± 0.1243 0.09446 ± 0.00756 0.03166

2000 11.87 ± 0.1820 1.431 ± 0.1089 0.05903 ± 0.00384 0.02182

3000 11.37 ± 0.2045 1.437 ± 0.1316 0.04963 ± 0.00386 0.01862

6000 11.62 ± 0.2525 1.519 ± 0.1722 0.05223 ± 0.00481 0.02054

Modeled results from altering the number of Other cofactor binding sites (Fig 3B)

50000 9.335 ± 0.3997 1.784 ± 0.2106 0.1746 ± 0.0156 0.06815

20000 8.889 ± 0.2663 1.757 ± 0.1422 0.1782 ± 0.01112 0.07346

10000 10.07 ± 0.3268 1.565 ± 0.1191 0.1978 ± 0.0135 0.06736

7500 10.78 ± 0.3106 1.358 ± 0.07192 0.2395 ± 0.0149 0.06803

2500 10.60 ± 0.03626 1.276 ± 0.01765 0.1702 ± 0.00217 0.04929

1535 10.87 ± 0.2173 1.350 ± 0.1243 0.09446 ± 0.00756 0.03166

750 11.60 ± 0.1565 1.351 ± 0.08818 0.05439 ± 0.003197 0.01913

250 11.79 ± 0.1223 1.285 ± 0.0618 0.05867 ± 0.002662 0.01952

Fitted parameters are shown as the best-fit value ± standard error. The upper part of the table shows fits for a series of varying cofactor amounts. The

lower part of the table shows fits for a series of varying competing non-AHR cofactor binding sites (Other). Fitting was conducted with Graphpad Prism.

The rising portion of the curve was fit. It was not possible to obtain a Hill equation fit to the modeled results at 60 molecules of cofactor. The lower part of

the table shows the effect of changing the number of competing binding sites for the cofactor.
1 For 1000 cofactor molecules, points below 3 nM TCDD were fit, and for 800 molecules and lesser amounts, points below 1 nM TCDD were fit. It was not

possible to obtain a Hill equation fit to the modeled results at 60 molecules of cofactor.
2 Transitional dose values (TDVs) as a measure of threshold were estimated by projecting to the background response using the methods for the Hill

model described in Simon et al., (2014). [78] The equations for estimating TDVs using background projection from Simon et al., 2014 are shown in

Equation D in S1 File.

doi:10.1371/journal.pone.0127952.t001
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The Effect of Altering Ligand Activated AHR on Dose-Response Curves
and Squelching
To explore how cofactor availability acts to produce shifts in the dose-response curves and
squelching, the transcriptional response of the model was plotted against the time-averaged
number of ligand-activated AHR molecules. Hence, the total number of ligand-activated AHR

Fig 2. Comparison of ChIP results for AHR and ARNT from Fig 2A of Powis et al. (2011) [64] with those
of the model. ChIP results were estimated with Equation A and Equation B in S1 File. (A) Percent
recruitment of AHR to CYP1A1; (B) Percent recruitment of ARNT to CYP1A1.

doi:10.1371/journal.pone.0127952.g002
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molecules as a time average was used as the dose term and the mRNA fold change was used as
the response term. A first order Hill model was fit to the dose-response of the aggregated data
for responses when no squelching was apparent (Fig 5A) and for responses showing squelching
(Fig 5B). When no squelching occurred, the aggregate response was well fit by a Hill equation
and the transcriptional responses were consistent at all doses of TCDD (Fig 5A). When
squelching did occur (1000 cofactor molecules and less), considerable divergence in the re-
sponses to higher TCDD concentrations was observed (Fig 5B). A Hill model was fit to the

Fig 3. Modeled transcriptional dose-response plots at varying amounts of cofactor and non-
AHR-ARNT cofactor binding sites. (A) Reduction in the amount of cofactor (CoF) at a constant
concentration/amount of competing non-AHR binding proteins (1535 molecules). The modeled response and
Hill equation fits are shown for cofactor amounts of 2000, 1500 and 1200 molecules. At 1000 molecules of
cofactor and less, squelching was apparent, shown by a reduction in the responses at higher TCDD
concentrations and the biphasic appearance of the DR curves. (B) Increasing the amount of competing non-
AHR binding proteins (Other) also produced a squelching-like response at high ligand concentrations with
squelching occurring at 7500 or more molecules of non-AHR cofactor binding proteins. The amount of
cofactor was kept constant at 1500 molecules. The Hill equation fits are shown for competing non-AHR
binding site (Other) amounts of 2500 or less.

doi:10.1371/journal.pone.0127952.g003
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data with 400 ligand-bound AHR molecules or less and the fit indicated an approximately five-
fold reduction in efficacy in the squelched responses.

When the time-averaged amount of cofactor bound to AHR-ARNT anywhere in the cell
(Equation C in S1 File) is used as the dose term, the responses become very different, and the
aggregate dose-response, both for those squelching and non-squelching responses remain con-
sistent and were fit to a Hill function (Fig 5C). Thus, these plots demonstrate that the locus at
which squelching occurs is cofactor binding to AHR-ARNT.

Fig 4. Contour plots of the modeled transcriptional responses showing the relationship between
number of cofactor molecules and the number of competing non-AHR (Other) binding proteins. The x-
axes show the applied concentration of TCDD. The y-axes show the amount of other binding proteins
available in the cell. The fold change in CYP1A1 mRNA is represented by the colors on the plots and the color
bar to the right. The number at the upper left of each plot shows the number of molecules of cofactor.

doi:10.1371/journal.pone.0127952.g004
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Fig 5. Transcriptional dose-response using time-averaged species from themodel results to
demonstrate that squelching occurs at the cofactor-binding step. Each plot was fit to a Hill function

Competition for Cofactors Alters Potency and Efficacy
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Discussion and Conclusions

Modulation and Variability of the Dose-Response for Receptor-mediated
Effects
When one observes the dose-response for the formation of all ligand-bound AHR averaged
over the duration of simulation (Fig 5A; Equation B in S1 File), no squelching is observed, and
the dose-response curves have sufficiently similar values for EC50 and the Hill coefficient that
these parameters can be fit in common. (Fig A in S1 File). Hence, squelching occurs at a later
step than ligand-receptor binding.

Lately there has been much discussion about the lack of knowledge of events in the low dose
region—especially regarding binding of nuclear receptors and subsequent gene expression.[39]
This model demonstrates that because of the limited availability of transcription cofactors and
the stochastic nature of molecular events involved in gene expression, transitional dose values
that represent response thresholds need to be considered as variable or stochastic values rather
than a fixed value.[87, 88] Stochastic variation in a population of T-cells has been observed and
limited numbers of regulator molecules associated with transcription has been observed to in-
troduce noise into cellular processes.[90–92]

Histograms of transcriptional responses of all 100 cells indicate that only a single cell shows
an increase in mRNA copy number at the lowest dose modeled (Fig B in S1 File). Some concern
has been expressed about endocrine effects in the low dose region.[39, 41] In the low dose re-
gion, greater variability in mRNA copy number can be observed in the model results than pre-
dicted by Poisson statistics (Table E in S1 File, 4th and 5th columns). However, when
considered the overall response of the modeled tissue or cell population, consisting of 100
modeled cells, the total number of mRNA copies is well within the expected range (Table E in
S1 File, last two columns). Hence, the model results indicate that on a tissue or cell population
basis, gene expression responses will likely be very small or non-existent in the low dose region
and that these concerns may be misplaced.

As well as TCDD concentration, the transcriptional response depends to a fairly large extent
on the availability of cofactor and other cellular resources. However, at the lowest TCDD con-
centration at which the model was executed, the overall response of the tissue is absent (Fig 4).
The availability of cellular resources can affect both the efficacy and potency of the response
and this fact should be considered for interpretation of in vitro high throughput assays.[89, 93,
94] Recently, assays have been developed for transcription cofactors and these may have the
potential for judging the performance of in vitro assays that are increasingly being used for reg-
ulatory purposes.[95–97]

Because of the changing needs of organisms, the context for appropriate gene expression
is inconstant, and this context, reflected by the panoply of genes expressed given the limita-
tions on resources, will result in ever changing levels of available cofactor and thus ever
changing “thresholds.” Stochastic variation in these “thresholds” combined with the difficul-
ty in knowing what level of response is biological significant in what particular context is one
of the factors that accounts for the focus on discovering meaningful methods for filtering
gene expression data. [98–101]

A method for estimating transitional dose values (TDVs) for dose-response data that fol-
lows a Hill equation as potential estimates of thresholds has been developed and was used here

(details in text) and the EC21 and transitional dose values are shown. [87, 88] (A) Plot of CYP1A1 mRNA fold
change vs. time-averaged ligand-bound AHR for responses without squelching. (B) Plot of time-averaged
ligand-bound AHR for responses with squelching. (C) Plot of time-averaged cofactor bound to AHR-ARNT
and thus contributing to CYP1A1 transcription.

doi:10.1371/journal.pone.0127952.g005
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to estimate transitional dose values for TCDD concentration thresholds for the transcriptional
response (Table 1).[87, 88] In addition, TDVs were estimated for the time-averaged number of
ligand-bound AHR molecules and the number of AHR-ARNT complexes with bound cofactor.
The method and equations are provided in Equation D in S1 File. The calculated TDVs for
TCDD concentration are shown in Table 1.

Identity of the Cofactor and Other Binding Sites
This model was developed to explore the role of competition in ligand-activated gene tran-
scription. Hankinson (2005) provides a list of possible candidates for the cofactor including
histone acetylases, histone methyl transferases or receptor-interacting protein 140 (RIP140).
[36] Recently, four cellular factors were identified in Hepa1c1c7 cells as crucial for CYP1A1
mRNA induction independent of effects on AHR expression. These factors are SIN3 homolog
A (SIN3A), phosphoducin (PDC), transmembrane protein 5 (TMEM5), and the CD9 cell sur-
face glycoprotein (CD9). [102] Although the model could be altered to include cofactor in-
volvement in AHR induction, some cofactors such as transmembrane factor 20 (TCF20) and
crystalline gamma D (CRYGD) are necessary for induction of both CYP1A1 and AHR mRNA
and protein. [102]

Nuclear factor erythroid 2-realted factor 2 (Nrf2) interacts with the AHR in its role in the
expression of both CYP1A1 and NQO1.[103–105] Nrf2 is a transcription factor involved in re-
sponses to oxidative and electrophilic stress, and inflammation.[106] Nrf2 interacts with both
the AHR and the estrogen receptor. [107] In Nrf2-null mice, the transcriptional response to
TCDD for CYP1A1 was reduced compared to that in wild-type mice. [103, 105, 107] Hence,
Nrf2 is another potential candidate for the identity of the cofactor in the model.

Yet another candidate for the identity of the cofactor in the model is nuclear factor-κB (NF-
κB). Inhibition of NF-κB reduced the expression of mRNA for both AHR and CYP1A1 in U-
937 derived dendritic cells.[108]

2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14)
co-localizes with AHR in the nucleus. TiPARP enhances the production of CYP1A1 mRNA
but also increases the proteolytic destruction of ligand-bound AHR. [109] This negative feed-
back mechanism could also be included in the model.

Oscillations in ChIP Data
At present, data on binding of transcription factors to DNA is obtained by two primary meth-
ods—chromatin immuno-precipitation and fluorescence techniques—with the former con-
ducted on populations of cells and the latter on single cells. These two methods give very
different kinetic results. Hager (2009) has proposed that several explanations for the oscilla-
tions of transcription factor binding observed in ChIP experiments.[4] ChIP experiments are
often expressed as fractional or percent recruitment to a single XRE or limited set of XREs with
total chromatin input as the denominator.

Oscillations in the binding of either AHR, ARNT, cofactor or RNA polymerase to CYP1A1
were not observed in any of the model runs.

Modeling Transcription
Current knowledge of the process of transcription suggests it is complex and not yet well un-
derstood[78, 82–84, 110, 111] In the model, transcription of CYP1A1 was represented by four
different promoter states, each with a slightly different rate constant. This simplified model
was an attempt to introduce variable transcription rates into the model. For the sake of parsi-
mony, more complex models of transcription were not used.[83, 110, 111] Rates of mRNA
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export from the transcription complex and degradation within the complex were determined
empirically to match mRNA fold change data at 6 hours in T47-D cells.[64] Distributions of
CYP1A1 mRNA copy number per cell at various TCDD concentrations were consistent with
Poisson distributions similar to that measured in other eukaryotic cells and observed by other
modelers (Fig B in S1 File; Table E in S1 File).[112–115]

Examples of Possible Competition for Cofactors
Whether ARNT is considered a transcription factor or a cofactor is somewhat moot. The basic
helix-loop-helix-PAS proteins appear to have been evolutionarily conserved and serve multiple
roles. ARNT dimerizes with the bHLH-PAS protein hypoxia inducible factor 1 (HIF-1) that
acts to produce cellular responses to hypoxia.[36, 116] ARNT also acts as a coactivator for both
ERα- and ERβ-mediated transcription.[117, 118] AHR-mediated transcription can be modu-
lated by recruitment of a variety of cofactors including CBP/p300, p160/SRC-1, NCoA2, p-CIP
and RIP140.[16, 34, 37]

Nonmonotonic U-shaped dose response curves have been shown to occur for steroid hor-
mone-mediated gene expression. Such shapes in the dose-response occur when there exist re-
ceptors unoccupied by endogenous hormones and recruitment of cofactors by receptors bound
to xenobiotic ligands is weaker than to hormone-bound receptor.[44] For the androgen recep-
tor, the presence of mixed ligand heterodimers that are transcriptionally inactive along with
homodimers with bound hormone and xenobiotic ligand lead to J-shaped dose-response
curves reminiscent of hormesis.[45] Receptor dimerization appears to be an inherently non-
linear process and the normal milieu of endogenous hormones along with a xenobiotic ligand
produce a variety of shapes of dose-response curves.[43] The situation modeled here, competi-
tion for one or more coregulatory proteins, only occurs at high concentrations of ligand and
high receptor occupancy. At low concentrations of ligand, coregulatory proteins are sufficiently
available to ligand-bound receptors for normal transcriptional/signaling responses.[119, 120]

ARNT serves as a coactivator for ERα and ERβ, similar to the generic cofactor modeled
here.[117] Hence, one could imagine a situation where the physiological need for estrogen-me-
diated gene expression might result in a competition for ARNT such that the AHR response to
endogenous or exogenous ligands might be muted.

Other Possible Uses of the Model
Transforming growth factor-β1 (TGF-β1) appears to act as an inhibitor or repressor of AHR-
mediated effects in a cell line derived from human prostate cells.[121] The cross-talk between
TGF-β1 and AHR is complex, but this could be explored initially with this model as a second
cofactor with repressive effects.

2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14)
co-localizes with AHR in the nucleus. TiPARP enhances the production of CYP1A1 mRNA
but also increases the proteolytic destruction of ligand-bound AHR.[109] This negative feed-
back mechanism could also be included in the model.

Other processes that could be included in the model are:

• Induction of AHR by including AHR synthesis dependent on AHR activation level;

• Repression of AHR by TIPARP[73] or other possible mechanisms; and,

• Transcription of other genes in the AHR core battery at different transcription rates.

While the model is somewhat complex, the actual inter-relationships between receptors in-
volved in gene induction are even more extensive and inter-related. Extensive crosstalk and
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overlap exists between the AHR, ERα and Nrf2.[107] A specific model of this crosstalk could
potentially be developed and could be used to explore the effects of ligands for each of these re-
ceptors presented alone or in combination.

Stochastic gene expression in evolution
Stochastic effects resulting from transcription factor binding likely produce heterogeneity in
gene expression across cells within organs or tissues in metazoans. This heterogeneity could re-
sult from stochasticity in gene activation and inactivation processes and could be an overall
compensatory mechanism for the limitations on resources within a single cell. Hence, at the
organ tissue levels, the ability to respond to stimuli or environmental changes by gene expres-
sion would be maintained.[113, 122–124]

Within a single cell, a small number of mRNA molecules can potentially be amplified into a
sufficient number of protein molecules to produce a phenotypic change in that cell. Cell-to-cell
signaling may occur either by extracellular chemical signals such as cytokines or through gap
junctions between adjacent cells. One possible function of such signaling could be to regulate
gene expression on a tissue-wide basis. The fact that gene expression in metazoans occurs with-
in nuclear structures that maintain locally high concentrations of transcription components is
testament to these resource limitations.[19, 20, 125] The model results suggest that these re-
source limitations would limit any tissue-level phenotypic responses.

If the oscillations observed in ChIP data represent different levels of nuclear receptor bind-
ing in cell populations within tissues, this could be another aspect of this mechanism of tissue-
wide coordination.[4] What these model results also suggest is that generalizations about
mechanisms or even responses across different levels of biological organization (e.g., molecule,
cell, tissue, organism) may lead to faulty conclusions and begs the question: What else is going
that leads to an observed phenotypic change?
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