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A confluence of factors related 
to dietary changes, sedentary 
lifestyle, and an aging popu-

lation in Western cultures has led to 
a rapid rise in the incidence of type 2 
diabetes, a disease that carries enor-
mous burden in terms of health and 
economic outcomes. Increasingly, 
type 2 diabetes is recognized as a ma-
jor contributor to cognitive decline 
and dementia in older adults. As both 

type 2 diabetes and dementia reach 
epidemic proportions in the United 
States, the need to identify methods 
of prevention and treatment grows 
increasingly important.

Recently, there has been an 
emphasis on precision medicine, a 
model of focused identification and 
treatment of disease based on indi-
vidual risk, as it applies to dementia. 
Even more compelling than preci-
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■ IN BRIEF There has been a concurrent dramatic rise in type 2 diabetes and 
dementia in the United States, and type 2 diabetes shares common genetic 
and environmental risk factors and underlying pathology with both vascular 
and Alzheimer’s dementias. Given the ability to identify this at-risk population 
and a variety of potential targeted treatments, type 2 diabetes represents 
a promising focus for a precision health approach to reduce the impact of 
cognitive decline and dementia in older adults.
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sion medicine is the aspirational goal 
of precision health, through which 
graded surveillance based on risk dis-
closes preclinical pathophysiological 
processes that motivate interventions 
that preserve health and prevent clin-
ical expression of disease. The ability 
to identify an at-risk population, to 
detect pathological changes early in 
the disease process, and to select from 
a variety of potential targeted treat-
ments make type 2 diabetes an ideal 
focus for a precision health approach 
to reducing the impact of dementia. 

Type 2 Diabetes and Cognition 
in Older Adults
Type 2 diabetes is a robust predictor 
of cognitive impairment and decline 
in older adults. Multiple population- 
based studies have reported an asso-
ciation between type 2 diabetes and 
cognitive impairment (1–4), and 
older adults with type 2 diabetes ex-
perience global cognitive decline at a 
rate that is double those without type 
2 diabetes over a 5-year period (5). 
General cognitive slowing, thought 
to be a marker for accelerated brain 
aging and dementia risk, is related to 
type 2 diabetes in middle-aged and 
older adults (6,7), and interactions 
between type 2 diabetes and genet-
ic risk predict more rapid decline in 
cognitive speed (8). With regard to 
specific cognitive domains, associa-
tions between type 2 diabetes or even 
prediabetic levels of insulin resistance 
are most commonly reported with 
both episodic memory and decreased 
executive function, including verbal 
fluency, working memory, processing 
speed, cognitive flexibility, and cogni-
tive control (7). Executive function, 
which may be most predictive of 
functional performance, also declines 
more rapidly among older women 
with type 2 diabetes (9). Conversely, 
remaining free from diabetes has been 
associated with preserved cognitive 
function in women >80 years of age 
(10).

Several mechanisms may underlie 
these associations, including periph-
eral metabolic derangements from 

insulin resistance or type 2 diabetes 
that indirectly damage the brain, 
vascular brain injury from the vas-
culopathic consequences of insulin 
resistance and type 2 diabetes, dis-
ruption of the ability of insulin to 
perform its normal actions in the 
brain in patients with type 2 diabetes, 
or some combination of these.

Insulin in the Brain
Sensitivity of target cells in the pe-
riphery and in the central nervous 
system (CNS) to insulin, a peptide 
hormone secreted by pancreatic 
β-cells, is suppressed in type 2 diabe-
tes. First recognized as a principle reg-
ulator of peripheral glucose, insulin 
also has been identified as a key factor 
in memory and other cognitive pro-
cesses. Insulin is readily transported 
into the CNS across the blood-brain 
barrier via a saturable, receptor- 
mediated process, which likely ac-
counts for the majority of available 
insulin in the brain (11). Additionally, 
recent evidence suggests that insulin is 
also produced in the brain, a process 
that is potentially regulated by the 
Wnt/β-catenin/NeuroD1 pathway 
in the hypothalamus (12), although 
this has yet to be verified in human 
studies. Regardless of source, the 
CNS is rich with insulin receptors, 
most prominently in areas important 
for learning and memory, including 
the hippocampus, amygdala, para-
hippocampal gyrus, thalamus, and 
caudate-putamen (13). 

Role of Insulin in Learning and 
Memory 
The salutary effects of acute insulin 
administration on cognition are well 
documented. In rats, acute intrace-
rebroventricular insulin administra-
tion improves memory on a passive- 
avoidance task and enhances spatial 
memory via potentially age-depen-
dent inflammatory reduction pro-
cesses (14,15). In humans, acute 
intravenous and intranasal insulin 
administration (while maintaining 
euglycemia) consistently improves 
declarative memory performance 
(16). Learning also appears to influ-

ence insulin receptor expression and 
function in the dentate gyrus and 
CA1 area of the hippocampus (17). 
Together, these studies support insu-
lin as an important factor in normal 
memory functioning. Potential mech-
anisms for the influence of insulin 
on memory include regional effects 
of insulin on cerebral glucose metab-
olism, influence on components of 
the long-term potentiation cascade, 
and modulation of acetylcholine and 
norepinephrine, neurotransmitters 
that are known to influence cognitive 
function. 

Chronic Effects of 
Hyperinsulinemia on Cognition
Despite the beneficial effects of acute 
hyperinsulinemia in the CNS, pro-
longed elevated levels of circulat-
ing insulin may exert an opposing 
influence on cognition. Sustained 
peripheral hyperinsulinemia reduc-
es insulin transport into the brain 
(18). Prolonged insulin resistance, 
a syndrome characterized by high 
peripheral insulin and diminished 
insulin-mediated glucose clearance, 
underlies the development of type 2 
diabetes. Among people with type 2 
diabetes, reductions in brain volume 
(most prominently in the frontal and 
temporal lobes) and corresponding 
impairments in cognition are found 
in comparison to nondiabetic control 
subjects (19,20). Even in the absence 
of hyperglycemia, declarative memory 
impairment has been observed in indi-
viduals with chronic hyperinsulinemia 
(21), consistent with a deleterious role 
of insulin resistance on cognitive func-
tion. Subtle cognitive changes that can 
accompany early stages of insulin re-
sistance due to aging, type 2 diabetes, 
and other factors may eventually de-
velop into clinically significant cogni-
tive impairment, including dementia 
(Figure 1).  

Toward a Precision Medicine 
Model for Dementia: Type 
2 Diabetes as a Target Risk 
Factor
Precision health uses emerging knowl-
edge about specific diseases to identi-
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fy optimal and targeted interventions 
based on individually determined risk 
factors. To effectively adapt the con-
cept of precision health to cognitive 
impairment and dementia in older 
adults, it is imperative to first identify 
groups of differing risk.

Dementia develops as a result of 
a complex interplay of clinical and 
biological factors and is beset by 
multiple underlying pathological 
features. People with type 2 diabetes 
represent an important risk group for 
cognitive impairment and dementia 
caused by both Alzheimer’s disease 
dementia and vascular brain injury. 
For example, a recent meta-analysis 
found that type 2 diabetes was 
associated with a 60% increase in 
risk for all-cause dementia (22), and 
a population-based longitudinal 
study found a 16% increased risk for 
dementia even among those in which 
type 2 diabetes onset was recent 
(23). Furthermore, type 2 diabetes 
increases the risk of mortality in 
patients who already have dementia, 
suggesting that targeted intervention 
at any point may improve health 

outcomes (24). Although many of 
these studies examined risk related 
to all-cause dementia, there is 
evidence that two specific subtypes, 
Alzheimer’s disease dementia and 
vascular dementia, are most strongly 
associated with type 2 diabetes.

Type 2 Diabetes and 
Alzheimer’s Disease Dementia
The importance of the connection be-
tween type 2 diabetes and Alzheimer’s 
disease dementia is perhaps best cap-
tured by the term “type 3 diabetes,” 
coined to describe a portion of pa-
tients who develop Alzheimer’s dis-
ease dementia presumably as a result 
of diabetes-related injury and de-
generation (25). Meta-analytic data 
demonstrate a 56% increased risk for 
Alzheimer’s disease dementia among 
individuals with type 2 diabetes (22). 
Among the studies included in the 
meta-analysis was the prospective, 
community-based Rotterdam study, 
which found that type 2 diabetes 
significantly increased the risk of 
Alzheimer’s disease dementia, with 
greater risk apparent in people who 

were treated with insulin (and there-
fore likely to be in the more severe 
stages of the disease) at baseline (26). 
A type 2 diabetes diagnosis appears to 
raise the risk for Alzheimer’s disease 
dementia independently (although 
likely with additive effects) from 
vascular or other dementias or from 
APOE E4 gene status (26,27). Among 
patients already diagnosed with 
Alzheimer’s disease dementia, an in-
creased prevalence of type 2 diabetes 
(35 vs. 18% in nondemented control 
subjects) and impaired glucose toler-
ance (46 vs. 24%) was reported (28). 

Despite strong results from obser-
vational studies, recent explorations 
into genome-wide associations for 
type 2 diabetes susceptibility loci, 
as well as Mendelian randomization 
(MR) studies that combine genetic 
factors for type 2 diabetes, have 
failed to find an association with 
Alzheimer’s disease dementia (29,30). 
However, in a follow-up MR study 
that examined single nucleotide poly-
morphisms independently according 
to their specific biological mecha-
nism, Alzheimer’s disease dementia 
risk correlated negatively with insu-
lin sensitivity only (31), a finding that 
is not surprising given the wealth of 
literature that connects insulin dys-
function with Alzheimer’s disease 
dementia–specific neuropathological 
changes. In addition, a recent exam-
ination of genome-wide association 
study data found significant overlap 
between single-nucleotide polymor-
phisms (SNPs) associated with type 
2 diabetes and Alzheimer’s disease, 
providing initial evidence that the 
two diseases may indeed share genetic 
risk. Among the shared type 2 dia-
betes and Alzheimer’s risk–associated 
SNPs, those responsible for immune 
regulation, cell signaling, and long-
term potentiation were strongly 
represented (32). Further investi-
gation into the shared genetic risk 
profile between type 2 diabetes and 
Alzheimer’s disease may lead to tar-
geted and more effective prevention 
and intervention approaches.

■ FIGURE 1. Mechanism of type 2 diabetes–associated cognitive dysfunction. AD, 
Alzheimer’s disease; BBB, blood-brain barrier; T2DM, type 2 diabetes mellitus. 
Reprinted from Umegaki K. Type 2 diabetes as a risk factor for cognitive impair-
ment: current insights. Clin Interv Aging 2014;9:1011–1019. This is an open-access 
article distributed under the Creative Commons attribution license, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the origi-
nal work is properly cited.
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There are several potential mecha-
nisms by which type 2 diabetes may 
induce the neuropathological changes 
of Alzheimer’s disease. Chronic 
peripheral hyperinsulinemia caused 
by insulin resistance in type 2 dia-
betes ultimately lowers brain insulin 
levels and results in desensitization 
of neuronal insulin receptors, which 
may in turn lead to decreased clear-
ance of beta amyloid (Aβ) peptide 
(33) and increased hyperphosphor-
ylation of τ protein, which forms 
neurofibrillary tangles (34). In vivo, 
insulin modulates Aβ levels and pro-
motes release of intracellular Aβ; 
thus, reduced sensitivity to insulin in 
the brain may reduce clearance of Aβ 
to extracellular compartments (33). 
Furthermore, soluble Aβ binds to the 
insulin receptor and disrupts its sig-
naling capacity as well as long-term 
potentiation induction, which forms 
the basis for learning and memory, 
an effect that is prevented by insulin 
pretreatment (35,36). Insulin also 
inhibits phosphorylation of τ pro-
tein, possibly through its regulation 
of glycogen synthase kinase 3β, a 
downstream target in the insulin sig-
naling pathway (37). In a conditional 
knockout mouse model in which the 
insulin receptor gene was inactivated 
in the CNS, phosphorylation of τ and 
the presence of tangle pathology was 
significantly increased (38,39). Type 
2 diabetes also causes apoptosis in the 
hippocampus via a number of other 
dementia-associated processes that are 
independent of Aβ and τ, including 
increased oxidative stress, reduction 
of caspases, disturbed expression 
of apoptosis-regulator genes, and 
defective mitochondrial function 
(40). Recently, a nontransgenic ani-
mal model for Alzheimer’s disease 
dementia was developed that relies 
on prolonged insulin resistance in 
the brain (41). In this model, rats are 
injected with intracerebroventricular 
streptozotocin to induce insulin resis-
tance and subsequently demonstrate 
multiple and progressive Alzheimer’s 
disease dementia–like changes in the 
brain, including accumulation of the 

Aβ peptide and hyperphosphory-
lated τ, the predominant features in 
Alzheimer’s disease dementia neu-
ropathology, as well as associated 
structural and cognitive changes. 

Despite evidence from in vitro 
and animal studies that insulin resis-
tance modulates the predominant 
pathological features of Alzheimer’s 
disease dementia, along with the 
consistently reported increased risk 
for Alzheimer’s disease dementia 
associated with type 2 diabetes, 
recent imaging studies have produced 
somewhat conflicting results. For 
example, among nondemented par-
ticipants in the Mayo Clinic Study of 
Aging (42), type 2 diabetes and ele-
vated A1C levels were associated with 
brain hypometabolism in Alzheimer’s 
disease dementia–specific brain 
regions; however, these factors did 
not correlate with significant amy-
loid accumulations (42). Similarly, 
among participants enrolled in the 
Alzheimer’s Disease Neuroimaging 
Initiative, type 2 diabetes was associ-
ated with lower bilateral frontal and 
parietal cortical thickness, but not 
with cerebrospinal fluid (CSF) Aβ42 
levels or with amyloid accumulations 
by neuroimaging (43). Conversely, 
total and phosphorylated CSF τ pro-
teins were negatively associated with 
type 2 diabetes. These findings may 
support a pathway to Alzheimer’s 
disease dementia that is less depen-
dent on Aβ in people with type 2 
diabetes. Future studies that incor-
porate human τ imaging will help 
to clarify whether the typical course 
of Alzheimer’s pathology is altered in 
the insulin-resistant brain.

Type 2 Diabetes and Vascular 
Dementia
Vascular disease represents a principle 
factor in accelerated brain aging, and 
vascular brain injury is an important 
contributor to cognitive dysfunction 
in older adults (44). Type 2 diabetes 
is a known risk factor for cardiovas-
cular and cerebrovascular disease and 
may increase susceptibility to large 
and small caliber vessel–mediated 

injury to the brain, including hypox-
ic events, ischemia, and blood-brain 
barrier leakage. Dysfunction of vas-
cular endothelial cells secondary to 
insulin resistance and inflammation 
is a characteristic consequence of type 
2 diabetes, and disruption of white 
matter networks is seen on neuroim-
aging in patients with type 2 diabetes 
(45–47). Furthermore, white matter 
dysfunction is associated with poor-
er cognitive performance in patients 
with type 2 diabetes (46–48).

Type 2 diabetes is frequently 
reported to be more strongly cor-
related with vascular dementia 
than with other types, including 
Alzheimer’s disease dementia. Indeed, 
a recent meta-analysis of prospective 
studies that examined the risk of 
dementia in patients with type 2 dia-
betes reported a pooled relative risk 
of 2.27 for vascular dementia (22). 
Interestingly, new evidence suggests 
the increased risk for vascular demen-
tia may be especially prominent in 
women; women with type 2 diabetes 
had a 19% greater chance of vascular 
dementia than men (49). In addition, 
those with longer duration and ear-
lier age of onset of type 2 diabetes 
were more likely to develop vascular 
dementia.

Vascular burden in dementia is 
substantial but often co-occurs with 
other pathology (50). It is important 
to note that vascular risk factors may 
interact synergistically to amplify 
the effects of the Alzheimer’s dis-
ease cascade. For example, vascular 
dysfunction may be associated with 
progression of both amyloid and τ 
pathology (51). In patients already 
diagnosed with Alzheimer’s disease 
dementia and mild cognitive impair-
ment, both cognitive and affective 
dysfunction were increased among 
those with insulin resistance (52,53), 
and treating vascular risk factors 
helped to slow cognitive decline (54). 
The strong association between type 
2 diabetes and vascular contribu-
tions to dementia should be carefully 
considered when implementing treat-
ment and prevention measures. 
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Precision Health: Early 
Detection
To effectively target and treat de-
mentia associated with type 2 diabe-
tes, such treatment would be most 
effective when implemented as early 
as possible, preferably during a la-
tent or prodromal phase when the 
neuropathological changes are not 
yet significant enough to result in 
significant overt clinical symptoms 
(55). Importantly, both type 2 diabe-
tes and dementia are associated with 
prolonged prodromal phases, and al-
though symptoms may not be overt, 
current advances permit early identi-
fication of both syndromes. 

It is now established that the 
pathophysiological processes underly-
ing dementia may begin years or even 
decades before clinical manifestation 
of symptoms (56,57). Similarly, the 
insulin resistance syndrome is asso-
ciated with a silent phase before the 
onset of frank diabetes, during which 
the pancreas is able to compensate by 
producing adequate levels of insulin 
to lower peripheral glucose levels. 
Midlife is thus frequently identi-
fied as a potentially crucial period 
of intervention. Impaired glucose 
tolerance and other cardiovascular 
risk factors during midlife may be 
particularly associated with impaired 
cognition and, later, dementia risk 
(58). Thus, this period may be an 
important point for widespread inter-
vention in pursuit of precision health 
for the aging brain. For example, a 
recent study of late-middle-aged 
participants demonstrated a positive 
association between elevated insulin 
resistance and amyloid deposition 
(59). Thus, developing wide-scale  
prevention and treatment meth-
ods early in the course of insulin 
resistance may lead to substantial 
reductions in the burden of both type 
2 diabetes and dementia in later years. 

Precision Health: Approaches 
to Intervention
The precision medicine model as-
sumes that innovative treatments 
will target specific risk factors based 

on individuals’ disease risk. Currently, 
approved pharmacological treatments 
for Alzheimer’s disease are prescribed 
comprehensively, regardless of specific 
disease risk and despite known lim-
ited effectiveness. Given the impact 
of type 2 diabetes on risk for both 
vascular and Alzheimer’s diseases, in-
terventions that target insulin resis-
tance may have significant potential 
to affect the clinical symptomatology 
associated with Alzheimer’s disease 
dementia. 

Diet
A typical Western diet consists of 
high levels of saturated fats and sim-
ple carbohydrates, a pattern of con-
sumption that substantially raises the 
risk of insulin resistance and type 2 
diabetes and related cognitive im-
pairment. Conversely, improving the 
dietary profile may produce protec-
tive effects on cognitive functioning 
and Alzheimer’s disease dementia risk 
(60). In animals, diets high in either 
saturated fat or sucrose modify pro-
cessing of the amyloid precursor pro-
tein, elevate Aβ-related cerebrovas-
cular disturbance, and reduce brain 
insulin signaling and expression of 
insulin-degrading enzyme (61,62). 
Evidence from population-based 
studies generally supports that an im-
proved dietary profile, in particular, a 
Mediterranean diet, leads to a reduced 
risk of age-related cognitive decline 
and dementia (63). In an intervention 
trial (64) aimed at examining the ef-
fects of diet on cognitive function and 
CSF biomarkers in older adults with 
and without cognitive impairment, 
subjects were assigned to a 4-week 
isocaloric diet that consisted of either 
high saturated fat/high simple carbo-
hydrates (HIGH; a pattern associat-
ed with type 2 diabetes and insulin 
resistance) or low saturated fat/low 
simple carbohydrates (LOW). In this 
study, diet intervention influenced 
insulin sensitivity, Alzheimer’s dis-
ease dementia biomarker profile, lev-
el of oxidative stress, and cognition. 
The confluence of population-based 
evidence, animal models, and initial 

intervention trials suggests that in-
creasing insulin sensitivity via dietary 
modification may play a key role in 
overall dementia risk reduction.

Physical Exercise
An increasingly sedentary lifestyle 
present in Western cultures is likely 
also a key factor in the rise in type 2 
diabetes in recent years. Aerobic ex-
ercise, which is known to be an effec-
tive treatment for diabetes and related 
conditions, also has potent salutary 
effects in the brain. Increased physical 
activity is consistently linked with im-
proved learning and memory, both in 
humans and in animal models (65). 
The benefits of exercise on cognitive 
function have been demonstrated in 
healthy older adults and in adults 
with cognitive impairment, and ex-
ercise appears to have positive impli-
cations for the reduction of dementia 
risk (66–69). The favorable effects 
of exercise likely are exerted through 
multiple pathways known to be influ-
enced by insulin, including improved 
cardiovascular and cerebrovascular 
function, anti-inflammatory process-
es, and enhanced insulin-dependent 
energy metabolism. Thus, aerobic 
exercise has the potential to modify 
multiple processes compromised in 
pathological brain aging.

Regular exercise during midlife, 
when many pathological disease 
processes likely begin, has been 
linked to reduced dementia risk and 
improved cognitive profile in older 
adults (70,71). Among older adults, 
those who exercised for at least 30 
minutes per day, 5 days per week, for 
at least 10 years demonstrated lower 
brain Aβ deposition (using Pittsburgh 
compound B on positive emission 
tomography [PET] scan) (72). Given 
its multiple beneficial effects in the 
brain, regular physical exercise is 
recommended to help reduce the 
negative cognitive effects of type 2 
diabetes. 

Intranasal Insulin
Augmenting insulin in the CNS via 
intranasal insulin administration is 
one promising and innovative ap-



V O L U M E  2 9 ,  N U M B E R  4 ,  F A L L  2 0 1 6 	 215

c h o l e r t o n e t  a l .
F

R
O

M
 R

E
S

E
A

R
C

H
 T

O
 P

R
A

C
T

IC
E

 F R O M  R E S E A R C H  T O  P R A C T I C E  /  C O G N I T I O N  A N D  D I A B E T E S  A C R O S S  T H E  L I F E  S PA N 

proach currently under investiga-
tion. Animal models and human 
studies support that insulin may be 
transported effectively into the CNS 
via intranasal administration without 
substantially affecting peripheral in-
sulin levels (73–75). Initial studies 
examining younger adult participants 
found that acute intranasal adminis-
tration improved both verbal memory 
and mood (76). Subsequently, intra-
nasal insulin was found to improve 
verbal memory acutely in nondiabetic 
subjects with Alzheimer’s disease de-
mentia or amnestic mild cognitive 
impairment (MCI) without affecting 
plasma insulin or glucose (77,78). 
Research into the chronic effects of 
regular and long-acting formula-
tions demonstrated improved gen-
eral cognitive abilities, declarative 
memory, and aspects of executive 
function, including verbal and non-
verbal working memory and selective 
attention, among healthy control 
subjects and participants with MCI 
and early Alzheimer’s disease (79–81). 
In addition, changes in CSF Aβ42 
and τ/Aβ42 ratios over the course 
of treatment were associated with 
cognitive and functional changes 
for insulin-treated participants. On 
fluorodeoxyglucose PET imaging, 
the intranasal insulin-treated group 
showed reduced progression of hy-
pometabolism in the bilateral frontal, 
right temporal, bilateral occipital, and 
right precuneus/cuneus regions over 
a 4-month treatment period (80). 
Cumulative results to date thus sup-
port intranasal insulin administration 
as a potentially effective intervention 
in older adults with cognitive impair-
ment or type 2 diabetes. A phase 3 
clinical trial is underway to examine 
the effectiveness of intranasal insulin 
in people with early cognitive changes 
associated with Alzheimer’s disease. 

Type 2 Diabetes Treatments
Although early treatment of type 2 di-
abetes may reduce the risk for compli-
cations, including cognitive decline, 
there may be differential effects in 
the brain related to the type of phar-

macological intervention employed. 
Metformin, the typical first-line ther-
apy for treatment of type 2 diabetes, 
has been both lauded for potential 
cognition-enhancing effects (82,83) 
and identified as a potential risk 
factor in increased cognitive impair-
ment (84) among patients with type 
2 diabetes. However, the association 
between metformin and cognition is 
murky because of multiple factors, 
including the fact that those taking 
metformin for many years may be at 
higher risk for cognitive impairment 
as a function of the disease process 
rather than the medication per se. 
Conversely, treated versus untreated 
type 2 diabetes may confer a differ-
ing risk for cognitive decline due to 
vascular injury versus amyloid depo-
sition (85). A recent meta-analysis 
found no significant effect of treat-
ment type across multiple cognitive 
domains among older adults with 
type 2 diabetes, although there ap-
peared to be protective effects on ver-
bal learning, working memory, and 
executive function for those who only 
used metformin (86).

Peroxisome proliferator–activated 
receptor-γ (PPAR-γ) agonists, which 
act specifically to reduce insulin 
resistance, may help to normalize Aβ 
levels in the brain and to improve 
associated behavioral symptoms. 
Ongoing in vitro and animal studies 
show beneficial effects of these agents 
via reduced inflammation, enhanced 
clearance of Aβ, reductions in hyper-
phosphorylation of τ, and improved 
synaptic plasticity (Figure 2) (87–89).

However, clinical trials using 
these medications have been less 
convincing. Although early pilot 
studies suggested improved cognition, 
a more favorable plasma Aβ40/42 
ratio, and enhanced regional cerebral 
blood flow in patients with MCI 
or early Alzheimer’s disease (90), 
subsequent phase 3 clinical trials 
using rosiglitazone failed to show 
cognitive improvement in patients 
with mild to moderate Alzheimer’s 
disease dementia (91,92). Pioglitazone 
has produced similarly mixed results. 

Treatment with pioglitazone in 
patients with both type 2 diabetes 
and Alzheimer’s disease dementia 
produced improvement in general 
cognitive status and declarative 
verbal memory, as well as improved 
regional cerebral blood flow in the 
parietal lobe, after 6 months of 
treatment (93,94). However, another 
trial that was designed primarily to 
assess the safety of pioglitazone in 
nondiabetic patients with Alzheimer’s 
disease dementia failed to show any 
improvements on secondary cognitive 
and functional outcome measures 
(95).

Interestingly, a recent in vitro 
model suggested that a subclinical 
dose of rosiglitazone may produce 
more beneficial effects on Aβ clear-
ance than higher doses (96). Thus, 
follow-up studies that use lower doses 
may be illuminating. Furthermore, 
the larger trials above included 
patients with clinically diagnosed 
Alzheimer’s disease dementia; it is 
possible that treating insulin resis-
tance before the onset of clinically 
significant dementia (e.g., MCI) may 
produce more favorable cognitive 
results. 

Practical Treatment 
Considerations
Given the relationship between type 
2 diabetes and subsequent clinical 
effects on vascular or Alzheimer’s pa-
thology, it is reasonable to provide 
guidelines to patients at multiple 
levels of intervention. Primary pre-
vention of type 2 diabetes and other 
metabolic and vascular diseases may 
ultimately be crucial to curtailing 
the rapid increase in the cognitive 
disorders of aging. Thus, instituting 
dietary and exercise guidelines at 
midlife or before, particularly among 
those most at risk for cardiovascular 
disease or diabetes, is particularly im-
portant. Once diabetes has been diag-
nosed, targeted secondary prevention 
methods designed to reduce or even 
reverse the impact of the disease early 
on, including diet, exercise, and any 
necessary medical treatments, should 



2 1 6 	 S P E C T R U M . D I A B E T E S J O U R N A L S . O R G

 F R O M  R E S E A R C H  T O  P R A C T I C E  /  C O G N I T I O N  A N D  D I A B E T E S  A C R O S S  T H E  L I F E  S PA N 

be considered. In particular, those 
at risk for cognitive decline, includ-
ing patients with a family history of 
dementia, additional vascular risk 
factors, or a diagnosis of MCI, may 
be best targeted for education and 
intervention. Referral for detailed 
cognitive assessment and intervention 
should be considered for those who 
express concerns about changes in 
cognition. Baseline cognitive assess-
ment may be useful for older adults 
diagnosed with diabetes to identi-
fy those at high cognitive risk (e.g., 
MCI) and to adequately track sub-
sequent cognitive changes over time. 
Finally, for those who have already 
developed clinically significant cog-
nitive symptoms, treatments now in 
development such as those described 
above may eventually represent viable 
options for tertiary prevention. 

Summary
With an aging population and con-
current rise in chronic health condi-
tions has come a rapid escalation in 
the incidence of both type 2 diabetes 
and dementia. The risk for cognitive 
impairment and dementia is increased 
among those with type 2 diabetes, 
and insulin resistance represents a 
potential mechanism by which both 
Alzheimer’s and vascular disease can 
develop. Fortunately, type 2 diabe-
tes is amenable to intervention, and 
promising therapeutic interventions 
are under investigation. The abilities 
to establish risk among specific pop-
ulations, identify and perhaps prevent 
progression of the disease early in its 
process, and institute targeted inter-
ventions help to establish type 2 dia-
betes as an ideal candidate for a pre-
cision health approach in dementia.
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