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Abstract: Over the last few decades, the development of the electronic nose (E-nose) for detection
and quantification of dangerous and odorless gases, such as methane (CH4) and carbon monoxide
(CO), using an array of SnO2 gas sensors has attracted considerable attention. This paper addresses
sensor cross sensitivity by developing a classifier and estimator using an artificial neural network
(ANN) and least squares regression (LSR), respectively. Initially, the ANN was implemented using a
feedforward pattern recognition algorithm to learn the collective behavior of an array as the signature
of a particular gas. In the second phase, the classified gas was quantified by minimizing the mean
square error using LSR. The combined approach produced 98.7% recognition probability, with 95.5
and 94.4% estimated gas concentration accuracies for CH4 and CO, respectively. The classifier and
estimator parameters were deployed in a remote microcontroller for the actualization of a wireless
E-nose system.

Keywords: gas sensor array; pattern recognition; artificial neural network; least squares;
concentration estimation

1. Introduction

The detection, recognition, and concentration estimation of toxic gases, such as methane (CH4)
and carbon monoxide (CO), remain a significant problem for rapidly growing industrial states.
The inflammability and carcinogenic nature of these odorless gases demands fast, efficient, and
reliable safety measures because exposure beyond certain concentrations can cause diseases and even
death. The danger levels of CH4 and CO, as per international standards, have been summarized in
Tables S1 and S2, respectively. Therefore, the installment of wireless monitoring devices at vulnerable
fields and places, such as in coal mines, food quality assessment, disease diagnosis, gas storage plants,
and petroleum industries, has grown vital for environmental control and disaster prevention [1–4].

Metal-oxide semiconductor-based gas sensors have been developed over the last few decades
due to their high sensitivity, low power consumption, low cost, small size, and stability. Additional
advantages include temperature controllability, on-chip integration facility, and the large number of
gases these can detect [5]. Various oxides, including ZnO, Fe2O3, SnO2, Ga2O3, WO3, and TiO2, have
shown responsivity to a range of gases such as H2, O2, NO, NH3, H2S, CO, CH4, HCHO, C2H5OH,
C2H2, CH3SH, (CH3)3N, and other volatile organic compounds [6–9]. Many companies such as City
Technology, MicroChem, Nissha FIS, Inc., and SparkFun Electronics provide these sensors in various
commercialized forms [10–12].

The current paper utilizes SnO2-based commercial gas sensors for volatile combustible
hydrocarbons, which change their electrical characteristics based on variations in atmospheric
composition [13]. The design, applications, and material science of SnO2 sensors have been thoroughly
investigated by many research groups [14–16]. Wang et al. discussed sensing mechanisms and
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influencing factors [17]. Although the sensors have high detection power, cross sensitivity requires
a robust trained system that can classify target gases in a mixture with minimum ambiguity [18–21].
The SnO2 film also ages with time, humidity and temperature variations, and overexposure to target
gases [22–24]. Thus, a self-adjustable scaling and calibration tool is required with a high precision
concentration estimator.

Many previous studies have already addressed the gas identification and concentration estimation
problems, including implementation of fuzzy logic designs, multilayer perceptron, artificial neural
networks (ANN), and principal component analysis [25–31]. Support vector machines (SVMs) have
been recently employed for a least squares approach to estimate gas concentration [32–35]. Varun et
al. presented a conjugate gradient neural network (CGNN) based manhole gas detection system [36].
Various pattern recognition tools have been used for classification of odorless gases [37]. Srivastava
introduced a mean and variance-based method for data transformation [38]. To cater for the instability
of gas sensors, noise measurements and optimization approaches have been investigated [39–41].
Linear least squares and nonlinear SVM classifiers have been previously compared using a single
electrolytic gas sensor [42].

This study exploited sensor array characteristics and mean centering prior to the application of
two principal techniques: ANN and least squares regression (LSR). After preprocessing the sensor
signals, the ANN classifier was designed on MATLAB®, providing better identification performance
than raw data acquired from the sensors. The quality assurance of ANN showed 98.7% classification
accuracy, which is a hallmark with the usage of cheap, cross sensitive, and aging sensors. Subsequent
LSR estimated gas concentrations had 95.5 and 94.4% minimum accuracies, which is superior to
conventional linear, polynomial, or logarithmic regression.

This paper is organized as follows. Section 2 describes the proposed electronic nose (E-nose)
and experimental details. We provide a detailed overview of the data centering approach prior
to ANN implementation for gas type classification, followed by the subsequent LSR to estimate
the concentration. Section 3 discusses outcomes from this proposed approach. Finally, Section 4
summarizes the research findings and conclusions.

2. Materials and Methods

2.1. Experimental Setup

2.1.1. Gas Sensor Setup

We employed an array of SnO2 gas sensors specialized for CH4 and CO detection. Variations in
the metal-oxide semiconductor electrical properties arise from adsorption of gas molecules. Initially,
oxygen from the air gets adsorbed onto the SnO2 surface and a transfer of electrons from SnO2 to
oxygen takes place. This depletes electrons in the SnO2 surface region, increasing its resistance. In the
presence of CH4 or CO, oxygen ions chemically react with injected gas particles, releasing electrons
that transfer back to the near SnO2 surface. This decreases the material resistance and provides the
sensor response [6,13,16].

A single sensor is not highly selective in its response but detects a wide range of compounds.
Therefore, an array of different sensors is commonly employed to detect and identify gases, generating
recognizable patterns for different analytes [7]. In particular, we employed commercially available
MQ-4 and MQ-7 sensors due to their relatively high sensitivity for volatile organic gases [18,19]. Since
the gas sensor response is severely affected by environmental changes, an auxiliary DHT11 sensor was
included to monitor temperature and humidity [43]. Table 1 shows the sensor specifications used in
the proposed E-nose system.

The chemisorption ability of SnO2 in the presence of detectable gases varies with respect to the
type of analyte. The datasheets of MQ-4 and MQ-7 demonstrate the sensor resistance plot against the
concentration of various gases [18,19]. It is clearly manifested that, in the presence of CH4 and CO,
MQ-4 has higher sensitivity for CH4 whereas MQ-7 is more responsive to CO.
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Table 1. Sensor specifications.

Sensor Sensor Model Detecting Materials 1 Range

CH4 MQ-4 CH4, LPG, H2, CO, Alcohol, smoke 300–10,000 ppm CH4
CO MQ-7 CO, H2, LPG, CH4, Alcohol 10–500 ppm CO

Temperature and Humidity DHT11 Temperature, Humidity 20–90% RH
0–50 ◦C

1 In order of decreasing sensitivity.

2.1.2. System Setup

Figure 1 shows the hardware setup of the proposed E-nose system. After providing electrical
connections, three each MQ-4 and MQ-7 sensors were placed in an experimental chamber with 100 L
internal volume, which was a slave node. A vacuum pump removed the remaining gaseous contents
in the chamber before and after each experiment. A mass flow controller (MFC) with a graphical user
interface (GUI) was attached to CH4, CO and N2 gas cylinders. A data acquisition (DAQ) device with
plug-and-play connectivity via RS232 protocol was used to acquire and log data, with inputs for gas,
temperature, and humidity sensors. The MFC and DAQ were connected to the master node, which
was a computer featured with prototyping, algorithm development, and code generation tools for fast
and efficient real-time signal processing.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 15 

 

Table 1. Sensor specifications. 

Sensor Sensor Model Detecting Materials 1 Range 

CH4 MQ-4 CH4, LPG, H2, CO, Alcohol, smoke 300–10,000 ppm CH4 

CO MQ-7 CO, H2, LPG, CH4, Alcohol 10–500 ppm CO 

Temperature  

and Humidity 
DHT11 Temperature, Humidity 

20–90% RH 

0–50 °C 

1 In order of decreasing sensitivity 

The chemisorption ability of SnO2 in the presence of detectable gases varies with respect to the 

type of analyte. The datasheets of MQ-4 and MQ-7 demonstrate the sensor resistance plot against the 

concentration of various gases [18,19]. It is clearly manifested that, in the presence of CH4 and CO, 

MQ-4 has higher sensitivity for CH4 whereas MQ-7 is more responsive to CO. 

2.1.2. System Setup 

Figure 1 shows the hardware setup of the proposed E-nose system. After providing electrical 

connections, three each MQ-4 and MQ-7 sensors were placed in an experimental chamber with 100 L 

internal volume, which was a slave node. A vacuum pump removed the remaining gaseous contents 

in the chamber before and after each experiment. A mass flow controller (MFC) with a graphical user 

interface (GUI) was attached to CH4, CO and N2 gas cylinders. A data acquisition (DAQ) device with 

plug-and-play connectivity via RS232 protocol was used to acquire and log data, with inputs for gas, 

temperature, and humidity sensors. The MFC and DAQ were connected to the master node, which 

was a computer featured with prototyping, algorithm development, and code generation tools for 

fast and efficient real-time signal processing. 

 

Figure 1. Experimental setup of an E-nose. 

2.2. Sample Preparation 

The MFC operated on standard cubic centimeter per minute (sccm) and standard liter per 

minute (slm) flow units, with selected flow rates 30 sccm, 6 sccm, and 10 slm for CH4, CO, and N2, 

respectively. Since the metal-oxide sensors require oxygen to function, ambient atmosphere was 

provided before injecting the target gases. 

Owing to a plethora of health and environmental hazards associated with these gases, as 

described in Tables S1 and S2, the experimental range was set to 0–1200 ppm and 0–200 ppm for CH4 

and CO, respectively. A total of 20 CH4 samples were tested for 24 concentrations ranging from 0 to 

1200 ppm (50 ppm intervals), producing 480 data points; whereas 15 CO samples were tested for 20 

concentrations ranging from 0 to 200 ppm (10 ppm intervals), producing 300 data points. Each data 

point constituted the analog outputs from all sensors in the array. An MFC GUI input control was 

Figure 1. Experimental setup of an E-nose.

2.2. Sample Preparation

The MFC operated on standard cubic centimeter per minute (sccm) and standard liter per minute
(slm) flow units, with selected flow rates 30 sccm, 6 sccm, and 10 slm for CH4, CO, and N2, respectively.
Since the metal-oxide sensors require oxygen to function, ambient atmosphere was provided before
injecting the target gases.

Owing to a plethora of health and environmental hazards associated with these gases, as described
in Tables S1 and S2, the experimental range was set to 0–1200 ppm and 0–200 ppm for CH4 and CO,
respectively. A total of 20 CH4 samples were tested for 24 concentrations ranging from 0 to 1200 ppm
(50 ppm intervals), producing 480 data points; whereas 15 CO samples were tested for 20 concentrations
ranging from 0 to 200 ppm (10 ppm intervals), producing 300 data points. Each data point constituted
the analog outputs from all sensors in the array. An MFC GUI input control was used to automate
the process. Both gases were injected in pure form, with equal time intervals and gas increments to
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analyze the sensor array collective response pattern. Temperature and humidity were maintained at
22 ◦C and 40% RH, respectively.

2.3. Data Acquisition and Preprocessing

A DAQ toolbox with a supporting GUI was employed to read, display, and log analog voltages
from the six gas sensors and one auxiliary sensor. The sampling rate was set to one reading per second
until the system was trained.

The raw experimental data were first analyzed and inspected visually. Each sensor had initial
air resistance, R0, that decreased to Rs in the presence of the detectable gas. R0 and Rs were different
for each sensor, producing different output voltages from similar sensors, hence producing similar
waveforms but different offsets and means, as shown in Figure 2.
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Let Xi be the feature matrix of raw data acquired from the k = 1, 2, . . . , 6 sensors for i
samples, where

i =

{
1, 2, 3, . . . . . . , 24 for CH4 gas
1, 2, 3, . . . . . . , 20 for CO gas

, (1)

and

Xi =



X11 X12 X13 X14 X15 X16

X21 X22 X23 X24 X25 X26

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Xik Xik Xik Xik Xik Xik


. (2)

The sensors were scaled and centered around the same mean to increase E-nose accuracy.
The standard deviation (Sd) and mean (M) were calculated for six sensors. The raw data Xik was
normalized to get Xnk as per Equation (3):

Xnk = (Xik − M)/Sd, (3)
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This results in the formation of normalized data matrix, Xn, given by Equation (4):

Xn =



X11 X12 X13 X14 X15 X16

X21 X22 X23 X24 X25 X26

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
Xnk Xnk Xnk Xnk Xnk Xnk


. (4)

This global method for sensor normalization sets the mean at the origin and variance within
the data to 1. The data was further range scaled to set dynamic range to [0, 1]. The preprocessed
sensor data correspond to i samples taken at different gas concentration levels. Thus, the target output
vector T, encompassing the actual gas concentration values, is

T =



T1

T2

. . .

. . .

. . .
Ti


. (5)

2.4. Artificial Neural Network for Classification

Inspired by the biological nervous systems, ANNs were designed to process raw data or
information using a vast network of neurons or nodes where all nodes are interconnected, and
the signal path is called a synapse. Typically, these signals are real numbers and the nodes calculate
outputs using linear or non–linear functions. The operations are performed on raw data in different
layers, including an input layer, hidden layer, and output layer [44].

Despite M and Sd variations, each sensor type has selective behavior, high responsivity, and similar
waveforms to one particular gas, which were exploited in gas recognition neural networks [29,38,45].
The normalized signals from the gas sensor array were input to a feedforward ANN designed in
MATLAB® with six input neurons corresponding to the sensor arrays, twelve neurons in the hidden
layers, and two output neurons corresponding to the identification result of both gases, as shown in
Figure 3.
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Figure 3. Three-layer ANN for gas classification.

Considering the given data set as D = {(Xn, T)}, where Xn is the normalized data for six sensors’
array and T is the target value, the input layer was fed with two data sets, one for each gas. A total of
500 data pairs from the experiments of each analyte were used. In these pairs, 300 belonged to CH4

experiments whereas 200 were from CO experiments. This data was divided randomly into training
groups using 70% of the data, a validation group using 15% of the data, and a test group using 15% of
the data. The six input neurons received Xn and transmitted it to hidden layer.
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The hidden layer was composed of twelve neurons. Inside these neurons, every data pair was
assigned weight (wk) and bias (bk) to input Xnk and then subjected to a function, g(Xn), which was
a non-linear hyperbolic tangent sigmoid function such that g(Xn) approached T, as described in
Equation (6):

g(Xn) =
6

∑
k=1

f[wk × (Xnk) + bk]. (6)

The network was trained iteratively to reassign wk and bk in each signal to produce the desired
output value, which was the gas type. The network performance was assessed using a loss or cost
factor (C) which was the mean square error (MSE). It is the average of squared errors between the
target output (T) and the calculated network output (g(Xn)) for N number of outputs. This factor was
calculated using Equation (7):

C = MSE =
1
N

N

∑
1
(g(Xn)− T)2. (7)

The changes in updated values were dependent on the cost factor change with respect to previous
wk and bk values. A decreasing error produced a smaller change from preceding values and vice versa.
If the desired accuracy was not achieved, the algorithm updated wk values in the next iteration as:

wk+1 = wk + ἠ ∂C/∂wk, (8)

where ∂C/∂wk is the gradient of error with respect to previous weights and ἠ is the learning rate that
determines the amount of weight adjustment when the values are updated. A larger ἠ causes large
changes in previous values and vice versa. The bias vector (b) followed the same upgradation criteria.
The iteration count, in which all the vectors are used to update the wk and bk values, is called the epoch.

The momentum factor (Mu) determines the network training speed, and the optimal value can
be found by trial and error. Table 2 shows minimum assigned performance factor and gradient, and
maximum epochs, Mu, and validation checks to enhance network convergence and limit iterations.
Training was terminated when any of the conditions were met.

Table 2. ANN parameters for training.

Training Parameter Assigned Value

Epochs 1000
Performance (MSE) 0.00

Gradient 1.00 × 10−7

Mu 1.00 × 1010

Validation Checks 20

The output layer was a linear transfer function to generate signals for the two output neurons.
Each neuron detected the presence of one of the gases as a digital signal (0 or 1). The first neuron, for
example, was reserved for CH4 detection and an output signal ~1 or ~0 meant the presence or absence
of this gas, respectively. The final weights and biases for all neurons were stored in the network as w
and b arrays, respectively, and exported to a microcontroller to provide a wireless and portable system.

2.5. Least Squares Regression to Estimate Concentrations

A concentration estimator was required after identifying the target gas for quantitative analysis
of the analyte. However, the data was non-linear and, hence, unsuitable for simple mathematical
models. Therefore, we used the Levenberg–Marquardt algorithm for the LSR of datum pairs [46–48].
An independent variable (Xn), which was a preprocessed analog signal from sensors, and a dependent
variable (T), which was a corresponding target gas concentration, constituted the LSR inputs.
We devised an iterative procedure to produce a mathematical model using MATLAB® fitting tools.
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The goal was to derive coefficients (p) of a non-linear function (f) for each sensor that minimized
the sum of squares of deviations from the target value. The mathematical representation of the problem
statement is expressed as:

argmin (∑ [T − f(Xn,p)]2). (9)

Since no single function is applicable to the whole sensor array, separate parameter vectors were
calculated for each sensor, producing a set of six functions with their respective parameters,

f(Xn, p) =



f1(Xn, p1), Sensor 1
f2(Xn, p2), Sensor 2
f3
(
Xn, p3

)
, Sensor 3

f4(Xn, p4), Sensor 4
f5
(
Xn, p5

)
, Sensor 5

f6
(
Xn, p6

)
, Sensor 6

, (10)

where fk was predefined, and the algorithm only calculated the parameters. As the sensor response
pattern is unique for both gases therefore, two separate sets of functions and their parameters
were devised. The type of model selected for LSR depended on the gas identified through ANN.
The parameters were stored and used in the proposed wireless E-nose to estimate concentrations.

2.6. Emergency Alarm System

Arduino Mega, an ATmega2560-based microcontroller, was connected to the gas sensor array
with common power and ground connections [49]. The microcontroller connected to the computer via
a USB and was programmed using C for gas classification and concentration estimation. The vectors
M, Sd, w, b, and p were stored in the microcontroller to implement the wireless E-nose and emergency
alarm system. An LCD and buzzer were attached to monitor system output. Figure 4 shows the
proposed E-nose system schematic.
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Figure 4. Proposed wireless E-nose system schematic.

The microcontroller reads all the stored vectors when initialized. The raw sensor data Xi is
acquired in real-time and normalized. Gas presence was identified using ANN gas classification and
concentration was then estimated using the LSR estimator. The results were displayed on the LCD
and could be used as alarm inputs if the concentration exceeded dangerous levels. Figure 5 shows the
proposed wireless E-nose flowchart.
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3. Results and Discussion

3.1. Normalizing and Mean Centering

The MQ-4 detection range starts from 300 ppm of CH4, whereas that of MQ-7 starts from 20 ppm
of CO. This is the minimum detection limit of the proposed E-nose system. Although there is a wide
range of detectable gases for both sensors, this study mainly focused on higher selectivity for CH4

(MQ-4) and CO (MQ-7), which can be made more noticeable through normalization.
Figure 6 summarizes the normalized data (from Equation (3)), highlighting the similar and

overlapping patterns generated by the sensors under the same conditions.
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3.2. Feature Extraction and Classification

The ANN consisted of an input layer that received normalized data from three MQ-4 and three
MQ-7 sensors. The individual sensor patterns may not be selective, but the collective response of the
whole array became predictable once the network was trained. The sensor array characteristic pattern
in the presence of a particular gas is tantamount to a signature, which can be effectively learnt with
sufficient training data.

To visually analyze the pattern, 0–1200 ppm CH4 was injected in 50 ppm increments for each
experiment. The recurrence of the same cycle each day for eight consecutive days generated a
three-dimensional plot of sensor array behavior. Figure 7 shows the sensor array response plotted
against gas concentration and the number of days when subjected to repetitive cycles of CH4. Similarly,
there is a unique collective pattern for CO identification. The sensor array was subjected to an
iterative procedure of CO gas injections ranging from 0 to 200 ppm for six consecutive days. The
three-dimensional plot of the sensor array’s response against the number of days and CO concentration
values is shown in Figure 8. MQ-4 and MQ-7 sensors are sensitive to both gases, but the higher
selectivity of MQ-4 for CH4 and MQ-7 for CO is evident through steepness of the plots in Figures 7
and 8, respectively. It should be noted that these plots are raw sensor data before normalization and,
therefore, the dynamic range of all sensors has prominent diversity. Although the waveforms cannot
be defined by linear, polynomial, or exponential expressions, the group responses successfully trained
the ANN to recognize gas types.
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3.3. Quality Assurance/Quality Control

The testing and validation results showed that the ANN distinguished gas signatures with
improved performance after each iteration. This is because the MSE for the validation subset decreased
from 1.4477 to 0.18 and, finally, to 0.09 in three consecutive training procedures. The final MSE value,
which is a promising factor in assuring the quality of the classifier, was attained at epoch 3, thereby
successfully identifying the gas type. To further inspect the validity for quality control, a confusion
matrix for the classifier was obtained using 43 CH4 cases and 32 CO cases, as shown in Figure S1.

The matrix rows correspond to the network output or predicted gas class 1 and 2 for CH4 and
CO, respectively, and the columns represent the target class or actual gas type. The first two diagonal
cells show the number and percentage of correct classifications by the ANN, and the off-diagonal cells
correspond to incorrectly classified gas types. The column on the far right shows the percentages of
the classes which are classified correctly and incorrectly. Out of 43 CH4 cases, 42 (97.7%) were correctly
predicted and only 1 (2.3%) was predicted as CO gas. Similarly, all 32 (100%) CO cases were correctly
classified. The cell at the bottom right of the plot shows the overall accuracy of the classification as
98.7% with an error rate of 1.3%.
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3.4. Estimated Gas Concentrations Using Least Squares Regression

The concentration was estimated after gas type classification using LSR. The dataset was split
into training, validation, and test subsets using 70, 15 and 15% data respectively. A regression plot was
created in MATLAB® which showed the relationship between outputs of LSR and the desired target
value. Here, the calculated gas concentration was denoted by Y and the target gas concentration by T.

Figures 9 and 10 are regression plots which show CH4 and CO concentration estimate accuracy,
respectively, where the horizontal axis is the target concentration and the vertical axis is the LSR-based
estimated concentration. Ideally, LSR estimated values would be identical to the target values (i.e.,
Y ≡ T), which would generate a unitary correlation coefficient (R = 1), as shown by the dotted line in
the regression plots. However, the original data (circles) does not fit perfectly, with several significant
deviations from the dotted line. Such outliers are defined by the output-target relationship mentioned
along the vertical axis. For example, a relatively larger magnitude of error in the validation subset of
CO gas in Figure 10 is described by the expression (Output~= 0.96*Target + −2.4) with a scale factor of
0.96 and an offset of −2.4.
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Figure 9 shows that the CH4 concentration estimate achieved R = 99.995%, 99.995%, and 99.989%
fit for the training, validation, and test groups, respectively. Therefore, an average of 99.985% match
in the target and network output was achieved. Figure 10 shows that the CO concentration estimate
achieved R = 99.999%, 99.988%, and 99.855% fit for the training, validation, and test groups, respectively.
Hence, an average of 99.901% match in the target and network outputs was attained.

Table 3 shows the LSR-based concentration estimates for both gases. The minimum accuracy was
95.5 and 94.4% for CH4 and CO, respectively. The statistical significance of these experimental results
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is also evident in Figures S2 and S3, with sum of squared errors (SSE), root mean square error (RMSE),
and error bars representing the standard deviation and standard error. However, the accuracy was
attained for constant ambient conditions, the same sensor set, and a very short time span. In practice,
sensor aging will become significant after prolonged exposure to high gas concentrations, inevitably
impacting long-term accuracy. Also, any new set of sensors has to be calibrated and normalized before
use. In these cases, retraining the algorithm would be a promising factor in ensuring E-nose efficiency.Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 
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Table 3. LSR-based gas concentration estimates.

CH4 CO

Injected (ppm) LSR Estimate (ppm) Accuracy (%) Injected (ppm) LSR Estimate (ppm) Accuracy (%)

50 51.3 97.3 10 10.4 95.8
100 102.0 97.9 20 21.1 94.7
150 156.0 95.9 30 28.9 96.6
200 193.0 96.5 40 37.7 94.4
250 241.9 96.7 50 47.9 95.9
300 313.3 95.5 60 61.9 96.6
350 358.1 97.7 70 68.0 97.1
400 409.5 97.6 80 81.3 98.3
450 455.9 98.7 90 91.9 97.7
500 490.9 98.2 100 102.0 98.0
550 555.1 99.1 110 108.3 98.4
600 611.0 98.1 120 118.9 99.1
650 650.0 100.0 130 131.9 98.4
700 699.7 99.9 140 137.9 98.5
750 750.1 99.9 150 151.7 98.8
800 795.9 99.4 160 162.8 98.1
850 850.1 99.9 170 167.8 98.7
900 899.9 99.9 180 185.5 96.9
950 946.9 99.6 190 193.8 97.9

1000 1002.9 99.7 200 197.8 98.9
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The proposed E-nose system combines pattern recognition and LSR, delivering a high accuracy
real-time monitoring system. Regression was greatly simplified by implementing the prior recognition
procedure. The stored vectors as a result of classifier and estimator training were imported to the
microcontroller and subjected to the same data sets. The real-time implementation means the proposed
E-nose would be suitable for remote monitoring.

4. Conclusions

This study developed a wireless E-nose using an array of commercially available SnO2 gas sensors.
An ANN was designed and employed using pattern recognition techniques to independently classify
the presence of two toxic analytes, CH4 and CO, with 98.7% accuracy. A least squares regressor,
trained as a gas concentration estimator, was implemented using the Levenberg–Marquardt algorithm.
The trained network a had high recognition probability for both gases, and the subsequent LSR
estimator achieved 95.5% and 94.4% minimum accuracies for CH4 and CO, respectively. The achieved
model has a potential to detect various gas combinations by inserting a third output node in ANN
to categorize “mixtures”, which will be addressed in our future study. Also, the same sensors and
model can be retrained for other detectable gases such as LPG, H2, alcohol, and smoke. The derived
ANN and LSR parameters were exported to a wireless microcontroller board. Hence, the proposition
of two highly effective strategies to exploit the group behavior of the sensor array made it possible to
actualize a real-time and precise wireless E-nose system.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/5/1446/s1.
Table S1: CH4 concentration and safety level according to flammability risk, Table S2: CO concentration and
associated health hazard according to international standards, Figure S1: Confusion matrix for ANN, Figure S2:
Statistical evaluation of CH4 with SSE, RMSE, and error bars, Figure S3: Statistical evaluation of CO with SSE,
RMSE, and error bars.
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