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Abstract

The mammalian germline is characterized by extensive epigenetic
reprogramming during its development into functional eggs and
sperm. Specifically, the epigenome requires resetting before paren-
tal marks can be established and transmitted to the next genera-
tion. In the female germline, X-chromosome inactivation and
reactivation are among the most prominent epigenetic reprogram-
ming events, yet very little is known about their kinetics and bio-
logical function. Here, we investigate X-inactivation and
reactivation dynamics using a tailor-made in vitro system of pri-
mordial germ cell-like cell (PGCLC) differentiation from mouse
embryonic stem cells. We find that X-inactivation in PGCLCs in
vitro and in germ cell-competent epiblast cells in vivo is moderate
compared to somatic cells, and frequently characterized by escap-
ing genes. X-inactivation is followed by step-wise X-reactivation,
which is mostly completed during meiotic prophase I. Furthermore,
we find that PGCLCs which fail to undergo X-inactivation or reacti-
vate too rapidly display impaired meiotic potential. Thus, our data
reveal fine-tuned X-chromosome remodelling as a critical feature
of female germ cell development towards meiosis and oogenesis.
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Introduction

The germ cell lineage is unique in its critical function to transmit

genetic and epigenetic information from one generation to the

next. In mice, primordial germ cells (PGCs), the precursors of eggs

and sperm, are specified during early postimplantation develop-

ment from somatic precursors in the proximal epiblast by induc-

tive signals (Lawson et al, 1999; Ohinata et al, 2005, 2009).

Thereafter, PGCs migrate and enter the future gonads where they

receive sex-specific somatic signals, which determine the germ cell

sex and promote differentiation towards a spermatogenic or

oogenic fate (Miyauchi et al, 2017; Spiller et al, 2017). While in

males, germ cells enter mitotic arrest and differentiate into pros-

permatogonia, in females, germ cells instead progress into meiosis

and oogenesis.

A hallmark feature of early germ cell development is the exten-

sive epigenetic reprogramming (Kurimoto & Saitou, 2019), charac-

terized by global changes in histone marks (Seki et al, 2005;

Hajkova et al, 2008), DNA demethylation and erasure of genomic

imprints (Hajkova et al, 2002; Seisenberger et al, 2012; Shirane

et al, 2016). This establishes an epigenetic naive state (Ohta et al,

2017), which is required in order for PGCs to progress towards

gonadal germ cell fate (Hill et al, 2018) and to control their timing

to enter female meiosis (Yokobayashi et al, 2013). Ultimately, this

erasure of parental information allows the reestablishment of new

paternal and maternal marks during spermatogenesis and oogene-

sis, respectively, which are critical for the competence of egg and

sperm to facilitate embryonic development in the next generation

(Reik & Surani, 2015; Ohta et al, 2017).
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In addition to these global changes, another important epigenetic

reprogramming event takes place in the female germline; the rever-

sal of silencing of the inactive X chromosome by X-chromosome

reactivation. While X-chromosome inactivation (Lyon, 1961; Payer

& Lee, 2008; Galupa & Heard, 2018) is the process by which female

mammals (XX) achieve X-linked gene dosage parity with males

(XY), X-reactivation takes place specifically in pluripotent epiblast

cells of the mouse blastocyst (Mak et al, 2004; Borensztein et al,

2017) and in PGCs during their migration and upon their entry into

the gonads (Sugimoto & Abe, 2007; Chuva de Sousa Lopes et al,

2008). Therefore, while X-inactivation is associated with pluripo-

tency exit and the differentiated state (Schulz et al, 2014),

X-reactivation is a key feature of naive pluripotency and germ cell

development (Pasque et al, 2014; Payer, 2016; Janiszewski et al,

2019; Panda et al, 2020; Bauer et al, 2021; Talon et al, 2021).

X-reactivation in mouse PGCs is a multistep process, which initiates

during PGC migration with downregulation of Xist, the long non-

coding master regulator RNA of X-inactivation and concomitant loss

of the associated histone H3K27me3 mark from the inactive X (Sugi-

moto & Abe, 2007; Chuva de Sousa Lopes et al, 2008). This process

is regulated by repression of the Xist gene by the germ cell transcrip-

tion factor PRDM14 (Payer et al, 2013; Mallol et al, 2019) and poten-

tially by other members of the pluripotency network such as

NANOG or OCT4 (Navarro et al, 2008), which are all expressed dur-

ing PGC development. Subsequently, X-linked genes become pro-

gressively reactivated during migration, with the process being

completed after PGCs have reached the gonads, and following the

initiation of oogenesis and meiosis (Sugimoto & Abe, 2007; Sangrithi

et al, 2017). X-linked gene reactivation is thereby thought to be

enhanced by a female-specific signal from gonadal somatic cells

(Chuva de Sousa Lopes et al, 2008). Although the molecular nature

of the X-reactivation-promoting signal is currently unknown, the

timing of X-linked gene reactivation around meiotic entry and the

dependency of both processes on a female somatic signal suggest a

potential mechanistic link. Until now it has not been formally tested,

if, and to which degree, the X-inactivation status might impact the

meiotic and oogenic potential of germ cells. Furthermore, previous

studies on the X-inactivation and -reactivation dynamics during

mouse germ cell development have been limited to few individual

genes (Sugimoto & Abe, 2007) or have not been allelically resolved

and therefore been unable to discriminate between transcripts

expressed from either one or two X chromosomes (Sangrithi et al,

2017). Therefore, a comprehensive analysis of X-inactivation and

-reactivation kinetics and its functional relation to germ cell devel-

opmental progression is necessary to gain mechanistic insight.

Based on in vitro germ cell differentiation from mouse embryonic

stem cells (ESCs) (Hayashi et al, 2011, 2012; Nakaki et al, 2013), we

developed an X-chromosome reporter system (XRep) to study the

kinetics of X-inactivation and -reactivation during germ cell develop-

ment. We thereby provide a high-resolution allelic analysis of X-

chromosome dynamics and discovered that germ cells with high

meiotic and oogenic competence are characterized by a moderate

degree of X-inactivation and gradual X-reactivation kinetics. In con-

trast, germ cells that failed to undergo X-inactivation or which reac-

tivated the X chromosome too rapidly displayed abnormal gene

expression and differentiation characteristics. Thus, we found first

evidence that a controlled sequence of X-inactivation followed by

X-reactivation to be a characteristic hallmark of normal female germ

cells. This suggests that both dosage control and epigenetic repro-

gramming of the X chromosome may be critical indicators for

female germ cells’ developmental potential to progress towards mei-

osis and oogenesis.

Results

XRep, a tailor-made system for tracing X-chromosome dynamics
during in vitro germ cell development

In order to achieve a better understanding of the X-chromosome

dynamics during mouse germ cell development, we created a tailor-

made in vitro model system called XRep (Fig 1A). XRep combines

the following features. First, it is based on a hybrid female embry-

onic stem cell (ESC) line containing one Mus musculus (Xmus) and

one Mus castaneus (Xcas) X chromosome (Lee & Lu, 1999; Ogawa

et al, 2008), allowing allele-specific determination of gene expres-

sion. Moreover, this line was shown to be karyotypically highly sta-

ble (Lee & Lu, 1999; Bauer et al, 2021), therefore preventing X-loss,

a crucial prerequisite for X-inactivation and -reactivation studies.

Additionally, the cell line contains a Tsix truncation (TST) on Xmus,

forcing non-random X-inactivation of the Xmus upon cell differentia-

tion (Luikenhuis et al, 2001; Ogawa et al, 2008). This enabled us to

study the X-inactivation and -reactivation dynamics specifically of

the Xmus chromosome, while the Xcas would remain constitutively

active. Second, primordial germ cell-like cells (PGCLCs) can be

obtained highly efficiently from XRep cells by doxycycline-inducible

overexpression of the germ cell fate specifier transcription factors

BLIMP1 (also known as PRDM1), PRDM14 and TFAP2C (also

known as AP2c) (Nakaki et al, 2013), therefore bypassing the need

for addition of cytokines. Last, the X-chromosome status of XRep

cells can be traced by dual X-linked reporter genes placed in the

Hprt locus (Wu et al, 2014), a GFP reporter on Xmus (XGFP) and a

tdTomato reporter on Xcas (XTomato). This allows us to isolate

distinct populations of cells, harbouring either two active X chromo-

somes (XGFP+/XTomato+) or one inactive and one active X

(XGFP�/XTomato+), using fluorescence-activated cell sorting

(FACS). This gives us a unique advantage over in vivo studies, as it

enables us to test the importance of X-inactivation and -reactivation

for germ cell development by isolating and further culturing cells of

different X-inactivation states. Taken together, this tailor-made sys-

tem allows us to assess X-chromosome dynamics and its importance

for female mouse germ cell development in vitro.

We first set out to assess competence for PGCLC differentiation

of our XRep cell line. We slightly adapted published protocols

(Hayashi & Saitou, 2013; Nakaki et al, 2013), by differentiating ESCs

into epiblast-like cells (EpiLCs) for 4 days, as differentiation for

2 days, as demonstrated in said previous studies, did not yield

PGCLCs with our XRep cells likely due to their specific genetic back-

ground (Fig EV1A). Furthermore, we extended the induction time of

PGCLC generation from 4 to 5 days to ensure sufficient time to

undergo X-inactivation (Fig 1B). We quantified PGCLC induction

efficiency by FACS analysis, using SSEA1 and CD61 double-positive

staining to mark successfully induced PGCLCs (Fig 1C). At PGCLC

day 5, we found ~ 60% of the cell population to be double-positive

for SSEA1/CD61, indicating a very high PGCLC induction efficiency

when compared to the cytokine-based protocol (Hayashi & Saitou,
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2013) and in line with previous observations on transcription factor-

based PGCLC induction (Nakaki et al, 2013). To further assess the

quality of our PGCLCs, we stained cryosections of PGCLC bodies at

day 5 of induction for SOX2 and TFAP2C, both germ-line expressed

transcription factors. We observed that > 50% of cells were double-

positive for SOX2 and TFAP2C (Fig 1D), confirming PGCLC cell

identity. We next wanted to assess X-inactivation kinetics using our

XGFP and XTomato reporters. As expected, XTomato stayed active
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Figure 1. A tailor-made system to trace X-chromosome inactivation and reactivation dynamics during PGCLC induction.

A Schematic representation of the features implemented in the XRep cell line. A hybrid background in which cells carry one X chromosome from M.m. musculus (Xmus)
and one from M.m. castaneus (Xcas). The cell line carries an rtTA under the control of the Rosa26 locus and piggyBac transposon-based vectors with doxycycline (Dox)-
responsive promoters driving the expression of Prdm14, Blimp1 and Tfap2c. The Xmus carries a GFP reporter and a truncation of the Tsix transcript while the Xcas carries
a tdTomato reporter.

B Overview of the adapted PGCLC differentiation timeline. Stages of the culture system are shown.
C Representative FACS data of primordial germ cell-specific surface markers CD61 and SSEA1 in ESCs, EpiLCs d4 and PGCLCs d5. Numbers indicate the percentages of

SSEA1+/CD61+ gated cells over time. Shown are contour plots gated on live cells.
D Immunostaining of PGCLCs d5 cryosections for SOX2 (magenta) and TFAP2C (cyan). Barplot indicates the quantification of SOX2+ cells, TFAP2C+ cells and SOX2+/

TFAP2C+. n = 1,150 cells, from n = 3 separate inductions, using two biological clones. The white squares represent the position of the magnified region at the bottom.
Scale bar, 50 µm and 10 µm for the magnified region.

E Representative culture showing the X-activity reporter during PGCLC induction. Images for bright field (BF), XGFP and XTomato were taken for ESCs, EpiLC d4 and
PGCLC d5. Scale bar, 50 lm.

F Representative FACS data showing XGFP (left) and XTomato (right) distribution during PGCLC induction. Numbers indicate the percentage of cells gated according to
the XGFP and XTomato status (grey = X-inactive, green/red = X-active). Dashed line indicates the transition from X-active to X-inactive according to XGFP levels. XGFP
and XTomato percentages in ESCs, EpiLCs and d1 full bodies are calculated from the entire cell population, while in PGCLC d2 to PGCLC d5 are calculated from
SSEA1+/CD61+ PGCLCs as indicated. Shown are histograms gated on live cells.
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throughout the differentiation (Fig 1E and F). In contrast, we

observed downregulation of the XGFP reporter at day 2 of PGCLC

differentiation, with the XGFP� population gradually increasing

until day 5 (Fig 1E and F). Nevertheless, even at day 5, up to 40%

of PGCLCs remained XGFP+ in our system (Fig EV1B). Despite this,

the large majority of EpiLCs showed H3K27me3 foci (Fig EV1D–F),

which suggests that both XGFP� and XGFP+ PGCLCs originated

from EpiLCs that had initiated X-inactivation. We do, however, note

that EpiLCs still retained XGFP protein staining (Figs 1E and F, and

EV1D and F), while XGFP transcripts were being downregulated

(Fig EV1C), indicating that protein stability of GFP gives a delayed

read-out of X-inactivation kinetics. Nevertheless, at the PGCLC

stage, the XGFP signal faithfully reflected the X-inactivation state, as

XGFP was only detected in cells without the X-inactivation-specific

H3K27me3 spot (Fig EV1D–F).

In summary, using our tailor-made XRep cell line, we could show

that X-inactivation initiates early during PGCLC differentiation.

Additionally, our system enables the isolation of distinct PGCLC

populations, either having undergone X-inactivation or harbouring

two active X chromosomes, suggesting that PGCLC specification can

occur in the absence of X-inactivation as well.

XGFP+ and XGFP� PGCLCs define distinct subpopulations

Having identified two distinct PGCLC populations, we set out to

characterize the transcriptional changes taking place during differ-

entiation. We induced EpiLCs from ESCs for 4 days and subse-

quently induced PGCLCs for 5 days, at which stage we isolated

XGFP+ and XGFP� PGCLCs by FACS (Fig EV2A). With these sam-

ples, we performed allele-specific RNA-sequencing on two biological

replicates (different clones) with two technical replicates each. Prin-

cipal component analysis (PCA) of the expression profiles showed a

high coherence between replicates, with ESCs, EpiLCs and PGCLCs

occupying distinct clusters (Fig 2A). Moreover, we observed that

XGFP+ and XGFP� PGCLCs clustered separately, indicating distinct

expression profiles of the two populations. To exclude the possibil-

ity that the distinct clustering of PGCLC populations was influenced

by the different X-status of the two, we repeated the PCA while elim-

inating X-chromosome-linked genes from the analysis. We observed

a highly similar clustering of samples with minimal changes in com-

ponent variances (Fig EV2B). In order to assess whether transcrip-

tional differences in XGFP+ and XGFP� PGCLCs could be explained

by differences in developmental timing, we took advantage of

published datasets of female in vivo PGCs from E9.5, E10.5, E11.5

and E12.5 embryos (Nagaoka et al, 2020) and compared expression

profiles to our in vitro derived PGCLCs (Fig 2B). PCA revealed a tra-

jectory where PC1 defined the developmental timing of in vivo and

in vitro samples, whereas PC2 did not greatly contribute to the sepa-

ration of our in vitro PGCLCs (PC loadings in Dataset EV4). We

found that both PGCLC populations clustered around E10.5, with

XGFP+ cells corresponding to a slightly advanced developmental

stage. Therefore, as XGFP+ and XGFP� PGCLCs seemed to corre-

spond to a similar developmental time point, we wanted to charac-

terize their transcriptional differences in more detail. We performed

differential gene expression analysis and could identify 2,684 upre-

gulated and 2,437 downregulated genes in XGFP� PGCLCs, when

compared to XGFP+ PGCLCs (Figs 2C–E and EV2C and D). Among

the genes significantly upregulated in XGFP� PGCLCs, we found

early germ cell genes including Blimp1 (Prdm1), Prdm14 and Tfap2c

(Figs 2D and EV2C). In contrast, in XGFP+ PGCLCs, we observed

higher expression of pluripotency genes such as Esrrb and Zfp42

and a subset of late germ cell genes like Dazl.

Moreover, when we performed functional annotation by gene

ontology (GO) term analysis, we observed enrichment for genes

involved in urogenital system development, MAPK regulation and

WNT signalling in XGFP� PGCLCs, while genes upregulated in

XGFP+ PGCLCs were enriched for DNA methylation involved in

gamete generation, meiotic cell cycle and response to LIF signalling

(Figs 2F and EV2D). MAPK signalling is known to be inhibited by

double X-dosage (Schulz et al, 2014; Song et al, 2019; Genolet et al,

2021), which might explain enrichment of this pathway in our

XGFP� PGCLCs. LIF signalling on the other hand, which is enriched

in our XGFP+ PGCLCs, is known to enable expression of the naive

pluripotency network, which represses Xist, thereby promoting the

active X state (Payer & Lee, 2014; Panda et al, 2020). Furthermore,

enrichment for meiotic cell cycle genes in XGFP+ PGCLCs such as

Aurkc, Dazl and Piwil2 (Fig EV2D), suggests a premature activation

of a subset of meiotic genes in XGFP+ PGCLCs.

▸Figure 2. Gene expression analysis reveals two PGCLC subpopulations.

A PCA of gene expression dynamics during PGCLC differentiation. Four biological replicates are shown. n = top 500 most variable genes. PGCLCs were sorted for SSEA1
and CD61 expression and further divided into XGFP+ and XGFP�. Axes indicate the variance. Arrows indicate hypothetical trajectory. Shapes indicate the biological
clone (clone A11 = square, clone E9 = rhombus).

B PCA of gene expression dynamics compared to in vivo samples from Nagaoka et al (2020). n = top 500 most variable genes, calculated including in vivo samples. Grey
arrow indicates putative developmental trajectory. Shapes indicate the replicates (clone A11 = square, clone E9 = rhombus, in vivo samples = circle).

C MA plot of differential gene expression changes between XGFP� and XGFP+ PGCLCs as determined by RNA-seq. Log2-mean expression (log2-normalized counts from
DESeq2) on the X-axis and the log2-fold change on the Y-axis are shown. Significantly upregulated and downregulated genes are highlighted in red and green respec-
tively. False discovery rate (FDR) < 0.001. Non-significant genes with log2-mean expression between 0 and 0.2 were removed for easier plot visualization.

D Expression levels (normalized DEseq2 counts) of selected differentially expressed genes between XGFP� and XGFP+ PGCLCs during the differentiation time course.
Genes with FDR < 0.001 were considered significantly differentially expressed. Points indicate expression of individual biological replicates.

E Heatmap of RNA-seq normalized counts showing the Z-score across PGCLC induction time points of 31 manually selected and manually ordered marker genes
belonging to the categories reported on the side.

F Selected GO terms enriched in XGFP� PGCLCs and XGFP+ PGCLCs.
G FACS analysis of cell cycle using DAPI. Numbers indicate the percentage of cells in G1, S and G2/M respectively.
H Alkaline phosphatase staining for ESCs, XGFP+ PGCLCs and XGFP� PGCLCs grown for 7 days in 2i/LIF medium on immortalized mouse embryonic fibroblasts.
I Barplot indicating the absolute numbers of alkaline phosphatase (AP)-positive colonies in each cell type after 7 days of culture in 2i/LIF medium on immortalized

mouse embryonic fibroblasts. Y-axis is in square root scale (sqrt) for better plot visualization. Each white dot represents one technical replicate.

Source data are available online for this figure.
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One characteristic feature of PGCLCs is changes in cell cycle

progression and proliferation upon differentiation (Ohta et al,

2017), both of which are known to be affected by MAPK, as well

as LIF signalling pathways (Meloche & Pouyss�egur, 2007; Onishi &

Zandstra, 2015). We therefore performed cell cycle analysis using

DAPI and found that ESCs, EpiLCs and XGFP+ PGCLCs shared

A B

E

D F

C

G

H I2i/LIF culture

1000 cells 
seeded on iMEFs

AP+ colony
counting

2i/LIF0 7day

selected GO enriched in
 XGFP-  PGCLC 

selected GO enriched in
 XGFP+ PGCLC 

Dnmt3l, Tdrd12, Fkbp6, Morc1
Mael, Piwil2, Mov10l1
Dnmt3l, Syce1, Tdrd12, Rec114, Sycp3, Fkbp6, 
Tex19.1, Hormad1, Mael, Piwil2, Aurkc, Mov10l1, Dazl

Cd24a, Lrrk2, Bmp7, Spred1, Fzd8, Dusp6
Stk39, Trib2,Tgfa, Arhgef5, Cspg4,Sfrp1
Lef1, Lrrk2, Fermt1, Pitx2, Fzd8, Kremen1, Mark1
Wnt3, Nfatc4, Fzd9, Ptpru, Dact1, Sulf1, Axin2, Sfrp1

Npnt, Lrrk2, Fras1, Bmp7, Pbx1, Dll1, Hspb11
Ednra, Cflar, Ovol1, Ahi1, Gata2, Greb1l, Sulf1, Sfrp1urogenital system development

WNT signaling

MAPK regulation

0 1 2 3 4 5
-log10(Pvalue)

DNA-me involved in gamete
generation

meiotic cycle

response
to LIF

0 2 4 6 8
-log10(Pvalue)

Adam23, Mcf2, Rarg, Sycp3, Spp1, Cth,
Efhc2, Zfp42, Fgf4, Nefh, Pfkp, Nrp2

0

50

200

400

600

AP
+ 

co
lo

ni
es

(fr
om

 1
00

0 
se

ed
ed

 c
el

ls
)

XGFP-

XGFP+
ESC

(sqrt)

Blimp1Prdm14 Tfap2c

DazlEsrrbZfp42

PGCLC
XGFP-

G1
11.1

G2/M
20.5

S

65.6

0 50K 100K 150K
0

50

100

150

200

250

G1
25.3

G2/M
14.4S

43.3

0 50K 100K 150K
0

500

1.0K

1.5K

13.8 15.4
65.5

0 50K 100K 150K
0

50

100

150

G1 G2/M
S

14.3
17.6

64.0
0 50K 100K 150K

0

200

400

600

800

G1
G2/MS

ESC EpiLC

C
ou

nt

DAPI

XGFP+
EpiLC XGFP+

PGCLC
ESC XGFP-

rep: 1 2 1 2 1 2 1 2

0
Zscore of norm. counts

2-2 1-1

ep
ib

la
st

Tbx3
Klf4
Fgf4
Zfp42
Dppa5a
Esrrb
Tfcp2l1
Klf2
Sox2
Nanog
Fgf5
Xist
Dnmt3a
Dnmt3b
Dnmt3l
Blimp1
cKit
Tfap2c
Dnd1
Prdm14
Stella
Nanos3
Dazl
Fkbp6
Piwil2

Sycp3

pl
ur

ip
ot

en
cy

ge
rm

 c
el

lsea
rly

la
te

/
m

ei
ot

ic

Sycp1
Hormad1
Zglp1
Dmc1

Aurkc

PGCLC differential gene expression

lo
g 2 f

ol
d 

ch
an

ge
 (n

or
m

.c
ou

nt
s)

 X
G

FP
- P

G
C

LC
 / 

XG
FP

+ 
PG

C
LC

 2684 Up
XGFP-

Blimp1
Tfap2c

2437 Up 
XGFP+

Zfp42

Dazl

Esrrb

log2 mean expression

-4.0

-2.5

0.0

2.5

4.0

0 5 10 15

Prdm14

0

2k

4k

6k

8k

0

10k

20k

2k

4k

6k

0

1k

2k

3k

4k

Ex
pr

es
si

on

0

2k

4k

6k

0

10k

20k

30k

ESC
EpiL

C

XGFP+

XGFP-

Ex
pr

es
si

on

0

ESC
EpiL

C

XGFP+

XGFP-
ESC

EpiL
C

XGFP+

XGFP-

ESC
EpiL

C

XGFP+

XGFP-
ESC

EpiL
C

XGFP+

XGFP-
ESC

EpiL
C

XGFP+

XGFP-

PGCLC
XGFP+

PGCLC
 XGFP-

PC1 60.8%

PC
2 

34
.3

%

EpiLC

ESC

clone A clone E

-20

-10

0

10

20

-20 -10 0 10 20 PC
2 

14
.5

%
 v

ar
ia

nc
e

-30

-20

-10

0

10

20

30

PGCLC
XGFP+

PGCLC
 XGFP-

E9.5

E10.5E11.5

E12.5
-40 -30 -20 -10 0 10 20 30 40

PC1 34.2% variance

clone A clone E Nagaoka 2020
in vitro in vivo

XGFP-XGFP+ESC

Figure 2.

ª 2022 The Authors The EMBO Journal 41: e109457 | 2022 5 of 23

Jacqueline Severino et al The EMBO Journal



highly similar profiles, with the majority of cells (> 60%) residing

in S phase. In contrast, XGFP� PGCLCs showed a decreased

number of cells in S phase, concomitant with an increase in

cells in G1, suggesting a slower proliferation of this population

(Fig 2G).

As our transcriptomics and cell cycle analysis suggested that

XGFP+ PGCLCs could correspond to an aberrant PGCLC state

with properties related to ESCs, we set out to address if this

would also lead to an advantage in growth and survival under

physiological conditions favouring ground-state pluripotent stem

cells. We therefore isolated XGFP+ and XGFP� PGCLCs at day 5

and seeded them (1,000 cells per six-well) on irradiated mouse

embryonic fibroblasts in 2i/LIF medium (Fig 2H and I), which

previously has been reported to allow the establishment of plurip-

otent embryonic germ cell (EGC) lines from in vivo mouse PGCs

(Leitch et al, 2010). When we then compared EGC colony forma-

tion capacity, we found that while almost no colonies (2 from

1,000 seeded cells) originated from XGFP� PGCLCs, we observed

a substantially higher number of colonies (n = 84) from XGFP+

PGCLCs, albeit still fewer than when re-plating ESCs (633 colo-

nies). Importantly, both ESCs and XGFP+ PGCLCs retained two

active X chromosomes, while only a subset of XGFP� PGCLCs

had undergone XGFP-reactivation during EGC colony formation

(Fig EV2E and F).

In summary, RNA expression analysis of XGFP+ and XGFP�
PGCLCs showed a PGC-like transcriptome of both populations, fur-

ther suggesting that X-inactivation and PGCLC induction can be

uncoupled in our system. However, we observed that XGFP+

PGCLCs displayed higher expression of several naive pluripotency

genes as well as premature expression of a subset of meiotic genes

and a rapid cell cycle. Moreover, considering their higher ability to

form EGC colonies under ground-state pluripotency conditions, this

suggests that XGFP+ PGCLCs may correspond to an aberrant

PGCLC state with pluripotent stem cell-related features. This indi-

cates that X-inactivation could be necessary for correct PGCLC

maturation, or alternatively, be a sensitive biomarker of high-

quality PGCLCs.

Heterogeneous and moderate X-inactivation is a feature of germ
cell fate in vitro and in vivo

To this point, due to the lack of an allele-specific transcriptomic

analysis, the X-inactivation and -reactivation dynamics during

mouse PGC development in vivo and in vitro have not been

assessed on a chromosome-wide level. Therefore, to determine X-

chromosome-wide gene inactivation kinetics during PGCLC differen-

tiation, we assessed the allelic expression ratio between the inactive

Xmus and the active Xcas. We performed PCA of the allelic ratio of

our samples in addition to neural progenitor cells (NPCs) from the

same parental clone (Bauer et al, 2021) to include a cell type shown

to have undergone complete X-inactivation (Fig 3A). We observed

that the PC1 of the PCA defined the degree of X-inactivation, sepa-

rating samples with two active Xs on the left (ESCs and XGFP+

PGCLCs), and with one inactive X on the right (XGFP� PGCLCs and

NPCs). Moreover, we noticed that EpiLCs were positioned at the

centre, suggesting an intermediate degree of X-inactivation. We next

determined X-inactivation kinetics, while focussing on genes bialle-

lically expressed in ESCs (Fig EV3A) (allelic expression ratio > 0.3

and < 0.7) and established an X-inactivation cut-off of an allelic

ratio of 0.135, according to the distribution of genes in NPCs and

the local minimum (Fig EV3B), and similar to cut-offs used in previ-

ous studies (Peeters et al, 2014; Borensztein et al, 2017; Xu et al,

2017; Janiszewski et al, 2019; Bauer et al, 2021). As a control, we

assessed the allelic expression ratio of the fully hybrid chromosome

13, which maintained biallelic expression throughout the time

course (Fig EV3C). In contrast, we observed initiation of X-linked

gene silencing in EpiLCs, progressing further in XGFP� PGCLCs,

while XGFP+ PGCLCs showed biallelic expression, similar to ESCs

(Fig 3B). To assess X-inactivation dynamics in more detail, we

grouped X-linked genes according to their silencing kinetics

(Fig 3C). We found 62 genes to have undergone X-inactivation

(XCI) in EpiLCs (termed early XCI), and 138 genes to have under-

gone inactivation in PGCLCs (late XCI). Moreover, to our surprise,

we observed a large number of genes (93) to still be active in

XGFP� PGCLCs (escapees). In comparison, we observed 46 genes

▸Figure 3. Characterization of X-inactivation dynamics during PGCLC induction.

A PCA of X chromosome allelic ratio (see Methods) for 334 X-linked genes. Axes indicate the variance. Shapes indicate the clones (A11, square; E9, rhombus; circle, neural
progenitor cells (NPCs) from (Bauer et al, 2021)).

B Boxplots of allelic ratio of X-linked genes (n = 294). Upper dashed line indicates biallelic expression with a ratio of 0.5, the lower dashed line indicates the X-
inactivation threshold of 0.135. Box plots depict the first and third quartiles as the lower and upper bounds of the box, with a band inside the box showing the
median value and whiskers representing 1.5x the interquartile range. Number of X-inactive genes are shown at the bottom.

C Allele-specific expression ratios of X-linked genes are represented as heatmaps, with X-inactive genes in red (ratio ≤ 0.135), X-active genes in green (ratio > 0.135) and
mono-allelic Xcas expression in blue (ratio between 0.5 and 1). Genes are ordered by genomic position and subdivided into three groups according to the timing of X-
inactivation (early X-inactivation, early XCI; late X-inactivation, late XCI and escapees).

D Venn diagram showing the total number of escapee genes (excluding Xist) overlapping between XGFP� PGCLCs and NPCs from Bauer et al (2021).
E Xistmus expression (see Methods). NPCs from Bauer et al (2021). Barplot indicates the mean expression value of 4 replicates.
F Schematic of an E6.5 embryo with cell types coloured according to the cellular clusters identified in (G). parietalE, parietal endoderm; aVE, anterior visceral endoderm;

transEpi, transition epiblast; pVE, posterior visceral endoderm; pEpi, posterior epiblast; proxEpi, proximal epiblast; ExE, extraembryonic ectoderm.
G UMAP embedding based on shared nearest-neighbour (SNN) modularity clustering of E6.5 embryos identified six clusters, termed anterior visceral endoderm (1;

n = 40), posterior visceral endoderm (2; n = 53), parietal endoderm (3; n = 17), proximal epiblast (4; n = 39), transition epiblast (5; n = 21) and posterior epiblast (6;
n = 69) labelled with different colours.

H Average allelic ratio per cell per in vivo cluster is shown using violin plots. Cells with an allelic ratio between 0.4 and 0.6 (dashed line) are considered having biallelic
expression (XaXa). Cells with an allelic ratio > 0.6 (XiXa) or < 0.4 (XaXi) are considered having an inactive X.

I Fraction of XaXa cells per cluster.
J Allele-specific expression ratios of X-linked genes are represented as heatmaps, with X-inactive genes in red (ratio ≤ 0.135), X-active genes in green (ratio > 0.135) and

mono-allelic Xcas expression in blue (ratio between 0.5 and 1) (see colour code in (C)). Genes are ordered by genomic position.
K Fraction of escapees (allelic ratio > 0.135) of all X-linked genes detected from XaXi cells as shown in (J).
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escaping X-inactivation in NPCs (Bauer et al, 2021), out of which 37

were also found to be escapees in PGCLCs (Fig 3D). While a certain

degree of escape from X-inactivation is expected, the percentage of

escapees we observed for PGCLCs here is at 32%, which is consider-

ably higher than reported for other cell types (Fig EV3F) (Peeters

et al, 2014; Marks et al, 2015; Balaton et al, 2021).
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Given these results, we wondered how this large degree of

escape from X-inactivation might be explained. We assessed Xist

expression levels and could observe high levels in EpiLCs,

reaching levels comparable to those in NPCs (Fig 3E). However,

expression levels in XGFP� PGCLCs were considerably decreased,

which might be explained by the high expression of Prdm14 in

PGCLCs, a known repressor of Xist (Payer et al, 2013). This is also

in line with in vivo data (Sugimoto & Abe, 2007), where Xist has

been shown to be completely downregulated in E10.5 PGCs of

equivalent stage (Fig 2B). Furthermore, we wanted to know which

features might distinguish escapees from inactivated genes in our

system. We measured gene expression levels from the Xmus allele

in ESCs and found escapees to be significantly higher expressed,

while early inactivating genes, in contrast, showed the lowest

expression levels (Fig EV3D). Similarly, expression of escapees

from the Xcas allele was also elevated in XGFP� PGCLCs

(Fig EV3E). When we compared our gene categories of early, late

and escaping X-inactivation from XGFP� PGCLCs with published

data of X-inactivation kinetics during embryoid body (EB) differen-

tiation (Marks et al, 2015), the overlap of genes was relatively

modest (Fig EV3F). This suggests that the timing of inactivation of

individual X-linked genes varies between different cell types and

differentiation systems.

Having observed that both their precursors, EpiLCs, as well as

PGCLCs themselves show a distinct moderate X-inactivation with a

high number of escapees, we wondered if our in vitro findings were

reflecting the situation in vivo during mouse development. We

therefore re-analysed publicly available allelically resolved single-

cell RNA-seq data of E6.5 embryos (Cheng et al, 2019) which corre-

sponds to the developmental time point that includes the in vivo

equivalents of EpiLCs (Fig 3F and G; Han et al, 2010; Hayashi et al,

2011). We focussed on female cells from a CAST(F) X C57(M) cross,

which after filtering for sufficient allelic information (see methods)

left 239 cells to be included in our analysis. We then performed uni-

form manifold approximation and projection for dimension reduc-

tion (UMAP) on genome-wide single-cell expression data, and then

applied shared nearest-neighbour (SNN) modularity optimization-

based clustering (Fig 3G). This yielded six clusters, which according

to marker gene expression (Fig EV3G) corresponded to the extraem-

bryonic cell types of anterior visceral endoderm (Amn+, Cer1+,

Gata4+, Otx2+; cluster 1), posterior visceral endoderm (Amn+,

Gata4+, Wnt3+; cluster 2) and parietal endoderm (Fst+; cluster 3)

and the embryonic cell types of proximal epiblast (Dppa4+, Ifitm3+/

Fragilis+, Pou5f1+; cluster 4), transition epiblast (Otx2+, Pou5f1+;

cluster 5) and posterior epiblast (Gata4+, Hand1+, Pou5f1+, T+,

Wnt3+; cluster 6). To assess the degree of X-inactivation, we calcu-

lated the average allelic ratio per cell (Fig 3H), which, as expected,

highlighted imprinted X-inactivation in the extraembryonic cell

types; where the paternal C57 allele was always silenced, and

showed random X-inactivation in the epiblast clusters. However,

within the epiblast we noticed striking differences, with a consider-

ably larger fraction of cells from the proximal epiblast—the Ifitm3/

Fragilis-positive region with competence for PGC specification

(Lawson & Hage, 1994; Saitou et al, 2002)—not having undergone

X-inactivation (Fig 3I), when compared with the other non-PGC-

competent epiblast clusters. Specifically, 25% of proximal epiblast

cells displayed an average allelic ratio between 0.4 and 0.6 indicat-

ing a lack of X-inactivation compared to < 10% for transition and

posterior epiblast cells. Moreover, when we then compared the

degree of gene silencing for cells with an average allelic ratio < 0.4

(Fig 3J), to allow comparison with imprinted XCI cells, we found

that 56% of proximal epiblast genes escaped / displayed incomplete

X-inactivation at that stage. This strongly contrasts to < 8% for all

other cell types, including extraembryonic and other epiblast clus-

ters (Fig 3K). This could partially be explained by the higher pluri-

potency factor expression in the proximal epiblast when compared

with the posterior epiblast (Fig EV3H), which may contribute to

the reduced degree of X-inactivation specifically in PGC-competent

precursor cells.

Taken together, we find that EpiLCs and PGCLCs undergo a

moderate degree of X-inactivation, characterized by a large per-

centage of escapees / incompletely silenced genes. Moreover, our

analysis suggests that low expression of Xist in PGCLCs might

lead to a failure of gene silencing of highly expressed genes, lead-

ing to a large percentage of escapees. Furthermore, our analysis

of in vivo E6.5 data shows heterogeneity and a moderate degree

of X-inactivation specifically in the PGC-competent cells of the

proximal epiblast, highlighting how this distinct X-inactivation

state is a conserved hallmark of germline competence both

in vitro and in vivo.

Single-cell RNA-seq analysis of meiotic entry of in vitro-derived
germ cells reveals clusters of distinct developmental progression

After having established the degree of X-inactivation during PGCLC

specification, we wanted to address the further developmental pro-

gression of PGCLCs depending on their X-chromosome status. Hav-

ing identified and isolated distinct PGCLC types with either two

active X-chromosomes (XGFP+ PGCLCs) or one active and one inac-

tivated X-chromosome (XGFP� PGCLCs) (Fig 2), we were able to

assess whether the X-inactivation status of PGCLCs had an impact

on germ cell maturation. Furthermore, we sought to investigate to

which degree X-reactivation and meiotic entry were intrinsically

coupled processes.

To this end, we differentiated XGFP+ and XGFP� PGCLCs using

an adapted in vitro reconstituted ovary (rOvary) protocol (Hayashi

& Saitou, 2013) and performed single-cell RNA-sequencing (scRNA-

seq) using the SMART-Seq v5 Ultra Low Input RNA (SMARTer) kit

for Sequencing (Takara Bio) (Karimi et al, 2021). Briefly, we aggre-

gated in vitro derived PGCLCs, originating from either XGFP+ or

XGFP� populations, for 6 days with somatic cells isolated from

E13.5 female embryonic gonads plus mesonephros in order to

mimic the female urogenital environment and provide in vitro-

derived germ cells with the appropriate signalling niche (Chuva de

Sousa Lopes et al, 2008; Hayashi et al, 2012) to facilitate their mei-

otic entry and X-reactivation (Fig 4A and B). We then sorted single

cells of the following populations on which we performed scRNA-

seq. Derived from XGFP� PGCLC rOvaries, we collected three popu-

lations: XGFPhigh reactivated (144 cells, XTomato+/XGFP+),

XGFPintermediate (XTomato+/XGFPint., 144 cells) and XGFPlow

(XTomato+/XGFPlow, 136 cells). From the constitutively active

XGFP+ PGCLC rOvaries, we collected one population: XGFP+ consti-

tutive (XTomato+/XGFP+, 188 cells) (Fig 4A and B). In total, we

obtained 391 million reads, with an average of 740,000 reads per

cell. Next, to ensure that our analysis focussed on germ cells of

appropriate quality, we only included cells with the germ cell
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marker Dazl expression > 1 (log2 counts per 10,000) and with suffi-

cient allelic information (see methods). This left us with 379 cells in

total and 15,583 informative genes.

To characterize cellular heterogeneity, we performed dimension-

ality reduction using UMAP on genome-wide single-cell expression

data, and projected the four FACS populations (Fig 4B and C) on
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our UMAP plot. We observed a clear separation into two major

groups, which coincided well with the levels of XGFP fluorescence.

One group predominantly included the XGFPlow and XGFPinter-

mediate germ cells (originating both from the XGFP� PGCLCs) on

the left, and another group was constituted from the XGFPhigh reac-

tivated and XGFP+ constitutive germ cells on the right. We then set

out to answer whether our XGFP+ and XGFP� PGCLCs, which were

the starting material for our rOvaries (Fig 4A and B), showed a dif-

ferential developmental profile, and in particular, if the meiotic

germ cells originated preferentially from XGFP+ or XGFP� PGCLCs.

We applied SNN modularity optimization-based clustering

which returned five clusters (Fig 4D) that showed distinct patterns

according to the expression of mitotic and meiotic germ cell marker

genes (Fig 4E and F). We identified two mitotic clusters termed

“Mitotic 1” and “Mitotic 2,” showing expression of the PGC marker

Stella (also known as Dppa3) as well as mitotic PGC markers Morc1

and Nanog. Moreover, we identified two pre-meiotic clusters termed

“Pre-meiotic 1” and “Pre-meiotic 2,” defined by the initial expres-

sion of both Stella and Ddx4, and lastly one meiotic cluster termed

“Meiotic’’ characterized by expression of the meiotic genes Prdm9

and Sycp3. Next, we wanted to assess whether a directionality

within the clusters and eventually among the two groups could be

observed. Pseudo-time analysis using RNA velocity (La Manno et al,

2018) placed the meiotic cluster at the apex of a path which

revealed a differentiation trajectory directed towards meiosis, initiat-

ing from the pre-meiotic clusters (Fig 4F). Moreover, comparison to

in vivo data (Zhao et al, 2020) showed that our mitotic clusters

corresponded to E12.5 germ cells, whereas pre-meiotic and meiotic

clusters corresponded to later time points; E14.5 and E16.5

(Fig EV4A–C), confirming that our in vitro clusters followed an in

vivo-like developmental trajectory. Intriguingly, both pre-meiotic

and meiotic germ cells almost exclusively originated from XGFP�
PGCLCs, whereas mitotic germ cells consisted of XGFPhigh reacti-

vated and XGFP+ constitutive germ cells.

Considering this, we wanted to assess whether our XGFP�
PGCLCs could therefore mature further and initiate oogenesis. We

took advantage of a published in vitro differentiation protocol and

aggregated XGFP� PGCLCs with embryonic-derived somatic

gonadal cells, forming an rOvary, followed by the culture of the

rOvary onto a transwell to allow in vitro differentiation (IVDi) of

PGCLCs (Fig 4G) (Hayashi et al, 2017). However, to perform the

experiment in a more physiological niche, without external cues, no

retinoic acid was added to the IVDi culture and the IVDi tissue was

cultured for 11 days until primary follicles had formed. We then

stained the entire whole-mount tissue for DAZL and SYCP3 to iden-

tify mature (DAZL+) and meiotic (SYCP3+) germ cells and could

observe on average 200 oocytes in cysts per aggregate and more-

over, around 50 primary follicles (Fig 4H and I), similar to what has

been observed previously (Hamada et al, 2020), showing that our

XGFP� PGCLCs could indeed mature further.

Taken together, germ cells seem to adopt highly similar tran-

scriptomes when two active X chromosomes are present, irrespec-

tive of their parental condition of origin and hence regardless of

whether cells underwent X-inactivation followed by X-reactivation

(XGFPhigh), or were constitutively X-active (XGFP+). Moreover,

germ cells can undergo X-reactivation in the absence of the meiotic

gene expression programme, suggesting that X-reactivation is not

dependent on meiotic entry. However, our data suggest that X-

inactivation may be either functionally important, or, alternatively,

a predictive indicator for subsequent germ cell maturation and entry

into meiosis, as germ cells originating from constitutively active

XGFP+ PGCLCs failed to acquire a meiotic transcriptional profile.

X-reactivation occurs progressively during germ cell maturation
and is almost complete with meiotic entry

Having shown that cells could undergo X-reactivation in the absence

of meiosis, we nevertheless wanted to assess if X-reactivation was a

prerequisite for meiotic entry. In order to analyse X-reactivation

dynamics in more detail, we again took advantage of the hybrid

background of our XRep cell line and performed allele-specific RNA

expression analysis, which allowed us to successfully detect allele-

specific expression of 220 X-linked genes (see methods). To first

assess the X-status on a chromosome-wide level, we calculated the

average allelic ratio of all X-linked genes (Fig 5A). As expected, we

observed biallelic X-linked gene expression of the XGFP+ and

XGFPhigh mitotic clusters 1 and 2, as reflected by an average allelic

ratio of 0.5. However, cells of the pre-meiotic and meiotic clusters,

◀ Figure 4. Single-cell RNA-seq of maturing germ cells using the rOvary system.

A Schematic illustration of the single-cell RNA-seq experiment and the isolated populations during germ cell maturation in rOvaries. The first 24h of culture are indi-
cated as d0. rOvary, reconstituted Ovary; d, day of rOvary culture; XGFPint., XGFPintermediate.

B (i) Imaging of XGFP and XTomato reporters in rOvaries d5 aggregated with E13.5 gonadal and mesonephric cells. Scale bars = 50lm. BF, bright field. (ii) FACS gating
strategy for single cells sorted XTomato+ cells against XGFP intensities. Numbers indicate the percentage of gated live cells over the total population. Numbers in
brackets indicate the percentage of gated cells over the XTomato+ population.

C UMAP projection labelled with FACS sorted populations. XGFPint., XGFPintermediate.
D UMAP embedding based on shared nearest-neighbour (SNN) modularity clustering identified five clusters, termed Mitotic 1 (n = 77), Mitotic 2 (n = 97), Pre-meiotic 1

(n = 62), Pre-meiotic 2 (n = 90) and Meiotic (n = 53) labelled with different colours. Arrows indicating cell trajectories, inferred by RNA velocity analysis.
E Marker gene expression projected onto the UMAP plot.
F Heatmap of gene expression dynamics throughout germ cell maturation clusters. Selected genes belong to the category “early germ cell” and “meiotic.” Z-score is

shown.
G Schematic representation of the IVDi (in vitro differentiation) maturation system. The stages of oogenesis in culture for 11 days are indicated. The condition of culture

is indicated above. rOvary, reconstituted Ovary; Agg, aggregation day; AA, Ascorbic Acid.
H Immunofluorescence images of SYCP3 (red), DAZL (yellow) and DAPI at agg11 of IVDi tissue maturation from XGFP� PGCLCs. IVDi, in vitro differentiation. White

squares indicate the positions of the magnified section shown below. Top panel scale bar = 100 lm. Middle panel scale bar = 10 lm. Bottom panel scale
bar = 50 lm.

I Quantification of SYCP3+ cells (oocytes in cyst and primary follicles) in IVDi tissues at agg11. Each dot represents one IVDi tissue performed in three biological
replicates.
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despite originating from mostly XGFPlow and XGFPintermediate

populations, showed close to biallelic expression at an average alle-

lic ratio of ~ 0.4, as the sensitivity of the XGFP reporter was

insufficient to mark cells as reactivated if they had low levels of

X-inactivation (Fig 5B). We therefore assessed the X-status on a

gene-by-gene level and compared it to the data of ESCs, EpiLCs and
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XGFP� PGCLCs (Fig 5C and D). In addition to 78 escapees,

being active throughout the differentiation, we observed early X-

chromosome reactivation (early XCR) of 58 genes in pre-meiotic

cells. Therefore, the vast majority of genes (85%) had escaped X-

inactivation in the first place, or had undergone reactivation, before

the onset of meiosis. Moreover, 17 genes reactivated as cells under-

went meiosis (late XCR), with only 8 genes still being inactive in

meiotic cells (no XCR). Furthermore, we observed that early reacti-

vating genes displayed higher allelic ratios in XGFP� PGCLCs com-

pared to late reactivating genes (Fig 5D and E), suggesting that the

degree of silencing could influence X-reactivation timing.

Taken together, in contrast to our observations based on the

XGFP reporter, we observed by allele-specific RNA-Seq that reacti-

vation of X-linked genes was almost complete by the time of meiotic

entry. In detail, X-reactivation in germ cells seems to occur in two

waves. First, before the onset of meiosis for the majority of genes

and second, concomitantly with meiotic entry for a small subset

of genes.

X-inactivation in PGCLCs is associated with an increased
meiotic competence

Our single-cell RNA-seq analysis showed an exclusive ability for

XGFP� over XGFP+ PGCLCs to differentiate into mature germ cells

with a meiotic transcriptional profile in the rOvary system. We

therefore wanted to functionally compare their ability to enter meio-

sis and their capability to differentiate to more mature stages. To be

able to assess in more detail the extent of prophase I progression,

we cultured XGFP� and XGFP+ PGCLCs for an additional 9 days on

immortalized m220 stromal feeder cells in the presence of BMP2

and retinoic acid (Fig 6A), which was previously shown to facilitate

entry into meiosis (Miyauchi et al, 2017). During this expansion cul-

ture, we observed a progressive accumulation of SYCP3+ meiotic

cells (Fig 6B and C). In particular, cells originating from XGFP�
PGCLCs formed a significantly higher number of meiotic cells than

XGFP+ PGCLCs, confirming our previous observations in the rOvary

system. Intriguingly, by day 5 of the expansion culture, all SYCP3+

meiotic cells were XGFP+ (Fig 6B and D), indicating the co-

occurrence of XGFP-reactivation with meiotic entry in this system as

well. We then prepared chromosomal spreads from the expansion

cultures and performed immunostaining for SYCP3, which shows a

distinctive pattern according to the different prophase stages

(Fig 6E). Moreover, to aid the correct recognition of the different

stages, we stained for the double-strand break marker cH2AX, a

phosphorylated form of the histone variant H2AX (Mahadevaiah

et al, 2001). This showed that the majority of SYCP3+ cells could

successfully enter the zygotene stage by day 9 of expansion culture

(Fig 6E and F). While the efficiency of meiotic entry was signifi-

cantly higher from XGFP� PGCLCs (Fig 6C), XGFP+ PGCLCs fre-

quently formed abnormal, extensively proliferating colonies

(Fig 6G) in the expansion system, with significantly larger aggre-

gates (Fig 6H). Nevertheless, once committed to meiosis, XGFP+

derived cells were able to progress to the Zygotene stage as well

(Fig 6E and F), suggesting that the major developmental bottleneck

for XGFP+ cells appears to be early during PGCLC development and

meiotic entry.

Taken together, while both XGFP+ and XGFP� PGCLCs are able

to reach Zygotene stage, we found that XGFP� originating cells

were able to enter meiosis at significantly higher efficiency, corrobo-

rating results obtained in the rOvary system that X-inactivation in

PGCLCs is associated with increased meiotic and oogenic potential.

Discussion

While X-chromosome inactivation has been a long-studied phenom-

enon (Lyon, 1961) and has been shown to play an important biolog-

ical role for embryonic development (Marahrens et al, 1997) and

pluripotency exit (Schulz et al, 2014), its reversal by X-reactivation

and its biological function during germ cell development have

remained elusive to date. Previous studies on X-chromosome

dynamics during female mouse germ cell development have been

hampered by a lack of allelic resolution, a low number of genes

assessed, as well as an inability to directly trace the X-chromosome

status of single cells (Sugimoto & Abe, 2007; Chuva de Sousa Lopes

et al, 2008). To overcome these limitations, we generated with XRep

an in vitro system, which allowed us to reveal the X-chromosome

inactivation and reactivation cycle and its functional relation to

germ cell development and meiotic progression. Although our XGFP

marker has its limitations by showing a slight delay in response dur-

ing kinetic changes, such as downregulation during X-inactivation

and upregulation during X-reactivation, it allowed us to isolate

PGCLC populations with distinct developmental capacity. We

thereby uncovered that X-inactivation is an important hallmark of

proper PGCLC differentiation in order to progress at later stages

towards meiotic entry (Fig 7). X-reactivation, on the other hand,

◀ Figure 5. Transcriptional reactivation of X-linked genes.

A Average allelic ratio of single cells projected onto the UMAP plot. n = 220 X-linked genes per single cell. X-inactivation (average ratio < 0.135) in red and X-
reactivation (average ratio from 0.135 > 0.8) in green. Labels indicate the five different previously identified clusters. Dashed lines indicate the position of cluster bor-
ders (clusters obtained from Fig 4D–F).

B Distribution of single cells based on fluorescence intensity of XGFP reporter quantified by BD FACSDiva Software, plotted against the X chromosome average allelic
ratio per cell. R and P-values calculated by Pearson’s correlation are shown. Black line represents linear regression fitting.

C Heatmaps of allele-specific ratios of X-linked genes in ESC, EpiLC, XGFP� PGCLC, pre-meiotic, meiotic and mitotic clusters. X-inactive genes are shown in red
(ratio ≤ 0.135), X-active genes in green (ratio > 0.135) and mono-allelic Xcas expression in blue (ratio between 0.5 and 1). Colour gradients used in between and above
these two values as shown in the legend. Genes are ordered by genomic position and grouped according to the category to which they belong, indicated on the left
side of the heatmap. n = 161 genes.

D Average allelic ratios of X-linked genes within each category (escapees, early XCR and late XCR) in ESC, EpiLC, XGFP� PGCLC, pre-meiotic and meiotic clusters. Shading
denotes lower and upper Gaussian confidence limits based on the t-distribution.

E Each dot indicates the average allelic ratio of a single X-linked gene belonging to the indicated category in XGFP� PGCLCs. The numbers above the bars indicate P-
values (two-sample unpaired Wilcoxon–Mann–Whitney test with R defaults). Box plots depict the first and third quartiles as the lower and upper bounds of the box,
with a band inside the box showing the median value and whiskers representing 1.5x the interquartile range.
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coincides temporally with meiotic maturation. This is in line with

the timing of X-reactivation in mouse germ cells in vivo (Sugimoto &

Abe, 2007; Chuva de Sousa Lopes et al, 2008; Sangrithi et al, 2017),

where it takes place gradually, initiating during germ cell migration

and peaking after colonization of the gonads around the time of mei-

otic entry. Additionally, our in vitro system enabled the isolation of

PGCLCs harbouring two active X, a unique advantage over in vivo

systems, as it allowed us to compare the differentiation potential of
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PGCLCs with and without X-inactivation. While our results suggest

that PGCLC specification can occur in the absence of X-inactivation,

we found that germ cells, which had never undergone X-

inactivation in the first place, or in which X-reactivation occurred

pre-emptively, displayed a mitotic germ cell character, did not enter

a normal meiotic trajectory on a transcriptomic level and showed a

significantly reduced meiotic differentiation capacity. This further

highlights how timely X-inactivation and -reactivation might be nec-

essary for proper germ cell maturation (Fig 7). Moreover, while we

acknowledge that our findings are based on data generated in vitro,

we note that allele-specific single-cell RNA-seq of E5.5-E6.5 epiblast

cells, the precursors of PGCs, revealed a considerable heterogeneity

in X-inactivation progression at this developmental time window

(Mohammed et al, 2017; Cheng et al, 2019; preprint: Naik et al,

2021; Lentini et al, 2022), which could potentially allow cells to give

rise to XaXa PGCs, similar to our XGFP+ PGCLCs. Indeed, when we

analysed data from E6.5 epiblast in vivo (Cheng et al, 2019), we

detected specifically in the proximal epiblast, which contains the

competent precursor cells for PGC development (Lawson & Hage,

1994; Saitou et al, 2002), a high fraction of cells, which have not

gone through X-inactivation (Fig 3H and I). Furthermore, proximal

epiblast cells which did go through X-inactivation displayed a lower

degree of gene silencing than other cells of the epiblast or extraem-

bryonic tissues at that stage (Fig 3J and K). Thus, our data support

the idea of a potential functional link between appropriate X-

chromosome dosage compensation kinetics and developmental pro-

gression during mammalian germ cell maturation. Nevertheless, we

acknowledge that it would be important to validate our results dur-

ing later stages of germ cell development in vivo. Particularly,

whether PGCs that have failed to go through X-inactivation exist,

and to what fate these cells would commit.

It remains an open question, what could be the potential role of

X-inactivation for proper PGCLC development and if it is a driver or,

alternatively, a diagnostic mark for meiotic competence of germ

cells. We observed that XGFP+ PGCLCs, which failed to undergo X-

inactivation, differed from XGFP� PGCLCs on multiple accounts.

Albeit sharing an overall similar transcriptome signature with their

XGFP� germ cell counterparts, XGFP+ PGCLCs displayed ESC-like

features including a higher expression of naive pluripotency genes,

shortened cell cycle and propensity to form pluripotent EGC colo-

nies when cultured under 2i/LIF conditions. An explanation for this

pluripotency-related phenotype could be the two-fold expression of

critical X-linked dosage-sensitive genes, which need to be silenced

◀ Figure 6. Comparison of prophase I progression and germ cell maturation capacity of XGFP+ and XGFP� PGCLCs by m220 feeder expansion culture.

A Schematic representation of the m220 stromal feeders expansion culture to compare the meiotic capacity of XGFP� and XGFP+ PGCLCs. Meiosis is induced via
addition of retinoic acid (RA) and bone morphogenetic protein 2 (BMP2). c0 = starting day of culture, c9 = culture day 9 and last day of culture.

B Representative images for the expression of XGFP (green) and SYCP3 (red) in germ cells at c5, c7 and c9 from XGFP+ and XGFP� PGCLCs. All cells with SYCP3 signal
irrespective of localization pattern or intensity were scored as SYCP3+ cells. Cells were counterstained with DAPI (grey). Scale bars = 10 lm.

C Number of SYCP3+ cells per m220 culture day originating from XGFP+ and XGFP� PGCLCs. Each white dot represents a biological replicate (n = 3). P-values shown
are from a two-sided Mann–Whitney U test. n.s., not significant.

D Percentage of XGFP+ cells among SYCP3+ cells at the indicated m220 culture day, originating from XGFP+ or XGFP� PGCLCs. Green bars show constitutive GFP
expression in XGFP+ PGCLC-derived cells, while striped bars signify XGFP reactivation in XGFP� cells. Each white dot represents a biological replicate (n = 3).

E Representative images showing stages of meiotic prophase I from culture day 9 (c9) germ cells from XGFP+ and XGFP� PGCLCs. c9 germ cells were spread and
immunostained for SYCP3 (red), and cH2AX (grey). Scale bars = 10 µm.

F Quantification of meiotic progression in culture day (c9) expanded germ cells derived from XGFP+ and XGFP� PGCLCs. The graphs show the percentages of the
meiotic stage for SYCP3+ cells. Lepto, leptotene; Zygo, zygotene; Pachy, pachytene; Diplo, diplotene. Numbers indicate detected cells per meiotic stage and original
XGFP status.

G Representative tilescan merged images of XGFP (green) and Xtomato (red) in germ cells at c7 from XGFP+ and XGFP� PGCLCs. Cells were counterstained with DAPI
(grey). Scale Bar = 1 mm. The white squares contain a magnified image of the region depicted by the white dotted squares (scale bar = 1 µm).

H Density ridge plot showing size of cellular aggregates in (G) measured using the XTomato signal. X-axis shows area in µm2 scaled as log2. Dashed line represents the
mean. XFGP� mean = 1,320 µm2, XGFP+ mean = 5,514 µm2. XGFP� n = 297 aggregates, XGFP+ n = 373 aggregates. P-value from two-sample unpaired Wilcoxon–
Mann–Whitney test with R defaults.
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Figure 7. Working model of the relation between X-chromosome status
and germ cell developmental progression.
During ESC differentiation towards meiotic germ cells in vitro (X-axis), the X-
chromosome inactivation status (Y-axis) differs between cell populations and
is associated with distinct meiotic germ cell potential in PGCLCs. While
somatic cells go through the most complete X-inactivation (red line), EpiLCs
and subsequently PGCLCs reach moderate X-inactivation levels (PGCLC
XGFP�), or escape X-inactivation entirely (PGCLC XGFP+). XGFP� PGCLCs,
which have undergone moderate X-inactivation followed by gradual X-
reactivation (green arrow, orange and red cells), are most efficient in differenti-
ating into meiotic germ cells and can develop into oocytes and primary folli-
cles. On the other hand, XGFP+ PGCLCs, which have never gone through X-
inactivation and stayed constitutively active (light green cells), or XGFP�
PGCLCs, which have reactivated too rapidly (dark green cells), do not show effi-
cient entry into meiosis and mostly display an abnormal mitotic character.
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by X-inactivation to allow normal pluripotency exit during ESC dif-

ferentiation (Schulz et al, 2014). For example, Dusp9, an X-linked

regulator of MAPK signalling, has been shown to be responsible for

the lower DNA-methylation levels of XX pluripotent stem cells,

when compared with XY and XO cells (Choi et al, 2017; Song et al,

2019; Genolet et al, 2021). In germ cell development, DNA methyla-

tion safeguards repression of late germ cell / meiotic genes during

early germ cell stages and demethylation of their promoters is

required for their upregulation during germ cell maturation and mei-

otic entry (Yamaguchi et al, 2012; Hill et al, 2018). Along those

lines, we observed that XGFP+ PGCLCs also displayed precocious

expression of a subset of late germ cell markers, which remained

repressed in XGFP� PGCLCs. Importantly, demethylation of late

germ cell genes alone has been shown to only lead to partial activa-

tion of some germ cell genes, while not being sufficient for their full

expression in the absence of meiosis-inducing signals (Miyauchi

et al, 2017; Ohta et al, 2017). This would explain our observation of

a relatively mild upregulation of late germ cell genes in our XGFP+

PGCLCs and why this was not sufficient to aid entrance of XGFP+

cells into a full meiotic trajectory after their aggregation with

gonadal somatic cells.

Klhl13, another X-linked MAPK pathway regulator, has been

recently described to promote pluripotency factor expression,

thereby delaying differentiation when expressed at double dose

(Genolet et al, 2021). The counterbalance between pluripotency vs.

differentiation-promoting signalling responses was also observed in

our gene expression analysis, in which we found “MAPK regulation”

and “WNT signalling” to be enriched GO terms in XGFP� PGCLCs,

while “response to LIF” was enriched in XGFP+ PGCLCs (Fig 2F).

Apart from being involved in pluripotency, MAPK inhibition

(Kimura et al, 2014) as well as WNT- and LIF-signalling pathways

(Ohinata et al, 2009; Hayashi et al, 2011) play facilitating roles dur-

ing PGCLC induction, therefore differential enrichment of these path-

ways in our XGFP+ and XGFP� PGCLCs might contribute to their

distinct developmental potentials. Taken together, the combination

of these differential features might lead to a reduced mitotic propen-

sity of XGFP� PGCLCs, which might prime them for meiotic entry,

while XGFP+ PGCLCs rather remain mitotic and do not enter meio-

sis. To which degree this may be a cause or consequence of the X-

inactivation status in PGCLCs and how X-linked gene dosage might

affect female germ cell development will need to be functionally

addressed by future studies, for example, by testing the meiotic

potential of Xist knockout cells. Two recent studies used human in

vitro PGCLC differentiation systems to investigate if the X-

inactivation state of human pluripotent stem cells would affect their

propensity to differentiate towards the germ cell lineage. While the

first study did not find a significant effect (Chang et al, 2021), the

second study reported that human iPSCs with eroded X-inactivation

showed a lower efficiency in forming PGCLCs when compared to

cells with a higher degree of X-inactivation (Yokobayashi et al,

2021). This suggests that faithful X-dosage control might be an

important feature of both mouse and human germ cell development.

While we found that X-inactivation marked PGCLCs of full poten-

tial for subsequent meiosis and oogenesis, X-reactivation occurred

progressively during their transition from pre-meiotic into meiotic

stages. Evidently, X-reactivation is not dependent on meiotic entry

as it occurred completely in mitotic germ cells as well, and X-

reactivation by itself was also not sufficient for germ cells to enter a

meiotic trajectory. However, it remains to be tested whether X-

reactivation is a requirement for female germ cells to progress

through meiosis, or if the two processes are functionally unrelated.

As in the case of pluripotency, reactivation of dosage-sensitive X-

linked genes could enable the initiation of the meiotic gene expres-

sion programme by promoting the derepression and upregulation of

meiotic genes (Yamaguchi et al, 2012; Hill et al, 2018). The absence

of double X dosage and/or abnormalities in meiotic pairing ability

greatly diminishes the success rate of XO and XY germ cells to pass

through meiotic prophase due to delay of meiotic initiation and mei-

otic arrest when compared to XX germ cells (Hamada et al, 2020).

Therefore, equalizing the chromatin state between the heterochro-

matic inactive X and euchromatic active X by X-reactivation could

be a necessary step in order to allow X-X chromosome pairing dur-

ing meiotic prophase. Our XRep system will provide a unique tool

to test the potential requirement of X-reactivation for meiotic pro-

gression and thereby reveal the biological function of the intriguing

epigenetic yoyo of X-inactivation and -reactivation in the mamma-

lian germ cell lineage.

Materials and Methods

Cell culture

Embryonic stem cell culture: Serum/LIF
Embryonic Stem Cells (ESCs) were maintained and expanded on

0.2% gelatin-coated dishes in DMEM (Thermo Fisher Scientific,

31966021) supplemented with 10% Fetal Bovine Serum (FBS) (ES-

qualified, Thermo Fisher Scientific, 16141079), 1,000 U/ml LIF

(ORF Genetics, 01-A1140-0100), 1 mM Sodium Pyruvate (Thermo

Fisher Scientific, 11360070), 1x MEM Non-Essential Amino Acids

Solution (Thermo Fisher Scientific, 11140050), 50 U/ml penicillin/

streptomycin (Ibian Tech, P06-07100) and 0.1 mM 2-

mercaptoethanol (Thermo Fisher Scientific, 31350010). Cells were

cultured at 37°C with 5% CO2. Medium was changed every day and

cells were passaged using 0.05% Trypsin-EDTA (Thermo Fisher Sci-

entific, 25300054) and quenched 1:5 in DMEM supplemented with

10% FBS (Life Technologies, 10270106). Cells were monthly tested

for mycoplasma contamination by PCR.

Embryonic stem cell culture: 2i/LIF
ESCs were cultured for 24 h prior to the start of the primordial germ

cell-like cell induction in 2i/LIF medium. Briefly, a home-made ver-

sion of the N2B27 medium was prepared based on previous reports

(Ying et al, 2008) with additional modifications reported in Hayashi

and Saitou (2013) containing two chemical inhibitors 0.4 µM

PD032591 (Selleck Chemicals, S1036) and 3 µM CHIR99021

(SML1046, SML1046) together with 1,000 U/ml LIF (ORF Genetics,

01-A1140-0100). ESCs were seeded on a dish coated with 0.01%

poly-L-ornithine (Sigma-Aldrich, P3655) and 500 ng/ml laminin

(Corning, 354232).

XRep cell line generation
We used the female F2 ESC line EL16.7 TST (obtained from Jeannie

Lee, Massachusetts General Hospital (Boston, USA)), derived from a

cross of Mus musculus musculus with Mus musculus castaneus

(Ogawa et al, 2008). As a result, cells contain one X chromosome
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from M.m. musculus (Xmus) and one from M.m. castaneus (Xcas).

Moreover, EL16.7 TST contains a truncation of Tsix on Xmus

(TsixTST/+), which abrogates Tsix expression and leads to the non-

random inactivation of Xmus upon differentiation. XGFP and XtdTo-

mato vectors were integrated first, followed by integration of rtTA

and last of germ cell transcription factor vectors.

XGFP and XtdTomato dual-colour reporter

A GFP reporter construct (Wu et al, 2014) was targeted in the sec-

ond exon of Hprt on Xmus as described in Bauer et al (2021). The

same strategy was used to simultaneously target a tdTomato

reporter construct in the second exon of Hprt on Xcas and a GFP

reporter on Xmus. Briefly, 5 × 106 EL16.7 TST ESCs were nucleo-

fected with the AMAXA Mouse Embryonic Stem Cell Nucleofector

kit (LONZA, VPH-1001) using program A-30 with 1.6 µg each of

GFP and tdTomato circularized targeting vectors and 5 µg single

gRNA vector PX459 (50-TATACCTAATCATTATGCCG-30) (Addgene,

48139, a gift from Feng Zhang). Homology arms flanking the target

site were amplified from genomic DNA and cloned into pBluescript

II SK(+) (Addgene, 212205) by restriction enzyme-based cloning

and the cHS4-CAG-nlstdTomato-cHS4 and cHS4-CAG-nlsGFP-cHS4

constructs, kindly provided by J. Nathans (Wu et al, 2014), were

cloned between the two homology arms. 7.5 µM of RS-1 (Merck,

553510) was added to enhance homology-directed repair. To select

for the homozygous disruption of Hprt, cells were grown in the pres-

ence of 10 µM 6-thioguanine (Sigma-Aldrich, A4882-250MG) for

6 days, and GFP+ / tdTomato+ cells were isolated by FACS using a

BD Influx (BD Biosciences). Single clones were screened by South-

ern blot hybridization as described in (Bauer et al, 2021).

Rosa26 rtTA

One microgram of R26P-M2rtTA-targeting vector (Addgene, 47381)

and 5 µg of PX459 gRNA vector (50-GACTCCAGTCTTTCTAGAAGA-

30) were nucleofected with the AMAXA Mouse Embryonic Stem Cell

Nucleofector kit (LONZA, VPH-100) using program A-30 in the

XRep. Cells were selected with 3 lg/ml puromycin (Ibian tech., ant-

pr-1) for 5 days, with medium being changed daily. Single clones

were screened for rtTA expression by quantitative RT–PCR and by

Southern blot hybridization, with genomic DNA being digested by

EcoRV.

Germ cell transcription factors overexpression

PB-TET vectors containing key germ cell factors Blimp1, Tfap2c and

Prdm14 (Nakaki et al, 2013) were kindly given by F. Nakaki. Cells

were transfected with 3 µg each of PB-TET vectors, pPBCAG-hph

and a PiggyBac transposase vector using the AMAXA Mouse Embry-

onic Stem Cell Nucleofector kit (LONZA, VPH-1001). Transfected

cells were selected with 200 lg/ml hygromycin B Gold (Ibian Tech.,

ant-hg-1) for 10 days and genotyped by PCR for transgenes. The

primer sequences are shown in Table 1.

Copy number integration was estimated by Southern blot hybrid-

ization. Briefly, 15 µg of genomic DNA were digested with BamHI.

DNA fragments were electrophoresed in 0.8% agarose gel and trans-

ferred to an Amersham Hybond XL membrane (GE Healthcare,

RPN303S). The b-geo probe was designed downstream of the

BamHI site, obtained by digesting the PB-TET-Avi-Blimp1 plasmid

with CpoI/SmaI, labelled with dCTP [a-32P] (Perkin Elmer,

NEG513H250UC) using High Prime (Roche, 11585592001), purified

with an Illustra ProbeQuant G-50 Micro Column (GE Healthcare,

28903408) and hybridization performed in Church buffer. Radioiso-

tope images were captured with a Phosphorimager Typhoon Trio.

Epiblast-like cell and primordial germ cell-like cell induction
XRep ESCs were induced into PGCLCs as described previously

(Hayashi & Saitou, 2013) with the following modifications as this

condition was most efficient in generating PGCLCs. ESCs were

Table 1. Primer sequences used in this study.

Target Transcript Forward (50-30) Reverse (50-30)

Arbp CAAAGCTGAAGCAAAGGAAGAG AATTAAGCAGGCTGACTTGGTTG

Xist mus/cas ATCATACTAAAGGCCACACAAAGAAT/C ATTTGGATTGCAAGGTGGAT

Amot mus/cas TTTGCTCCCACTTGGTCACA/AG GACACGTTTGGAGAGGGAAC

Prdx4 mus/cas TGAGTCTTCAAGGTATACACTA/AG TGAAGTGGTAGCATGCTCTGTT

Prkx mus/cas TGCAGAATGAGAAAGCAGGC/CT CCACGATTACGCAGGTAGGT

Klf4 TGGTGCTTGGTGAGTTGTGG GCTCCCCCGTTTGGTACCTT

Dnd1 GCTGCTCAAGTTCAGTACGCAC GAAGTGCTGCTTTAGGTCTGGC

Zfp42 (Rex1) CCCTCGACAGACTGACCCTAA TCGGGGCTAATCTCACTTTCAT

Dnmt3b CTCGCAAGGTGTGGGCTTTTGTAAC CTGGGCATCTGTCATCTTTGCACC

Dnmt3l CCAGGGCAGATTTCTTCCTAAGGTC TGAGCTGCACAGAGGCATCC

Blimp1 AGCATGACCTGACATTGACACC CTCAACACTCTCATGTAAGAGGC

Prdm14 ACAGCCAAGCAATTTGCACTAC TTACCTGGCATTTTCATTGCTC

Tfap2c GGGCTTTTCTCTCTTGGCTGGT TCCACACGTCACCCACACAA

Avi-Blimp1 TGGTGCCTGTAAAGGTCAAAC GGCGGAATTAGCTTATCGAC

3xFLAG-Prdm14 TCCTGGATCAAGAGGCTTTC ACTAGCTAGAGCGGCCATCAC

V5-Tfap2c ATTCCAGCAAGACGATGGAG GGCGGAATTAGCTTATCGAC

rtTA CTACCACCGATTCTATGCCCC CGCTTTCGCACTTTAGCTGTT
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thawed on 0.2% gelatin in serum/LIF and after 24 h seeded at a

density of 0.6 × 105 cells/cm2 in 2i/LIF medium on a dish coated

with 0.01% poly-L-ornithine (Sigma-Aldrich, P3655) and 500 ng/ml

laminin (Corning, 354232). Twenty-tour hours later, ESCs were dis-

sociated with TrypLE express for 5 min at 37°C and induced into

EpiLCs by addition of human recombinant basic fibroblast growth

factor (bFGF) (Invitrogen, 13256-029) and activin A (Peprotech,

120-14P) and seeding on 16.7 µg/ml human plasma fibronectin-

coated plates (Merck Millipore, FC010). After 48h, EpiLCs were split

using TrypLE Express (Life Technologies 12604013) and re-seeded

at 0.2 × 105 cells/cm2 on 16.7 µg/ml human plasma fibronectin-

coated plates. After an additional 48 h, EpiLCs were aggregated in

U-bottom 96-well Lipidure-Coat plate (Thermo Fisher Scientific,

81100525) at 2,000 cells per aggregate in GK15 medium (GMEM

(Life Technologies, 11710035), 15% KnockOut Serum Replacement

(KSR) (Thermo Fisher, 10828028), 0.1 mM nonessential amino

acids (NEAA) (Thermo Fisher Scientific, 11140050), 1 mM sodium

pyruvate (Thermo Fisher Scientific, 11360), 2 mM Glutamax (Life

Technologies, 35050061), 0.1 mM 2-mercaptoethanol (Thermo

Fisher Scientific, 21985-023) and 100 U/ml penicillin and 0.1 mg/ml

streptomycin (Thermo Fisher Scientific, 15140) with 1.5 µg/ml

doxycycline (Tocris, 4090/50) for 5 days.

Embryonic Germ Cell (EGC) colony-forming assay
Primordial germ cell-like cells were sorted by FACS at day 5 of dif-

ferentiation for their XGFP status and seeded onto immortalized

mouse embryonic fibroblasts at 1,000 cells/well of a six-well plate.

Cells were cultured for 7 days in 2i/LIF medium thereby facilitating

their transition into pluripotent EGC colonies (Leitch et al, 2010),

changing the medium every 24 h. EGC colony-forming capacity of

XGFP+ and XGFP� PGCLCs was compared to ESCs replated at equal

numbers and scored by alkaline phosphatase (AP) staining. Cells

were fixed in 4% paraformaldehyde before adding the AP solution

(1 mg/ml Fast Red (Sigma, F8764) and 0.01% w/v Naphthol AS-MX

phosphate (Sigma, 855)). The reaction was stopped after 10 min by

removing the AP solution and washing the cells with MillQ water.

Each well was imaged with a digital camera and EGC colonies were

counted manually.

PGCLCs mitotic expansion
PGCLC mitotic expansion culture was performed as previously

described (Ohta et al, 2017) with few modifications. Briefly, 5 days

after PGCLC induction, SSEA1+/CD61+ PGCLCs were sorted by flow

cytometry onto m220 feeder cells, which constitutively express a

membrane-bound form of mouse stem cell factor (Dolci et al, 1991;

Majumdar et al, 1994) on 0.1% gelatin-coated optical bottom

plates (Nunc, 165305). The expansion culture was maintained for a

total of 9 days. The first 3 days in GMEM containing 100 ng/ml SCF

(Peprotech, 250-03), 10 µM forskolin (Sigma-Aldrich, F3917), 10 µM

rolipram (Abcam, ab120029), 2.5% FBS (Capricorn Scientific,

FBSES12B), 10% KSR, 0.1 mM NEAA, 1 mM sodium pyruvate, 2 mM

Glutamax (Life Technologies, 35050061), 0.1 mM 2-mercaptoethanol,

100 U/ml penicillin, 0.1 mg/ml streptomycin and 100 nM all-trans retinoic

acid (RA) (Enzo Life Sciences, BMLGR100).

PGCLCs meiosis induction
Meiosis was induced after 3 days of mitotic expansion culture as

previously reported (Miyauchi et al, 2017, 2018) by a combined

treatment of 300 ng/ml BMP2 (R&D Systems, 355-BM) and 100 nM

RA. Medium was replaced completely every 2 days until the end of

the culture period.

rOvary reconstitution
A total of 10,000 sorted SSEA1+/CD61+ PGCLCs were mixed with

75,000 freshly thawed E13.5 female somatic gonadal and mesoneph-

ric cells (SSEA1�/CD31�) or E12.5 female somatic gonadal cells

from CD1/ICR strain mice and cultured in Lipidure-Coat plates at

37°C in a 5% CO2 incubator for 6 days for the scRNAseq protocol or

for 2 days for the IVDi as described in Hayashi et al (2017). Mouse

care and procedures were conducted according to the protocols

approved by the Ethics Committee on Animal Research of the Parc

de Recerca Biom�edica de Barcelona (PRBB) and by the Departament

de Territori i Sostenibilitat of the Generalitat de Catalunya (Ref. No.

10469).

Oocyte in vitro differentiation (IVDi) culture
IVDi culture was performed as previously described (Hayashi et al,

2017). Briefly, one single rOvary was placed in the middle of a 24-

well Transwell-COL membrane (Corning, CLS3470-48EA) and cul-

tured in alpha-MEM (Life Technologies, 12571063) with 0.15 mM

ascorbic acid (Sigma-Aldrich, A7506), 2% FBS, 2 mM Glutamax

(Life Technologies, 35050061), 0.1 mM 2-mercaptoethanol and

50 U/ml penicillin/streptomycin under normoxic condition (20% O2

and 5% CO2 at 37°C) for 11 days, changing IVDi medium every

other day.

Fluorescence-activated cell sorting (FACS)
After 5 days of culture, PGCLC aggregates were dissociated using

TrypLE Express (Thermo Fisher Scientific, 12604021) for 8 min at

37°C, with periodical tap mixing. The reaction was quenched 1:5

with wash buffer DMEM/F12 (Thermo Fisher Scientific, 11320-082)

containing 0.1% bovine serum albumin (BSA) fraction V (Thermo

Fisher Scientific, 15260-037) and 30 mM HEPES (Gibco, 15630-056)

containing 0.1 mg/ml of DNAse I (Sigma-Aldrich, DN25-10MG).

The cell suspension was centrifuged at 300 g for 5 min, resuspended

in FACS buffer (0.1% BSA in PBS) and passed through a 70 µm cell

strainer (Corning, 352350). Cells were stained with 1:100 SSEA1-

eFluor 660 (Thermo Fisher Scientific, 50-8813-42) and 1:10 CD61-

PE-Vio770 (Miltenyi Biotec, 130102627) for 1h at 4°C. Cells were

washed thrice with FACS Buffer, stained with 1:1,000 DAPI

(Thermo Fisher Scientific, D1306) and then FACS sorted using a BD

FACSAria II or a BD Influx. Double-positive population of PGCLCs

was collected in GK15 medium. Data were analysed with Flowjo

(Tree Star) software.

Cell cycle analysis
Identification of G1, S and G2/M cell cycle phases was based on

DNA content and performed as described previously (Bonev et al,

2017) with minor modifications. Briefly, ESCs, EpiLC and PGCLCs

were dissociated and quenched as described above. Cells were then

fixed for 10 min at room temperature with freshly prepared 1%

formaldehyde in PBS (Sigma-Aldrich, F8775-4X25ML) and the reac-

tion then quenched by addition of 0.2 M glycine (NZYTech,

MB01401) for 15 min on ice. 1 × 106 cells/ml were permeabilized

using 0.1% saponin (Sigma-Aldrich, 47036-50G-F) containing

10 µg/ml DAPI (Thermo Fisher Scientific, D1306) and 100 µg/ml
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RNase A (Thermo Fisher Scientific, EN0531) for 30 min at room

temperature, protected from light with slight agitation. After wash-

ing once with cold PBS, samples were resuspended in cold 0.5%

BSA in PBS at a concentration of 1 × 106 cells/ml and immediately

analysed using a BD LSRFortessa.

Immunofluorescence of PGCLC bodies and rOvaries
Immunofluorescence analysis of PGCLC bodies or rOvaries was

performed on cryosections prepared as follows: Aggregates were

fixed with 4% paraformaldehyde (PFA) (Electron Microscopy Sci-

ence, 15713) in PBS at room temperature for 30 min, followed by

three washes in PBS and submerged in serial concentrations of 10

and 30% of sucrose (Sigma-Aldrich, S0389) in PBS, 15 mins and

overnight at 4°C respectively. The samples were embedded in OCT

compound (Sakura Finetek, 4583), snap-frozen in liquid nitrogen

and cryo-sectioned at a thickness of 10 µm at �20°C on a cryostat

(Leica, CM1850). The sections were placed on a coated glass slide

(MAS-GP type A; Matsunami, S9901) and dried completely.

For immunostaining, the slides were blocked with PBS

containing 10% normal goat serum (NGS) (Abcam, ab7481), 3%

BSA (Sigma-Aldrich, A3311) and 0.2% Triton X-100 (Sigma-Aldrich,

T9284) for 1 h at room temperature, followed by incubation with

the primary antibodies diluted in a 1:1 solution of blocking buffer to

PBS with 0.2% Tween (PBST) (Sigma-Aldrich, P7949) overnight at

room temperature. The slides were washed three times with PBST,

then incubated with the secondary antibodies diluted as the pri-

mary, with DAPI at 1 µg/ml for 1 h at room temperature. Following

three washes in PBST, the samples were mounted in VECTASHIELD

with DAPI (Vector Laboratories, H1200) and observed under a Leica

SP8 confocal microscope. All images were analysed using Fiji/Image

J software (Schindelin et al, 2012). All antibodies used in this study

are listed in Table 2.

Immunofluorescence of cultured PGCLC-derived cells
Immunofluorescence analysis of cultured PGCLC-derived cells was

performed as described in (Nagaoka et al, 2020). Briefly, PGCLCs

were cultured on m220 feeder cells seeded on a 0.1% gelatin-coated

plate used specifically for imaging (Nunc, 165305). PGCLC-derived

cells were fixed at c5, c7 or c9 with 4% PFA (Electron Microscopy

Science, 15713) in PBS at room temperature for 30 min, followed by

three washes in PBS. Fixed cells were blocked in PBS containing

10% NGS, 3% BSA and 0.2% Triton X-100 for 1 h, then incubated

with the primary antibodies diluted in a 1:1 solution of blocking

buffer to PBS with 0.2% Tween (PBST) at room temperature over-

night. After three washes in PBST, cells were incubated with the sec-

ondary antibodies and DAPI at room temperature for 2 h and

washed three times in PBST. Finally, the well was filled with

VECTASHIELD without DAPI (Vector laboratories, H1000). Immu-

nostained samples were observed with a Leica SP8 confocal

microscope.

Meiotic cell spreads
Cultured PGCLC-derived cells were harvested by TrypLE Express at

37°C for 5 min, quenched with 1:1 TrypLE wash buffer (DMEM/F12

containing 0.1% BSA fraction V, 30 mM HEPES), filtered through a

70 µM strainer and centrifuged at 300 g for 5 min. Cell pellets were

dislodged by tapping and washed once in PBS. Cells were then

treated with a hypotonic solution (30 mM Tris–HCl, 50 mM sucrose

(Sigma, S0389), 17 mM trisodium citrate, 5 mM ethylenediaminete-

traacetic acid (EDTA), 2.5 mM dithiothreitol (DTT) (Sigma, D0632)

and 0.5 mM phenylmethylsulfonylfluoride (PMSF) (Sigma, P7626)),

pH 8.2-8.4 at room temperature for 20 min. Cells were spun down

3 min at 300 g, resuspended in 100 mM sucrose and the cell suspen-

sion distributed onto slides (Matsunami, S9901) covered with 1%

PFA in H2O (Electron Microscopy Science, 15713) with 0.2% Triton

X-100 (pH 9.2–9.4). The slides were incubated at room temperature

overnight in a humidified chamber. Finally, the slides were air-dried

and washed with 0.5% Kodak Photo-Flo 200 (Kodak, B00K335F6S)

for 2 min at room temperature. The spread slides were blocked in

PBS containing 10% NGS, 1% BSA for 1 h and then incubated with

the primary antibodies diluted in a 1:1 solution of blocking buffer to

PBS with 0.2% Tween (PBST) at room temperature overnight. After

three washes in PBST, cells were incubated with the secondary anti-

bodies and DAPI at room temperature for 2 h, washed three times in

PBST and mounted in VECTASHIELD mounting medium with DAPI

(Vector Laboratories, h1200). Immunostained cells were observed

under a Leica SP8 confocal microscope.

Table 2. Antibodies used in this study.

Name Description Dilution Company Catalogue#

Primary antibody

Anti-Sox2 Rabbit
polyclonal

100x Abcam ab97959

Anti-Tfap2
(6E4/4)

Mouse
monoclonal

300x Santa Cruz SC12762

Anti-
H3K27me3

Mouse
monoclonal

500x Active Motif 61017

Anti-Sycp3 Mouse
monoclonal

100x Abcam ab97672

Anti-
cH2A.X
S139

Rabbit
polyclonal

100x Abcam ab11174

Anti-Dazl Rabbit
polyclonal

200x Abcam ab34139

Anti-GFP Chicken
polyclonal

500x Abcam ab13970

Surface markers

SSEA1-
eFluor 660

Mouse
monoclonal

50x Thermos 50-8813-42

CD61-PE-
Vio770

Hamster
monoclonal

10x Miltenyi
Biotec

130-102-
627

Secondary antibody

Anti-
chicken
IgY

Goat
polyclonal /
Alexa488

500x Life
Technologies

A11039

Anti-
rabbit IgG

Goat
polyclonal /
Alexa488

500x Life
Technologies

A11034

Anti-
mouse IgG

Goat
polyclonal /
Alexa555

500x Life
Technologies

A21424

Anti-
rabbit IgG

Donkey
polyclonal/
Alexa647

500x Life
Technologies

A31573
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Immunofluorescence of IVDi tissues
Day 11 IVDi tissues were treated while still attached to the transwell

member as follow: culture medium was carefully removed from the

transwell and the whole membrane was fixed in 4% PFA (Electron

Microscopy Science, 15713) in PBS for 30 min at room temperature,

washed twice with PBS and blocked overnight at room temperature

in 10% NGS, 1% BSA and 0.2% Triton X-100. Primary antibodies

were diluted in a 1:1 solution of blocking buffer to PBS with 0.2%

Tween (PBST) and incubated overnight. After three washes with

PBST, secondary antibodies and DAPI diluted as the primary were

incubated an additional overnight, washed thrice and the whole

membrane mounted on VECTASHIELD with DAPI (Vector Laborato-

ries, H1200). Immunostained tissues were observed under a Leica

SP8 confocal microscope.

Tilescan analysis
All images were analysed using Fiji/Image J software (Schindelin

et al, 2012). XtdTomato fluorescence was used to determine aggre-

gate size. First, Gaussian Blur with Sigma (Radius) 5.00 was

applied. Then, a threshold with 10–255 and settings “dark back-

ground” and “B&W” was set. Finally “Analyze Particles” was used

to measure aggregate size.

RNA fluorescent in situ hybridization and immunofluorescence
Cells were fixed with 3% paraformaldehyde PFA (Electron Micros-

copy Science, 15713) for 10 min with 2 mM Ribonucleoside-

Vanadyl Complex RVC (New England Biolabs, S1402S) at room tem-

perature and then permeabilized for 5 min on ice in 0.5% Triton-X

with 2 mM RVC. Cells were then blocked in 3% BSA/PBS with

2mM RVC for 1h at room temperature, incubated with primary anti-

bodies diluted in blocking solution with 2mM RVC overnight at 4°C.

The secondary antibodies were diluted in blocking buffer and incu-

bated 1h at room temperature. Cells were then again fixed in 3%

PFA for 10 min at room temperature. Strand-specific RNA FISH was

performed with fluorescently labelled oligonucleotides (IDT) as

described previously (Del Rosario et al, 2017). Briefly, probe mix

was prepared by mixing 10 ng/ml equimolar amounts of Cy5

labelled Xist probes BD384-Xist-Cy5-3’ (5’-ATG ACT CTG GAA GTC

AGT ATG GAG /3Cy5Sp/ -3’), BD417-5’Cy5-Xist-Cy5-3’ (5’- /5Cy5/

ATG GGC ACT GCA TTT TAG CAA TA /3Cy5Sp/ -3’), 0.5 µg/µl

yeast t-RNA (Life Technologies, 15401029) and 20 mM RVC. Probe

mix was pre-annealed at 80°C for 10 min followed by 30 min at

37°C and hybridized in 25% formamide, 10% dextran sulphate and

2xSSC pH 7 at room temperature overnight. Slides were then

washed in 25% formamide 2xSSC pH 7 at room temperature,

followed by washes in 2xSSC pH 7 and then mounted with Vecta-

shield (Vector Laboratories, H1200). Images were acquired using a

Zeiss Cell Observer.

RNA extraction, cDNA synthesis and qPCR analysis
Total RNA was isolated from ESCs, EpiLCs and PGCLCs (two biolog-

ical replicates each, corresponding to two different clones, with fur-

ther two technical replicates each) using phenol-chloroform

extraction (Sigma Aldrich, P2069) followed by ethanol precipitation

and quantified by Nanodrop. cDNA was produced with a High-

Capacity RNA-to-cDNA kit (Thermo Fisher Scientific, 4387406) and

was used for qRT–PCR analysis in triplicate reactions with Power

SYBR Green PCR Master Mix (Thermo Fisher Scientific, 4367659).

The gene expression levels are presented as ΔΔCt normalized with

the mean Ct values of one housekeeping gene, Arbp, in a normaliza-

tion sample (ESCs). The primer sequences used in this study are

listed in Table 1.

Bulk RNA-seq analysis
RNA libraries were prepared using the TruSeq Stranded Total RNA

Library Preparation kit (Illumina, 20020596) followed by 125 bp

paired-end sequencing on an Illumina HiSeq 2500.

Allele-specific analysis

FastQ files that passed quality control were aligned to the mm10 ref-

erence genome containing CAST/EiJ and 129S1/SvImJ SNPs posi-

tions masked. The positions of all 36 mouse strains SNPs were

downloaded from ftp: https://ftp-mouse.sanger.ac.uk/REL-1505-

SNPs_Indels/mgp.v5.merged.snps_all.dbSNP142.vcf.gz.tbi. From here,

we generated a VCF file containing only the SNPs information for the

strains of interest, CAST/EiJ and 29S1/SvImJ. Reads with ≥ 1 SNPs

were retained and aligned using STAR (Dobin et al, 2013) imple-

menting the WASP method (van de Geijn et al, 2015) for filtering of

allele-specific alignments.

The generated bam files were used for counting reads using the

HTseq tool (v0.6.1) (Anders et al, 2015). All of the steps above were

performed using a customized Nextflow pipeline (Di Tommaso

et al, 2017). We obtained between 50x106 and 75x106 reads per rep-

licate. Coherence among samples, time points and replicates was

verified by principal component analysis (PCA). Batch effects in

principal component analysis (PCA) for comparison to in vivo sam-

ples were corrected using the R package limma (Ritchie et al, 2015).

Differential expression analysis was performed using the R pack-

age DESeq2 (v1.16) (Love et al, 2014). Briefly, differentially

expressed genes were called by comparing XGFP+ PGCLCs and

XGFP� PGCLCs or XGFP+ PGCLCs to ESCs. The DESeqDataSet

(dds) was generated considering the dataset in its entirety while the

DEseq analysis was conducted on dataset filtered as follows: Read

counts were normalized by library size using “estimateSizeFactors,”

were filtered for having a mean across the samples > 10 (a more

stringent cut-off than the sum across the samples > 10) and poorly

annotated genes on chromosomal patches were removed. The

resulting 16,289 genes were kept for downstream analysis. Log2-

fold change was shrinked using the “normal” parameter.

Gene ontology enrichment analysis performed on top and bottom

differentially expressed genes defined as FDR < 0.001 e log2-fold

change > |1| using the Gorilla. Over-represented categories were

simplified using Revigo (http://revigo.irb.hr/) using a similarity of

0.4 as threshold. As background, all identified genes were used.

Single-cell RNA-seq analysis
Full-length single-cell RNA-seq libraries were prepared using the

SMART-Seq v5 Ultra Low Input RNA (SMARTer) kit for Sequencing

(Takara Bio). All reactions were downscaled to one quarter of the

original protocol and performed following thermal cycling manufac-

turer’s conditions. Cells were sorted into 96-well plates containing

2.5 µl of the reaction buffer (1× Lysis Buffer, RNase Inhibitor 1 U/

µl). Reverse transcription was performed using 2.5 µl of the RT

MasterMix (SMART-Seq v5 Ultra Low Input RNA kit for Sequencing,

Takara Bio). cDNA was amplified using 8 µl of the PCR MasterMix

(SMART-Seq v5 Ultra Low Input RNA kit for Sequencing, Takara
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Bio) with 25 cycles of amplification. Following purification with

Agencourt Ampure XP beads (Beckmann Coulter), product size dis-

tribution and quantity were assessed on a Bioanalyzer using a High

Sensitivity DNA kit (Agilent Technologies). A total of 140 pg of the

amplified cDNA was fragmented using Nextera XT (Illumina) and

amplified with double indexed Nextera PCR primers (IDT). Products

of each well of the 96-well plate were pooled and purified twice with

Agencourt Ampure XP beads (Beckmann Coulter). Final libraries

were quantified and checked for fragment size distribution using a

Bioanalyzer High Sensitivity DNA kit (Agilent Technologies). Pooled

sequencing of Nextera libraries was carried out using a HiSeq4000

(Illumina) obtaining between 0.5 × 106 and 1.5 × 106 reads per cell.

Sequencing was carried out as paired-end (PE75) reads with library

indexes corresponding to cell barcodes.

Allele-specific alignment was done as described for bulk RNA-seq

analysis using STAR and WASP. Data processing and visualization

was performed using the R package Seurat (v4.0) (Stuart et al, 2019).

In vitro single-cell analysis
The non-allelic gene expression matrix was filtered for protein-

coding and non-coding transcripts using annotations from mmuscu-

lus_gene_ensembl version 67. Low-quality cells with less than 4,000

identified genes, less than 10,000 RNA molecules or more than 5%

mitochondrial reads were removed. Data were log normalized and

the top 2,000 highly variable features were selected for downstream

analysis. The expression matrix was then scaled and linear dimen-

sional reduction was performed. To ensure that our analysis would

not be confounded by in vitro differentiation artefacts, we focussed

our analysis on germ cells by subsetting for cells with a normalized

and scaled Dazl expression greater than 1 (60 of 460 sorted germ

cells did not pass this criterium). Moreover, only cells that passed

our allelic expression QC (explained below) were retained. Clusters

were subsequently identified using “FindClusters” at a resolution of

0.8 on the first 20 principal components and visualized as UMAP

projections using “RunUMAP.” Clusters were annotated based on

marker gene expression. Processing of allelic data was performed

for all cells that passed the Seurat QC. Cells that passed the follow-

ing criteria were considered for downstream analysis: More than

3,500 total allelic reads (sum of mus and cas), a minimum of 25 alle-

lically expressed genes as well as a minimum of 3% of total allelic

reads from either genotype. Moreover, a gene was considered infor-

mative if the sum of its allelic reads was higher than 10 and if it was

expressed in at least 25% of cells. This resulted in 379 cells that

passed all our quality control steps.

In vivo single-cell analysis
Allelic single-cell data of E6.5 embryos were obtained from GEO

GSE109071 (Cheng et al, 2019: Data ref: Deng & Cheng, 2019), non-

allelic analysis was performed as described above for in vitro.

Processing of allelic data was performed for all cells that passed the

Seurat QC. Cells that passed the following criteria were considered

for downstream analysis: 400 total allelic reads (sum of cas and

C57) and a minimum of 25 allelically expressed genes. Moreover, a

gene was considered informative if the sum of its allelic reads was

higher than 10 and if it was expressed in at least 20% of cells. This

gave 239 cells in total and 16,003 informative genes.

Single-cell data of in vivo female germ cells were obtained from

GEO GSE130212 (Zhao et al, 2020a: Data ref: Zhao et al, 2020b).

Non-allelic analysis was performed as described above for in vitro

with the following exceptions: low-quality cells with less than 2,000

identified genes, less than 2,000 RNA molecules were removed. To

ensure that the analysis would not be confounded by somatic cells,

we focussed it on germ cells by subsetting for cells with a normalized

and scaled Dazl expression > 0.5 and removed somatic cells by subset-

ting for cells with expression < 0.5 for Nr5a1, Axl, Fosb, Emx2 and

Gata4. This gave 18,417 cells in total and 14,133 informative genes.

RNA velocity analysis
Non-allele-specific RNA velocity analysis was performed as follows:

Briefly, loom files only of Dazl-positive cells were generated from

the non-allelic-specific BAM files from STAR using velocyto run-

smartseq2 version v0.17.17 using the default parameters, mouse

genome assembly mm10 and the UCSC repeat genome masked

regions using custom-made scripts.

Subsequently, the loom files were imported into Python version

3.7 and processed using scVelo v0.2.3 (Bergen et al, 2020). The

metadata, the clusters and the UMAP dimensionality reduction coor-

dinates from Seurat were imported, then the single-cell data were fil-

tered and normalized with a minimum of 20 counts and 2,000 top

genes. The moments for velocity estimations were computed with

20 principal components and 30 neighbours. The genes’ full splicing

kinetics were recovered before estimating the velocities using the

dynamical model. The RNA velocity was visualized using veloci-

ty_embedding_stream colour coding cells by their Seurat cluster.

Integration with in vivo datasets
Single-cell data of in vivo female germ cells (Zhao et al, 2020) were

analysed as described above. Normalized and scaled in vivo and in

vitro data from this study were merged by canonical correlation

analysis (CCA) using the Seurat function RunCCA. UMAP was then

performed using CCA.

Statistical analysis

Statistical analysis of replicate data was performed using appropri-

ate strategies in R. Number of independent experiments (n), type of

statistical test, definition of significance and measurements are

defined in figure legends. No statistical method was used to prede-

termine sample size and no data were excluded from the analyses.

Samples were not randomized and investigators were not blinded to

group allocation during data collection and analysis.

Data availability

The accession number for the sequencing datasets reported in this

study is GEO: GSE169201 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE169201). Data analysis code: https://github.

com/biocorecrg/allele_specific_RNAseq.

Expanded View for this article is available online.
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