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Abstract: Malignant melanoma represents the deadliest type of skin cancer with narrow treatment
options in advanced stages. Herbal constituents possessing anticancer properties occupy a particular
spot in melanoma research as potential chemotherapeutics. Rutin (RUT) is a natural compound
exerting antioxidant, antimicrobial, anti-inflammatory, UV-filtering, and SPF-enhancing activities
that are beneficial to the skin; however, its effect as an anti-melanoma agent is less investigated. The
current study is focused on assessing the cytotoxic potential of RUT against two different human
melanoma cell lines: RPMI-7951 and SK-MEL-28 by evaluating its impact in terms of cell viability,
cells’ morphology, and nuclear aspect assessment, and senescence-inducing properties. The results
indicate a dose-dependent decrease in the viability of both cell lines, with calculated IC50 values of
64.49 ± 13.27 µM for RPMI-7951 cells and 47.44 ± 2.41 µM for SK-MEL-28, respectively, accompanied
by a visible reduction in the cell confluency and apoptotic features within the cell nuclei. RUT exerted
a senescence-inducing property highlighted by the elevated expression of senescent-associated beta-
galactosidase (SA-β-gal) in SK-MEL-28 cells. Despite the in vitro anti-melanoma effect revealed by
our results, further studies are required to elucidate the mechanisms of RUT-induced cytotoxicity
and senescence in melanoma cells.

Keywords: rutin; human melanoma cells; cell viability; cellular senescence

1. Introduction

Skin serves as the main physical, chemical, and immunological barrier against en-
vironmental noxious agents [1,2], as well as one of the most common routes of toxics’
entrance into the body [3]. Therefore, it is the most vulnerable target to external damage [4],
which occurs when the abnormal exposure to external stressors such as ozone (O3), air
pollutants, and ultraviolet (UV) light surpasses the skin’s protective capacity [3,5]. The
major mechanism underlying the detrimental effect of environmental insults on the skin
is through the generation of oxidative stress which depletes the cutaneous antioxidant
capacity [3]. The alteration of skin barrier function leads to the development of various
cutaneous diseases, including erythema, edema, dermatitis, psoriasis, photoaging, and
cancer [3].

Carcinogenesis remains the most severe consequence of the prolonged exposure of
the skin to environmental carcinogens. The incidence of skin cancers, both melanoma,
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and non-melanoma subtypes, is continuously rising [6]. Non-melanoma skin cancers (i.e.,
basal cell and squamous cell carcinomas) are among the most frequent cancer types and
are generally treated by surgical excision [7]. On the other hand, despite its rareness [8],
melanoma—the tumor arising from the malignant transformation of melanocytes [9], re-
mains the leading cause of skin cancer-related deaths worldwide [10]. Several effective
drugs are currently available for melanoma treatment [11], but due to the severe side
effects and tumor resistance to therapy, the success rates remain low [12,13]. In this context,
the discovery and development of improved treatment strategies are indispensable and
demand continuous research. Herbal constituents are widely embraced as complementary
or alternative options in the field of oncology as chemopreventive agents, chemothera-
peutics, or sensitizers [14]. In particular, natural compounds generally serve as potent
anti-melanoma agents by initiating apoptosis and inhibiting cancer cell proliferation and
metastasis [12].

Rutin (RUT) is a flavonol glycoside found in numerous plants (e.g., Ruta graveolens L.,
Sophora japonica L.) and food beverages such as citrus, apples, vegetables, buckwheat, black
tea, etc. [15]. Due to its broad spectrum of pharmacological activities (e.g., antioxidant
and ROS-scavenging properties; antibacterial activity; anti-inflammatory and antimuta-
genic effects), this small molecule has been brought into the spotlight of modern research
aimed to assess its potential as a therapeutic agent in various pharmaceutical formulations
or cosmeceuticals [16–18]. Several studies indicate the efficacy of RUT in counteracting
skin injuries induced by environmental stressors [19–22]. For instance, RUT proved to
be active against UV radiation-induced damage due to its structural similarity to organic
UV filters and its strong antioxidant activity [19]. Additionally, RUT reduced skin pho-
toaging by strengthening the cutaneous density and elasticity through the regulation of
extracellular matrix enzymes [20], provided a sun protective factor (SPF) enhancement [21],
and inhibited the UVB-induced inflammatory responses (i.e., cyclooxygenase-2 and in-
ducible nitric oxide synthase expressions) [20]. The antitumor activity of RUT has been
also demonstrated against various cancers (e.g., breast, colon, liver, lung) by targeting
a multitude of apoptotic (Bcl-2, Bcl-2 associated X protein, caspases, Bax), autophagic
(Beclin1, Atg5/12, LC3-II), inflammatory (nuclear factor-κB, interleukins), and angiogenic
(vascular endothelial growth factor) signaling mediators [22]. However, the anticancer
activity of RUT against skin carcinomas and its underlying molecular mechanisms have
not been extensively investigated so far. Our recent publications offer preliminary insight
into the pro-apoptotic effect exerted by RUT and its inclusion complexes in vitro in murine
(B164A5) and human (A375) melanoma cells [15,23], still, the anticancer effect of rutin in
melanoma is far from being elucidated.

The present study aims at providing an in vitro insight into the cytotoxic potential of
RUT against two different human melanoma cell lines: RPMI-7951 (epithelial morphology)
and SK-MEL-28 (polygonal morphology) by evaluating its impact in terms of cell viability,
cells’ morphology, and nuclear aspect assessment, and senescence-inducing properties.

2. Materials and Methods
2.1. Reagents

Rutin, phosphate saline buffer (PBS), trypsin-EDTA solution, dimethyl sulfoxide
(DMSO), fetal bovine serum (FBS), penicillin/streptomycin, and MTT reagent were pur-
chased from Sigma Aldrich, Merck KgaA (Darmstadt, DE). The cell culture medium,
Eagle’s Minimum Essential Medium (EMEM-ATCC® 30-2003™), was acquired from ATCC
(American Type Cell Collection, Lomianki, PL). The Senescence Detection Kit (ab65351)
was purchased from Abcam (Cambridge, UK). All reagents were of analytical grade of
purity and suitable for cell culture use.

2.2. Cell Culture

The experiments were performed on two human malignant melanoma cell lines pro-
vided from ATCC as frozen vials—RPMI-7951 (HTB-66™) and SK-MEL-28 (HTB-72™).
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The cell lines were cultured in their specific growth medium (EMEM) according to the man-
ufacturer’s recommendations and were supplemented with 10% FCS and 1% antibiotics
solution (100 U/mL penicillin/ 100 µg/mL streptomycin). The cells were incubated in a
humidified atmosphere at 37 ◦C and 5% CO2.

2.3. Cell Viability Assessment

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was
applied to evaluate RUT’s impact on melanoma cells viability. Thus, RPMI-7951 and
SK-MEL-28 cells were seeded in 96-well plates (104 cells/200 µL/well) and treated with
increasing concentrations (1, 5, 10, 25, and 50 µM) of RUT for 24 h. The solvent used to
prepare the stock solution of RUT was DMSO. At the end of the 24 h treatment, the old
culture media was replaced with 100 µL of fresh media and 10 µL of MTT reagent/well,
followed by a 3 h incubation at 37 ◦C. Finally, the solubilization solution (100 µL/well) was
added, the plates were maintained protected from light, at room temperature for 30 min,
and the absorbances values were measured at two wavelengths (570 and 630 nm) using
Cytation 5 (BioTek Instruments Inc., Winooski, VT, USA).

2.4. Cell Morphology and Confluence Evaluation

To verify the impact of RUT on the morphology and confluence of RPMI-7951 and
SK-MEL-28 cells, a microscopic examination was performed. The cells were observed
under bright field illumination and photographed at the end of the 24 h treatment period
using Cytation 1 (BioTek Instruments Inc., Winooski, VT, USA). The photographs were
processed using the Gen5™ Microplate Data Collection and Analysis Software (BioTek
Instruments Inc., Winooski, VT, USA).

2.5. Nuclear Morphology Assessment

The potential toxicity of RUT at the nuclear level was tested by applying the Hoechst
33342 staining assay protocol according to the manufacturer’s (Thermo Fisher Scientific,
Inc., Waltham, MA, USA) recommendations. In brief, the RPMI-7951 and SK-MEL-28
cells were seeded in 12-well plates (105 cells/1.5 mL/well) and treated with three selected
concentrations (1, 10, and 50 µM) of RUT in DMSO for 24 h. After the stimulation period,
the media was removed, and the staining solution diluted at 1:2000 in PBS was added
(500 µL/well). The plates were incubated for 10 min at room temperature, protected
from light. Finally, the staining solution was washed with PBS and the pictures were
taken using Cytation 1 (BioTek Instruments Inc., Winooski, VT, USA) and analyzed by the
means of Gen5™ Microplate Data Collection and Analysis Software (BioTek Instruments
Inc., Winooski, VT, USA). Staurosporine (STP) 5 µM was selected as a positive control for
apoptosis. The apoptotic index (AI) was calculated according to a formula described by
Xu et al. [24]:

AI =
Number o f apoptotic cells

Total number o f cells
× 100

2.6. Senescence Detection

To evaluate the influence of RUT (1, 10, and 50 µM) on the senescence process within
melanoma cells, the expression of senescence-associated β-galactosidase (SA-β-Gal) was
detected at the end of a 24 h treatment by performing the manufacturer’s protocol. In
brief, for this experiment SK-MEL-28 cells were seeded in 12-well plates and treated for
24 h with RUT. At the end of the treatment, the cells were washed with PBS, fixed with
the provided Fixing Solution, and stained using the provided Staining Solution which
was supplemented with an X-gal solution in DMSO and a Staining Supplement. Finally,
the cells were photographed in Color Bright Field illumination using the Olympus IX73
inverted microscope (Olympus, Tokyo, Japan).
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2.7. Statistical Analysis

The data obtained were presented as means ± SD, and the differences were compared
by one-way ANOVA, followed by Dunnett’s multiple comparison post hoc test by using
GraphPad Prism version 6.0.0 for Windows (GraphPad Software, San Diego, CA, USA,
www.graphpad.com). The differences between data were considered statistically significant
if p < 0.1 and are labeled with * (* p < 0.1, ** p < 0.01, *** p < 0.001 and **** p < 0.0001).

3. Results
3.1. Cell Viability Assessment

To identify the potential in vitro cytotoxic activity of RUT against melanoma cells,
as well as its active concentrations, a cell viability assessment was performed. The 24 h
treatment with RUT (1, 5, 10, 25, and 50 µM) indicated a dose-dependent decrease in the
percentage of viable cells in both cell lines tested as compared to Control (Figure 1). In RPMI-
7951 cells, the viability was significantly reduced even at low concentrations (5 µM–85.31%).
However, the most prominent effect has been noticed at the highest concentration tested
(50 µM–60%). In SK-MEL-28 cells, a significant increase in the cell viability was noticed at
the lowest concentration (1 µM–117.84%), followed by a considerable reduction at higher
concentrations up to 51.48% (at 50 µM). By comparing the calculated IC50 values of RUT in
the two melanoma cell lines it has been remarked that SK-MEL-28 (IC50 = 47.44 ± 2.41) is
more sensitive as compared to RPMI-7951 (IC50 = 64.49 ± 13.27).
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Figure 1. In vitro evaluation of the effect exerted by RUT (1, 5, 10, 25, and 50 µM) after 24 h of treatment on (A) RPMI-7951
and (B) SK-MEL-28 malignant melanoma cells’ viability by performing the MTT assay. Data are presented as viability
percentages (%) normalized to Control and expressed as mean values ± SD of three independent experiments performed in
triplicate. The statistical differences between Control and the treated group were verified by applying the one-way ANOVA
analysis followed by Dunnett’s multiple comparisons post-test (* p < 0.1; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

3.2. Cell Morphology and Confluence Evaluation

As a component of the anti-melanoma profile of RUT, an evaluation of its impact on
the morphology of RPMI-7951 and SK-MEL-28 cells has been performed. RPMI-7951 cells
are adherent cells with an epithelial-like morphology and several changes were identified
in their morphology and confluence following RUT treatment (Figure 2), such as a dose-
dependent reduction of confluence, loss of adherence, and roundish cells were observed
mainly at 10 and 50 µM. A similar effect was detected in the case of SK-MEL-28 cells, human
melanoma cells with a polygonal morphology, the most noticeable signs being recorded
at the highest concentrations tested—10 and 50 µM (Figure 2). The changes observed in
both human melanoma cells indicate the cytotoxic effect of RUT treatment and could be
characterized as apoptotic-specific signs. These data support the cell viability results.

www.graphpad.com
www.graphpad.com
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Figure 2. Morphological aspect and the confluence of RPMI-7951 and SK-MEL-28 melanoma cells following the 24 h
treatment with RUT 1, 10, and 50 µM. The scale bars represent 200 µm.

3.3. Nuclear Morphology Evaluation

Since specific changes in the morphology of cells nuclei offer insight into the possible
cell death mechanism induced by anticancer compounds, a Hoechst 33,342 staining was
conducted for RUT 1, 10, and 50 µM. Staurosporine (STP) 5 µM was selected as an indicator
for apoptosis. The interpretation of the pictures was performed according to Crowley and
colleagues [25]. Several apoptotic features were noticed. In RPMI-7951 cells (Figure 3), RUT
induced nuclear fragmentation (at 1 µM), membrane blebbing (at 10 µM), and chromatin
condensation (at 50 µM). Abnormally shaped and condensed nuclei can be remarked at 10
µM in SK-MEL-28 cells (Figure 4), as well as nuclear fragmentation and apoptotic bodies
at 50 µM. Additionally, the Hoechst staining revealed a dose-dependent increase in the
AI percentages when compared to Control at the end of the 24 h treatment with RUT 1,
10, and 50 µM (Figure 5). Despite the similar trend, at the highest concentrations tested
the registered AI values were higher in SK-MEL-28 cells (10 µM–56%; 50 µM–84.19%) as
compared to RPMI-7951 cells (10 µM–48.35%; 50 µM–75.25%).
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Figure 5. Calculated apoptotic index (AI) in Hoechst 33342 stained RPMI-7951 (A) and SK-MEL-28
(B) MM cells following the 24 h treatment with RUT (1, 10, and 50 µM). Data are presented as an
apoptotic index (%) normalized to Control and expressed as mean values ± SD of three independent
experiments. The statistical differences between Control and the treated group were verified by
applying the one-way ANOVA analysis followed by Dunnett’s multiple comparisons post-test
(* p < 0.1; ** p < 0.01; *** p < 0.001).

3.4. Senescence Detection

The ability of RUT to induce senescence in melanoma cells has been assessed by the
X-Gal staining. As the most significant viability results were noticed in SK-MEL-28 cells,
this experiment was performed using this particular cell line. In comparison to Control
where several senescent cells were detected as well, RUT induced an enhancement in the
senescence signal (the dark color reporting β-galactosidase expression). The uppermost
results were obtained at the highest concentration tested—50 µM (Figure 6).



Toxics 2021, 9, 226 7 of 11

Toxics 2021, 9, x FOR PEER REVIEW 7 of 12 
 

 

 215 

Figure 5. Calculated apoptotic index (AI) in Hoechst 33342 stained RPMI-7951 (A) and SK-MEL-28 216 
(B) MM cells following the 24 h treatment with RUT (1, 10, and 50 µM). Data are presented as an 217 
apoptotic index (%) normalized to Control and expressed as mean values ± SD of three independent 218 
experiments. The statistical differences between Control and the treated group were verified by ap-219 
plying the one-way ANOVA analysis followed by Dunnett's multiple comparisons post-test (* p < 220 
0.1; ** p < 0.01; *** p < 0.001). 221 

3.4. Senescence Detection 222 

The ability of RUT to induce senescence in melanoma cells has been assessed by the 223 
X-Gal staining. As the most significant viability results were noticed in SK-MEL-28 cells, 224 
this experiment was performed using this particular cell line. In comparison to Control 225 
where several senescent cells were detected as well, RUT induced an enhancement in the 226 
senescence signal (the dark color reporting β-galactosidase expression). The uppermost 227 
results were obtained at the highest concentration tested—50 µM (Figure 6). 228 

 229 

Figure 6. Pictures (10× magnification) of X-Gal staining of senescent SK-MEL-28 cells after a 24 h treatment with RUT (1, 10, and 50 230 
µM). The white arrows indicate cells undergoing senescence. 231 

4. Discussion 232 

The present study was conducted to gather novel data regarding the effects of RUT 233 
as a potential anti-melanoma agent, data that are rather scarce at present. The main find-234 
ings in this direction are as follows: i) a dose-dependent cytotoxic effect at micromolar 235 
concentrations (1–50 µM—Figure 1) defined by apoptotic-specific features (cellular shape 236 
and nuclear alterations—Figures 2–4) and ii) a concentration-dependent senescence-in-237 
ducing activity (Figure 6). 238 

RUT, the flavonoid glycoside was also known as rutoside, displays a plethora of bi-239 
ological activities, including antioxidant, vasoprotective, neuroprotective, anticonvulsant, 240 
antidepressant, analgesic and antinociceptive, antidiabetic, anti-hypercholesterolemic, 241 
anticoagulant, antiulcer, antiosteoporotic, anticancer, and many other pharmacological ef-242 
fects that were comprehensibly described in an excellent review [26]. In recent years, a 243 
great interest was attributed to elucidate the molecular mechanisms underlying the anti-244 
cancer effect of RUT [27,28], but this process is far from being elucidated. Significant steps 245 
were made in this direction and several anticancer mechanisms of action were discovered, 246 

Figure 6. Pictures (10× magnification) of X-Gal staining of senescent SK-MEL-28 cells after a 24 h treatment with RUT (1, 10,
and 50 µM). The white arrows indicate cells undergoing senescence.

4. Discussion

The present study was conducted to gather novel data regarding the effects of RUT as
a potential anti-melanoma agent, data that are rather scarce at present. The main findings
in this direction are as follows: (i) a dose-dependent cytotoxic effect at micromolar con-
centrations (1–50 µM—Figure 1) defined by apoptotic-specific features (cellular shape and
nuclear alterations—Figures 2–4) and (ii) a concentration-dependent senescence-inducing
activity (Figure 6).

RUT, the flavonoid glycoside was also known as rutoside, displays a plethora of
biological activities, including antioxidant, vasoprotective, neuroprotective, anticonvulsant,
antidepressant, analgesic and antinociceptive, antidiabetic, anti-hypercholesterolemic, anti-
coagulant, antiulcer, antiosteoporotic, anticancer, and many other pharmacological effects
that were comprehensibly described in an excellent review [26]. In recent years, a great
interest was attributed to elucidate the molecular mechanisms underlying the anticancer
effect of RUT [27,28], but this process is far from being elucidated. Significant steps were
made in this direction and several anticancer mechanisms of action were discovered, such
as (i) activation of cancer cells apoptosis in a caspase-independent pathway, (ii) induction
of cell cycle arrest; (iii) modulation of different signaling pathways (e.g., Wnt, JAK-STAT,
EGFR, AP-1, NF-κB, Akt); (iv) inhibition of cancer cells’ migration; (v) antiangiogenic
effect, etc. These findings are based on studies conducted both in vitro and in vivo on
different models of cancer such as breast cancer, lung cancer, colon cancer, hepatic cancer,
neuroblastoma, leukemia, and ovarian cancer [26–28].

With regards to RUT’s anti-melanoma mechanism of action, the information is rather
insufficient at present. A recent in vitro study reported that RUT (5–100 µg/mL) in combi-
nation with photodynamic therapy and methylene blue induced apoptosis and cell cycle
arrest via ROS generation in A375 human melanoma [29]. Other data regarding the impact
of RUT in melanoma were achieved from two in vivo studies that showed an antimetastatic
effect of RUT by decreasing the number of metastatic nodules in a mouse melanoma model
induced by injection of B16F10 [30] and an inhibition of melanin formation, but an increase
in growth rate and tumor weight in C57BL/6 mice inoculated with B16 melanoma cells [31].

In the light of the data stated above and based on our previous background on the
topic [15,23], this study was focused on identifying novel insights regarding the anti-
melanoma effect of RUT. Our results showed that a 24 h treatment with different concen-
trations of RUT (1, 5, 10, 25, and 50 µM) induced a dose-dependent cytotoxic effect in
both types of human melanoma cells tested—RPMI-7951 and SK-MEL-28 and morpho-
logical and nuclear alterations (nuclear fragmentation, membrane blebbing, chromatin
condensation, and apoptotic bodies), characteristic signs of apoptosis (Figures 1–4). These
results are similar to the ones described in a study conducted on A375 melanoma cells [23].
Previous publications also reported the in vitro antitumor and proapoptotic properties of
RUT. One such example is the paper published by Danciu et al., revealing the potency of
RUT (100 µM) in decreasing the viability of B164A5 murine malignant melanoma cells after
72 h of treatment [16]. An additional study by Khan et al. reported the ability of RUT to
reduce the cell viability, induce nuclear condensation, cell cycle arrest at G0/G1 phase, and
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apoptosis via caspase-3 activation in HPV-C33A cervical cancer cells [32]. A proapoptotic
effect of RUT in A549 human lung cancer cells was also described [33]. RUT demonstrated
anticancer effects also against neuroblastoma, leukemia, breast, colon, hepatic, pancreatic,
and ovarian cancer cells [27].

Despite the similarities in terms of viability trend and percentages observed in both
cell lines, SK-MEL-28 cells (IC50 = 47.44 ± 2.41) showed an augmented sensitivity to RUT
as compared to RPMI-7951 cells (IC50 = 64.49 ± 13.27). This different response to RUT
treatment could be explained by the distinct features of the two human melanoma cell
lines analyzed. RPMI-7951 cells are melanotic epithelial-like cells with adherent properties
that present melanosome granules and possess the capacity to synthesize melanin in vitro
and to transport it from the mature melanosomes to keratinocytes [34] and to develop
pigmented tumors in vivo. Moreover, according to the manufacturer (ATCC) characteriza-
tion datasheet, RPMI-7951 cells harbor BRAF, PTEN, and TP53 mutant genes. By contrast,
SK-MEL-28 cells are amelanotic cells presenting a melanocyte-like phenotype with polyg-
onal morphology, capable to form large round cell type melanoma in vivo. These cells
express as mutant genes BRAF, TP53, and CDK4 [35] and cannot produce melanin in vitro
as shown in our previous study [36]. Recently, it has been highlighted that melanin plays
a key role in the protection of pigmented cells against the injuries induced by chemical
toxicants [37]. Melanin is a negatively charged biopolymer that colors various human
structures such as skin, hair, and eyes [38]. The main biological function of melanin is to
exert a cytoprotective effect against noxious UV radiations by serving as a physical barrier
and absorbent filter that reduces their penetration through the epidermis [39], as well as
against oxidative stress damage by scavenging free radicals [40]. Hence, melanin can bind
small molecules, leading to their retention in the pigmented tissues [40] followed by a slow
release of the accumulated toxins [37]. In particular, melanin interacts by hydrogen and
π−π bonding with small aromatic molecules [40] such as RUT.

Besides the visualization of nuclear alterations induced by RUT treatment in both cell
lines—RPMI-7951 and SK-MEL-28 (Figures 3 and 4), the Hoechst 33342 staining assay was
used to calculate the apoptotic index value (AI—Figure 5). Our results indicated a similar
trend as to that observed for the viability results: a concentration-dependent elevation in
the apoptotic index values (Figure 5). The highest percentages were recorded following
the 24 h treatment with RUT 50 µM in both cell lines: RPMI-7951—75.25%; SK-MEL-28—
84.19%. Regarding the safety profile of RUT, one of our latest publications reveals that RUT
induces no cytotoxicity in normal keratinocytes—the predominant cellular component in
human skin [41], even at high concentrations (50 and 75 µM) [23].

An interesting and novel finding in the present study is represented by the senescence-
inducing activity exerted by RUT after a 24 h treatment in SK-MEL-28 cells (Figure 6),
results that were not reported before to the best of our knowledge.

Cellular senescence is described as a very complex and heterogeneous process due
to its involvement in multiple physiological and pathological conditions (e.g., aging and
cancer) being characterized by several specific features as cell-cycle abolition, macromolec-
ular damage, impaired metabolism, and a secretory phenotype [42,43]. At present, cellular
senescence is considered (i) a tumor-suppressive process by preventing malignant transfor-
mation; (ii) an effector mechanism of current chemotherapy, and (iii) an active process in
preventing disease recurrence following cancer treatment [43]. Therefore, an X-Gal staining
protocol has been applied after the 24 h stimulation of SK-MEL-28 cells with RUT. The most
prominent results were acquired at the highest concentration of 50 µM (Figure 6) when
specific senescence features such as increased cell size, and elevated senescent-associated
beta-galactosidase (SA-β-gal) expression [44] highlighted by a dark coloration within the
cell cytoplasm were detected. Our results are endorsed by previous studies that reported
the capacity of several natural bioactive compounds (e.g., curcumin, quercetin) to force
cancer cells to undergo senescence in vitro [45–47]. Multiple mechanistic pathways have
been attributed to the pro-senescence effect of natural polyphenols in cancer cells, includ-
ing modulation of tumor suppressor or oncogene gene expression, DDR (DNA damage
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response) activation, ROS generation, promotion of endoplasmic reticulum (ER) stress, and
regulation of epigenetics [48]. According to our results, RUT treatment-induced senescence
in SK-MEL-28 melanoma cells by augmenting the expression of beta-galactosidase (SA-
β-gal), but the underlying mechanism is far more complex. Based on the data from the
literature regarding the signaling pathways modulated by RUT in exerting its anticancer
effect (mitogen-activated protein kinase (MAPK), PI3K/Akt, Wnt/β-catenin cascade, Janus
kinase, Ras/Raf, TGF-β2/Smad2/3Akt/PTEN, epidermal growth factor (EGF) pathway,
p53, etc.) [27] and the data regarding the mechanisms involved in cellular senescence of
cancer cells [42,43], we could assume that RUT acts by targeting various pathways as p53
pathway, PI3K/Akt and others, but these assumptions need further studies for attestation.

5. Conclusions

Our findings revealed that RUT possesses a dose-dependent cytotoxic activity at
micromolar concentrations against human melanoma cells. The cytotoxic effect was as-
sociated with a reduced cell viability rate, changes in cellular morphology, apoptotic-like
nuclear alterations, and reduced confluence. Moreover, RUT enhanced the senescence
within SK-MEL-28 cells at the highest concentrations (10 and 50 µM). Further studies are
necessary to confirm and elucidate the mechanisms underlying the antiproliferative and
pro-senescent properties of RUT in melanoma cells.
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