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Background: Pancreatic adenocarcinoma (PAAD) is a highly lethal and aggressive
tumor with poor prognoses. The predictive capability of immune-related genes (IRGs)
in PAAD has yet to be explored. We aimed to explore prognostic-related immune genes
and develop a prediction model for indicating prognosis in PAAD.

Methods: The messenger (m)RNA expression profiles acquired from public databases
were comprehensively integrated and differentially expressed genes were identified.
Univariate analysis was utilized to identify IRGs that related to overall survival. Whereafter,
a multigene signature in the Cancer Genome Atlas cohort was established based on
the least absolute shrinkage and selection operator (LASSO) Cox regression analysis.
Moreover, a transcription factors regulatory network was constructed to reveal potential
molecular processes in PAAD. PAAD datasets downloaded from the Gene Expression
Omnibus database were applied for the validations. Finally, correlation analysis between
the prognostic model and immunocyte infiltration was investigated.

Results: Totally, 446 differentially expressed immune-related genes were screened in
PAAD tissues and normal tissues, of which 43 IRGs were significantly related to the
overall survival of PAAD patients. An immune-based prognostic model was developed,
which contained eight IRGs. Univariate and multivariate Cox regression revealed that
the risk score model was an independent prognostic indicator in PAAD (HR > 1,
P < 0.001). Besides, the sensitivity of the model was evaluated by the receiver operating
characteristic curve analysis. Finally, immunocyte infiltration analysis revealed that the
eight-gene signature possibly played a pivotal role in the status of the PAAD immune
microenvironment.

Conclusion: A novel prognostic model based on immune genes may
serve to characterize the immune microenvironment and provide a basis for
PAAD immunotherapy.

Keywords: pancreatic adenocarcinoma, immune-related genes, transcription factors, prognostic model, tumor
immune microenvironment
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INTRODUCTION

Pancreatic cancer (PC) is one of the deadliest and most aggressive
malignant neoplasms worldwide (Ilic and Ilic, 2016). In the next
decade, PC is estimated to be the second leading cause of death
among malignant cancer-related diseases (Rahib et al., 2014;
Ferlay et al., 2016). Pancreatic adenocarcinoma (PAAD) occurs
in approximately 85% of all PC cases and is associated with a less
favorable prognosis (Higuera et al., 2016).

Pancreatic cancer treatment comprises surgery,
chemotherapy, radiotherapy, neoadjuvant therapy, targeted
molecular therapy, and immunotherapy. Nevertheless, the
therapeutic effect of these strategies for PAAD is limited.
Therefore, accurate prediction of the prognosis can determine
if the patient will benefit from more radical treatment, thereby
providing the patient with “individualized” systemic treatment
to improve the prognosis.

Pancreatic adenocarcinoma is characterized by the high
complexity of stomal tissue, which includes immune cells, various
growth factors, the extracellular matrix, and fibroblasts. The
tumor microenvironment (TME) accounts for about 15–85%
of the whole tumor component in PAAD (Erkan et al., 2012;
Liang et al., 2017). The complex and heterogeneous TME induced
by interactions between pancreatic epithelial/cancer cells and
stromal cells is responsible for PC progression and has been
implicated in resistance to chemotherapy and immunotherapy
(Markowitz et al., 2015; Incio et al., 2016; Ren et al.,
2018). Besides, components of the PAAD microenvironment
that contribute to immunosuppression correlate with a poor
prognosis of patients (Tang et al., 2014; Whatcott et al., 2015;
Wang et al., 2017). With deepening of the understanding
of the microenvironment of PC, TME-based clinical and
translational therapies could be a breakthrough hotspot in PC
treatment in the future.

With the remarkable progress of bioinformatics analysis, in
many studies, the mining of public databases has been used
increasingly to predict cancer prognosis. Among them, immune-
related genes (IRGs) have shown an increasingly prominent role
in cancer development and immunotherapy (Ge et al., 2019;
Huang et al., 2020; Kong et al., 2020; Yang et al., 2020). Predictive
biomarkers related to the tumor immune microenvironment are
expected to identify additional target molecules and to enhance
immunotherapy efficacy (Taube et al., 2018; Bianco et al., 2019;
Jiang et al., 2019; Liu et al., 2020; Zhao B. et al., 2020; Zwing et al.,
2020). Currently, PC still lacks prognostic biomarkers related to
the tumor immune microenvironment. Therefore, it is necessary
to explore important biomarkers in PAAD to guide appropriate
treatment options to improve the therapeutic efficacy of patients.

In our research, we investigated the messenger (m)RNA
expression and corresponding clinical information of PAAD
patients from public databases. Next, we constructed an IRGs-
based prognostic model in The Cancer Genome Atlas (TCGA)
cohort and validated it in the Gene Expression Omnibus (GEO)
dataset. The regulatory network structured by differentially
expressed transcription factors (DETFs) and prognosis-related
IRGs may provide a theoretical basis to reveal the potential
mechanisms at the molecular level. Finally, analyses of prognostic

“gene signatures” and infiltration of immune cells may provide
new ideas for the role of IRGs in predicting PAAD prognosis.

MATERIALS AND METHODS

Data Acquisition
The transcriptome sequencing data and corresponding clinical
data of 176 PAAD patients were extracted from TCGA (172
PAAD specimens and four normal tissue specimens). The RNA-
sequencing data of normal pancreatic tissue were acquired
from the Genotype-Tissue Expression (GTEx) Project1 as well
(Carithers et al., 2015). It contains the RNA-expression profile
of 167 normal pancreatic tissues. Meanwhile, RNA sequencing
fragments per kilobase of exon model per million reads mapped
(FPKM) data were also obtained for further analyses. For
validation cohort, gene expression matrix files and clinical
data of 125 patients with PAAD in the GSE71729 dataset
were downloaded from the GEO2. Match the gene symbols
corresponding to the probes according to the annotation file
provided by the manufacturer. If a single gene matches multiple
probes, the median ranking value accounts for the expression
value. We normalized gene expression value using the robust
multiarray average (RMA) algorithm, and the normalized data
were log2-transformed for further analyses. Publishing guidelines
provided by the GEO database were observed, Therefore, there
was no requirement for additional ethical approval. Furthermore,
a list of IRGs was acquired from the Immunology Database and
Analysis Portal (ImmPort) database that shares resources for
immunology-related research3 (Bhattacharya et al., 2014). Then, a
list of transcription factors (TFs) was obtained from the Cistrome
Project4, including 318 TFs (Mei et al., 2017).

Analyses of Differentially Expressed
Genes in PAAD
The “limma” R package5 (Ritchie et al., 2015) was used for
analyses of differential expression. Differential gene expression
was defined with adjusted-P < 0.01 and | log2 fold change|
> 2 as the cutoff criteria. Then, we extracted differentially
expressed immune-related genes (DEIRGs) and DETFs from all
DEGs based on the lists obtained from ImmPort and Cistrome
Cancer databases.

Analyses of DEIRGs in PAAD Using the
Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Databases
The functions and pathway enrichment of candidate DEIRGs
were analyzed using Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.86 (Dennis et al., 2003).

1www.gtexportal.org/
2https://www.ncbi.nlm.nih.gov/geo/
3www.immport.org/
4www.cistrome.org/
5www.bioconductor.org/packages/release/bioc/html/limma.html
6https://david.ncifcrf.gov/

Frontiers in Genetics | www.frontiersin.org 2 July 2021 | Volume 12 | Article 702102

http://www.gtexportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/
https://www.cistrome.org/
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://david.ncifcrf.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-702102 July 9, 2021 Time: 11:2 # 3

Mao et al. Prognostic Model for Pancreatic Adenocarcinoma

FIGURE 1 | Study flowchart.

To explore the underlying biological functions of DEIRGs, the
GO and KEGG databases were searched using the R packages
“GOplot7” (Walter et al., 2015) and “clusterProfiler8” (Kanehisa
et al., 2017), respectively. Moreover, the cutoff value for pathway
screening and significant functionality was placed at P < 0.05.
To explain the correlation between enriched pathways and
prognostic IRGs, an interaction network was constructed for
visual representations.

Transcription Factors-Mediated
Prognosis-Related IRGs Modulation
Network
A short duration of follow-up usually limits the accuracy of
survival analyses. Hence, we selected patients whose duration
of follow-up was ≥60 days. To investigate the prognosis-related
DEIRGs in PAAD patients, the “survival” R package9 was
applied to implement the univariate Cox regression analysis
(P < 0.01). To explore the interactions between DETFs
and prognosis-related DEIRGs, the correlation test function

7https://cran.r-project.org/web/packages/GOplot/citation.html
8www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
9https://cran.r-project.org/web/views/Survival.html

was employed (set thresholds: P < 0.001 and correlation
coefficient > 0.4).

Construction of the IRGs-Based
Prognostic Model for PAAD
An IRG prognostic model was developed based on the LASSO
Cox regression analysis. To minimize the risk of overfitting,
the Lasso method used 10-fold cross validation based on the
“glmnet” package10 in R (R Project for Statistical Computing,
Vienna, Austria) (Tibshirani, 1997; Simon et al., 2011). Then,
we used β coefficients of the LASSO Cox regression analysis to
establish the DEIRGs-based prognostic model for PAAD. We
used it to establish a formula to predict the risk score of each
patient. The receiver operating characteristic (ROC) curve was
used to judge the discrimination ability of various statistical
methods on the basis of the binary gold standard (Hanley and
McNeil, 1982). The ROC curve was created by the “survival
ROC” R package11 to evaluate the sensitivity of the model. Finally,
principal component analysis (PCA) was done based on the
“prcomp” function from the “stats” R library.

10https://cran.r-project.org/web/packages/glmnet/index.html
11https://cran.r-project.org/web/packages/survivalROC/index.html
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Correlation Between the
Immune-Related Signature and Clinical
Features in a Prognostic Model of PAAD
The relevance between clinical characteristics (age, gender,
histology grade, tumor stage, T staging, N staging, M staging,
residual tumor, and outcomes) and expression of eight prognosis
signatures in the prognostic model was analyzed using the
“beeswarm” R package.

Further Verification of a Prognostic IRG
Signature
To verify the prognostic value of the immune-related signature
risk score model, we used the GSE71729 dataset as the validation
cohort. Samples in the GSE71729 cohort were then divided
into high-risk and low-risk groups based on the optimal cut-off
point. Kaplan–Meier and ROC curve analysis of the eight-gene
signature were performed as mentioned above. In addition, the
Human Protein Atlas12 (Pontén et al., 2011) was used to extract
the protein expression of prognostic-related immune genes in
tumor samples and normal samples.

Analysis of Immunocyte Infiltration
The Tumor Immune Estimation Resource (TIMER) was
employed to analyze and visualize the abundance of tumor-
infiltrating immunocytes13 (Li et al., 2017). It detailed the
abundance of six subsets of tumor-infiltrating immunocytes: B
cells, CD8+T cells, CD4+T cells, macrophages, neutrophils, and
dendritic cells (DCs). The online “Immune Estimation” file was
retrieved, and the potential correlation between the prediction
model and tumor-infiltrating immunocytes was conducted in R.

Statistical Analysis
Statistical analysis was undertaken with R v3.6.3. Unless specified
otherwise, P < 0.05 was considered significant.

RESULTS

The flowchart of our study was displayed in Figure 1. The clinical
features of the 185 PAAD patients enrolled in the TCGA–PAAD
cohort were presented in Table 1.

Identification of DEIRGs and TFs in PAAD
A total of 343 tissues were analyzed [172 PAAD tissues
and 171 normal tissues (167 from the GTEx database)].
Compared with normal tissue specimens, 4,194 genes (expression
of 2,313 was upregulated and expression of 1,881 was
downregulated; Supplementary Table 1), 446 IRGs (expression
of 387 was upregulated and expression of 59 was downregulated;
Supplementary Table 2) and 36 TFs (expression of 29 was
upregulated and expression of seven was downregulated; Table 2)
were identified as differentially expressed in PAAD tissues (set
threshold: P < 0.01, fold change > 2). The results mentioned
above were shown as a heatmap and volcano map (Figure 2).

12www.proteinatlas.org/
13https://cistrome.shinyapps.io/timer/

Functional and Pathway Analyses Using
GO and KEGG Databases
We wished to elucidate the biological properties and pathways of
DEIRGs in PAAD patients. Hence, the GO and KEGG databases
were employed. Inevitably, the DEIRGs were enriched in several
immune-related molecular functions. The correlation between
the top-five most important GO terms and their related DEIRGs
was displayed (adjusted-P < 0.05; Figures 3A–C). Among
them, “GO: 0019814 immunoglobulin complex” was the most
prominent GO term. Figure 3D displays the top-20 significant
pathways. The “pathway-DEIRGs” network (Figure 3E) was used
for visualizing the reciprocity between the top-10 significant
pathways and DEIRGs. Supplementary Table 4 shows 57
significant pathways according to the KEGG database. Adjusted-
P < 0.05 was considered indicative of significance. Based on
visualized data mining, hsa04060 (“cytokine–cytokine receptor
interaction”), hsa04061 (“viral protein interaction with cytokine
and cytokine receptor”), and hsa04062 (“chemokine signaling
pathway”) were used more often to validate our findings using
the KEGG database.

TABLE 1 | Clinical features of patients with pancreatic adenocarcinoma (PAAD).

Clinical characteristics Patients (n = 185) Percentage (%)

Age (years)

≤65 96 51.9

>65 89 48.1

Sex

Female 83 44.9

Male 102 55.1

Grade

G1 32 17.3

G2 97 52.4

G3 51 27.6

G4 2 1.1

GX 3 1.6

Stage

I 21 11.4

II 152 82.2

III 4 2.2

IV 5 2.7

NA 3 1.6

Residual tumor

R0 111 60.0

R1 53 28.6

R2 5 2.7

NA 16 8.6

Outcome

CR1 70 37.8

PR2 9 4.9

SD3 9 4.9

PD4 57 30.8

NA 40 21.6

1CR, complete response; 2PR, partial response; 3SD, stable disease; 4PD,
progressive disease.
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TABLE 2 | Differentially expressed transcription factors (TFs).

TF Non-tumor (mean) Tumor (mean) Log FC1 P value FDR2

HOXB7 0.624741 7.039385 3.494119 7.91 × 10−55 2.71 × 10−53

LMNB1 1.356783 5.614074 2.048858 2.02 × 10−54 5.34 × 10−53

E2F1 0.47699 3.251045 2.768873 2.93 × 10−54 7.12 × 10−53

BATF 0.696809 10.0601 3.851738 3.84 × 10−54 8.76 × 10−53

FOXP3 0.154277 1.493511 3.275111 1.25 × 10−53 2.13 × 10−52

SMAD2 6.780617 1.690707 −2.00379 2.19 × 10−53 3.27 × 10−52

MEIS1 14.091 3.360955 −2.06783 2.96 × 10−53 4.07 × 10−52

BRF1 6.292508 1.1787 −2.41644 4.50 × 10−53 5.60 × 10−52

VDR 0.980843 6.460891 2.719638 4.74 × 10−53 5.80 × 10−52

SIX5 9.490325 2.016525 −2.23459 2.24 × 10−52 1.97 × 10−51

GTF2I 18.92405 3.002807 −2.65584 3.28 × 10−52 2.72 × 10−51

GATA3 0.180424 2.441417 3.758254 3.72 × 10−52 3.02 × 10−51

PRDM1 0.660779 3.259162 2.302262 3.62 × 10−51 2.26 × 10−50

EGR2 0.578491 5.060113 3.128803 7.21 × 10−51 4.26 × 10−50

EPO 2.29224 0.230069 −3.31662 8.16 × 10−50 4.07 × 10−49

FOSL1 0.866588 9.11024 3.394071 4.07 × 10−49 1.84 × 10−48

SPDEF 0.307047 9.991052 5.024106 4.98 × 10−49 2.23 × 10−48

CENPA 0.182789 1.443159 2.98098 1.09 × 10−48 4.68 × 10−48

LEF1 0.609301 3.669304 2.590279 1.50 × 10−48 6.35 × 10−48

MYB 0.105902 0.743503 2.811615 2.54 × 10−48 1.05 × 10−47

NCAPG 0.208888 1.467141 2.812209 2.88 × 10−48 1.19 × 10−47

KLF5 3.126404 28.38247 3.182424 1.52 × 10−47 5.88 × 10−47

FOXP2 1.660682 0.392566 −2.08077 2.35 × 10−47 8.93 × 10−47

PPARG 1.176273 6.645312 2.498113 2.19E-46 7.75 × 10−46

BHLHE40 14.81576 66.10077 2.157535 6.77 × 10−45 2.15 × 10−44

FOXM1 0.749049 3.172979 2.082705 9.94 × 10−45 3.13 × 10−44

TFAP2A 0.241558 1.740172 2.848786 2.09 × 10−42 5.82 × 10−42

FOXA1 0.314465 2.174509 2.789721 1.14 × 10−40 2.95 × 10−40

HOXC9 0.104638 1.134456 3.438516 2.26 × 10−39 5.55 × 10−39

E2F7 0.12603 0.548239 2.121042 1.47 × 10−33 3.02 × 10−33

IRF4 0.180677 0.839005 2.215269 1.41 × 10−32 2.81 × 10−32

TP63 0.0931 0.689169 2.88801 2.86 × 10−28 5.14 × 10−28

HOXC11 0.014602 0.74272 5.668628 2.76 × 10−25 4.67 × 10−25

SOX2 0.106565 0.65707 2.624311 1.33 × 10−22 2.13 × 10−22

HOXB13 0.016004 0.577841 5.174176 1.80 × 10−14 2.47 × 10−14

MYH11 3.82786 16.02631 2.065833 3.11 × 10−12 4.09 × 10−12

1 logFC, log fold change (tumor tissues vs. non-tumor tissues); 2FDR, false discovery rate.

Regulatory Network of TFs
Univariate Cox regression analysis revealed that 43 DEIRGs
were associated with overall survival (OS) (P < 0.01): 37
high-risk IRGs and six low-risk IRGs (Figure 4A). We
constructed a regulatory network based on 54 DEIRGs
and 36 DETFs (set threshold: P < 0.001; correlation
coefficient > 0.4). According to the cutoff criteria, 29
prognostic-related DEIRGs and 14 DETFs (Figure 4B)
participated in the establishment of the network. Finally,
the regulatory network was constructed and visualized using
Cytoscape software14. The TFs lamin B1 (LMNB1) and
lymphoid enhancer-binding factor 1 (LEF1) act as negative
regulators of IRG SHC adaptor protein 2 (SHC2) (Figure 4B).

14www.cytoscape.org/

Besides, the TF vitamin-D receptor (VDR) had a negative
relationship with IRG fibroblast growth factor 17 (FGF17)
and neuregulin 2 (NRG2). The specific regulatory relationship
between TFs and OS-related IRGs in PAAD was listed in
Supplementary Table 5.

Construction of an Eight-IRGs
Prognostic Model
Least absolute shrinkage and selection operator Cox regression
analysis was applied to build a prognostic model based on the
expression profile of the 43 prognostic DEIRGs mentioned above.
Finally, eight genes were selected to construct a prognostic model
based on the optimal value of λ (Supplementary Figure 1). The
specific formula for the calculation was:
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FIGURE 2 | Identification of differentially expressed genes (DEGs), immune-related genes (IRGs), and transcription factors (TFs) in Pancreatic adenocarcinoma
(PAAD) vs. normal tissues. (A) Volcano plot revealing clusters of DEGs with upregulated and downregulated expression. (B) The distinction between DEG expression
in tumor tissues and normal tissues revealed by a hierarchical clustering heatmap. (C) Volcano plot demonstrates clusters of differentially expressed immune-related
genes (DEIRGs) with upregulated and downregulated expression. (D) Heatmap showing the distinction between expression of DEIRGs in tumor tissues and normal
tissues. (E) Volcano plot showing clusters of differentially expressed transcription factors (DETFs) with upregulated and downregulated expression. (F) Discrimination
between DETFs expression in tumor tissues and normal tissues revealed by a heatmap.

Risk score = e

[(−0.1301) × expression of WFIKKN1
+ 0.0016 × expression of PLAU + 0.0004
× expression of OASL + (−0.2278)

× expression of FGF17 + (−0.3925)

× expression of NPPA + 0.0258
× expression of IL20RB + 0.0251
× expression of MET + (−0.0081)

× expression of SHC2]

Pancreatic adenocarcinoma patients were separated into a
high-risk group (n = 81) and a low-risk group (n = 81) based
on the median value of the risk score (Figure 5C). PCA was
undertaken to study the differences between low- and high-risk
populations using the expression profiles of all genes, IRGs, and
risk-related genes (Figure 6). We discovered that low- and high-
risk groups were distributed in different directions (Figure 6C).
Patients with high risk were more likely to die sooner than
those with a low risk (Figure 5D). The Kaplan–Meier curve
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FIGURE 3 | Functional-enrichment analyses of DEIRGs in PAAD. (A) The outer circle shows expression (log FC) of DEIRGs in each enriched Gene Ontology (GO)
term: red dots which are on each GO term indicate upregulation of DEIRGs. Blue dots indicate downregulated DEIRGs. The inner circle shows the prominence of
GO terms (log10-adjusted P-values). (B) The circle represents the relationship between the top-five most significant GO terms and their related DEIRGs. (C) The
top-five most significant GO terms and their annotations. (D) The top-20 pathways enriched in DEIRGs are shown in the bubble plot. (E) The top-10 pathways and
the corresponding DEIRGs. The blue rectangles represent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The red ellipses indicate upregulated
DEIRGs. The green ellipses indicate downregulated DEIRGs.

demonstrated that patients with high risk showed markedly
worse OS than those with low risk (P < 0.001; Figure 5A). The
area under the time-dependent ROC curves for 1-, 2-, and 3-
years OS reached 0.750, 0.697, and 0.707 respectively. Hence, the
predictive performance of the prognostic model exhibited good
sensitivity and specificity (Figure 5B). Also, the immune-based
prognostic model was relatively consistent. Figure 5E shows the
expression of eight IRGs in the form of a heatmap.

Independent Prognostic Value of the
Eight-Gene Signature
The independent predictive value of the prognostic signature
was assessed by univariate and multivariate Cox regression
analyses. Univariate Cox prognostic analyses demonstrated that
the risk score was correlated significantly with OS [hazard ratio
(HR) = 4.910, 95% confidence interval (CI) = 3.021–7.980,
P < 0.001] (Figure 7A). After the multivariate analysis, the risk
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FIGURE 4 | Overall survival (OS)-related DEIRGs and TFs-IRGs regulatory network. (A) The forest plot of OS-related DEIRGs in PAAD. Red and green dots indicate
high risk and low risk, respectively. (B) Regulatory network between prognosis-related DEIRGs and DETFs in PAAD. The red and green circles indicate high-risk and
low-risk DEIRGs, respectively. The blue triangles indicate DETFs. The red and green lines represent positive and negative correlation, respectively.

score remained an independent prognostic factor correlated with
OS (HR = 4.868, 95% CI = 2.899–8.175, P < 0.001; Figure 7B).
Moreover, univariate and multivariate independent prognostic
analyses (Figures 7A,B) showed that the residual tumor and
outcomes were also significant independent prognostic factors
for survival (P < 0.05; Table 3).

Eight-IRG Prognostic Model and Clinical
Characteristics
Relationships between eight IRGs in the risk-score model and
clinical features (age, gender, pathological TNM stage, histology
grade, residual tumor, and outcomes) were assessed via the
beeswarm packages in R (P < 0.05; Table 4). The cutoff
value was determined by the median of the expression of
the selected genes. As observed from Figure 8, the median
values in the age ≤ 65 group were higher than those in the
age > 65 group between mesenchymal epithelial transition
factor (MET) expression and riskscore (Figures 8A,B). The
median value of the SHC2 and interleukin 20 receptor subunit
beta (IL20RB) expression in pathological stage I-II was higher
than that in stage III-IV (Figures 8C,D). With regard to
histology grade, the median value of MET expression and
riskscore in grades 1 and 2 was lower than that in grade 3
and 4, and the trend was exactly the opposite for Fibroblast
Growth Factor (FGF)17 (Figures 8E–G). The median values in
T1–2 staging were lower than those in T3–4 staging among

2′–5′-oligoadenylate synthetase like (OASL) expression, MET
expression, and riskscore (Figures 8H–J). Moreover, the median
value of MET expression was lower in residual tumor R0
than that in R1 and 2 (Figure 8K). Additionally, the median
values of SHC2, plasminogen activator, urokinase (PLAU)
expression, MET expression, IL20RB expression, and riskscore
were notably different in PAAD at outcomes CR relative to those
at PR+ PD+ SD (P < 0.05, Figures 8L–P).

Immunocyte Infiltration
We wished to ascertain if the eight-IRG prognostic model
reflected the status of the PAAD immune microenvironment
precisely. Hence, correlation analysis was done to explore the
relationship between prognostic IRGs and infiltration of immune
cells (Figure 9). The number of DCs, neutrophils, and CD8+
T cells was positively correlated with the risk-score prediction
model (P < 0.05; Figures 9C,D,F) but the trend of CD4+ T cells
was opposite (Figure 9B).

External Verification of the Eight-IRG
Prognostic Model
Out of the eight prognostic IRGs in our model, the expression of
four IRGs was upregulated and that of the remaining four IRGs
was downregulated in the TCGA–PAAD cohort. In addition,
a GEO dataset (GSE71729) was used to externally verify the
difference in expression of eight IRGs between tumor tissues
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FIGURE 5 | Prognostic value of eight DEIRGs in PAAD patients. (A) Analyses of Kaplan–Meier curves for OS in PAAD patients using the signature of eight DEIRGs.
(B) Receiver operating characteristic (ROC) curve suggesting the feasibility of our prognostic model. (C) Patients in high-risk (red dots) and low-risk (green dots)
groups and the distribution of their corresponding risk score. (D) Patients in high-risk (red dots) and low-risk (green dots) groups, and their corresponding survival
status. (E) Discrimination of expression of eight prognosis-related IRGs between high-risk and low-risk groups as revealed by a heatmap.

and normal tissues. As expected, the expression of IL20RB, MET,
OASL, and PLAU in tumor tissues was significantly higher than
that in normal tissues. FGF17, natriuretic peptide A (NPPA),

SHC2, and WAP, follistatin/kazal, immunoglobulin, kunitz, and
netrin domain containing 1 (WFIKKN1) was not expressed
or at a minimal level in tumor tissues (Figure 10A). The
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FIGURE 6 | Principal component analysis between low-risk and high-risk groups based on different classification methods. (A) All genes, (B) Immune genes, and
(C) Risk genes.

protein distribution and expression of FGF17, MET, and SHC2
are displayed in Figures 11A–F, whereas the other five IRGs
remained inaccessible in the Human Protein Atlas. Verification
using the GEO database further confirmed that PAAD patients
in the low-risk group showed a significant OS benefit compared
with that in PAAD patients in the high-risk group. The Kaplan–
Meier estimator effectively distinguished different groups of
various risk (P < 0.01; Figure 10B). The predictive capacity
of the signature was confirmed by analyses of the ROC curve.
Our results showed that the prognostic signatures of the GEO
dataset also performed well in forecasting 1-, 2-, and 3-years
survival (Figure 10C).

DISCUSSION

Pancreatic cancer remains a lethal type of cancer due to its poor
prognosis and lack of efficacious therapeutic approaches. Precise
prediction of OS after contracting PAAD is very important for the
choice of therapeutic method and improving the prognosis.

Pancreatic cancer lacks reliable and effective prognostic
biomarkers related to the tumor immune microenvironment.
An effective prediction model to accurately assess the prognosis
of PAAD is long overdue. We intended to explore DEIRGs
and establish a model of PAAD based on IRGs to uncover
the biomarkers that predict the diagnosis and prognosis
of PAAD.

In our study, 446 DEIRGs of PC were identified by
comprehensive analyses. Analyses of pathway enrichment
revealed that these DEIRGs correlated with the inflammatory
response and typical tumor-related pathways shown in
Supplementary Table 4. Most of them were related to the
progression and treatment of PAAD. Cytokines and their
correlated pathways may play a relevant part in PAAD
progression and immune evasion (Padoan et al., 2019; Dey
et al., 2020). As a vital component of the signaling between
cancer cells and surrounding stromal cells, chemokine signaling
participates in the development of the supportive TME of
PAAD (Sleightholm et al., 2017). The Janus kinase family/signal
transducer and activator of transcription (JAK/STAT) signaling
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FIGURE 7 | Univariate and multivariate independent prognostic analysis in PAAD. (A,B) Forest plots of univariate and multivariate independent prognostic analysis.

pathway were central to tumor growth, tumor survival, and
systemic inflammation, particularly in PC (Quintás-Cardama
and Verstovsek, 2013; von Ahrens et al., 2017). In addition, two
studies (Hurwitz et al., 2015; Beatty et al., 2019) showed that
inhibitors of the JAK/STAT pathway may have clinical benefit.
A follow-up study of a general population indicated that the high
cytotoxic activity of natural killer (NK) cells is linked to a reduced
risk of cancer (Imai et al., 2000). Lee et al. (2020) stated that
the activity of NK cells decreased as cancer progressed, and that
decreased activity of NK cells was associated with poor clinical
outcomes. NF-κB is a pro-inflammatory signaling pathway in
pancreatitis and PAAD. Increased basal levels and/or inducible
levels of NF-κB activation are strongly linked to several aspects
of treatment resistance, as well as the proliferation and metastasis
of tumor cells in PAAD (Arlt et al., 2012; Kabacaoglu et al., 2019).
In addition, NF-κB-mediated chemokine signaling plays a crucial
part in the therapy resistance of PC (Geismann et al., 2019).
Signaling by T-helper (Th1) and Th2 cytokines is complex in
the microenvironment of pancreatic tumors (Andrianifahanana

et al., 2006). The presence of tumor-infiltrating lymphocytes
with high Th2:Th1 ratios demonstrates a poor prognosis in
PAAD (Seicean et al., 2009). He et al. (2011) revealed that
the accumulation of Th17 cells and their relevant cytokine
levels in PC tissues may manifest engagement in the invasion
and metastasis of PC, which may thereby have an impact on
the prognosis. We conducted a comprehensive investigation
of the biological functions of DEIRGs in PAAD populations
to provide a basis for elucidating their possible molecular
regulatory mechanisms.

More and more studies have found that abnormally expressed
TFs in tumor tissues were related to aggressive diseases and poor
prognosis. The research on new drugs that target specific TFs had
great potential in developing clinically relevant strategies for the
treatment of malignant tumors (Sankpal et al., 2012). To further
investigate the possible molecular regulatory mechanisms, a TFs-
mediated prognosis-related IRGs network was structured to find
the significant TFs regulating DEIRGs in this network. DETFs
such as basic helix-loop-helix family member E40 (BHLHE40),
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E2F transcription factor 1 (E2F1), early growth response 2
(EGR2), FOS like 1, AP-1 transcription factor subunit (FOSL1),
forkhead box M1 (FOXM1), kruppel like factor 5 (KLF5), LEF1,
LMNB1, peroxisome proliferator activated receptor gamma
(PPARG), PR/SET domain 1 (PRDM1), transcription factor
AP-2 alpha (TFAP2A), tumor protein P63 (TP63), and VDR
might regulate the DEIRGs in PAAD. BHLHE40 expression
was upregulated by transforming growth factor (TGF)-β,
and affected the morphology, migration, and invasion of
PC cells by changing the expression of factors related to
epithelial-to-mesenchymal (EMT) transition (Wu et al., 2012).
E2F1-mediated overexpression of long non-coding (lnc)RNA-
pancreatic cancer associated transcript 1 (PLACT1) promotes
the growth of PAAD by continuously activating the NF-κB
pathway and forming a positive feedback loop with IκBα in
PC (Ren et al., 2020). Vallejo et al. (2017) revealed FOSL1
to be an oncogene in KRAS-driven lung cancer and PC,
which partially factors through transcriptional regulation of
a subset of genes involved in the mitotic machinery. Zhou
et al. (2019) revealed an important epigenetic modification to
FOXM1, and increased expression of FOXM1 suppressed the
maturation of bone marrow−derived DCs via direct activation
of Wnt5a signaling pathway and weakened the promotion
of T−cell proliferation. He et al. (2018) demonstrated that
KLF5 depletion in oncogenic Kras-expressing mouse PC cells
reduced proliferation of tumor cells and PC progression.
TP63 is a member of the p53 family and is transcribed
from two promoters to produce two subtypes: TAp63 and
1Np63 (Gonfloni et al., 2015). TP63 reprograms enhancers to
drive squamous transdifferentiation in PC (Somerville et al.,
2020). Sherman and collaborators discovered that the VDR
is expressed in the stroma from PC cells and acts as a
“master” transcriptional regulator of pancreatic stellate cells,
thereby resulting in induced transcriptional reprogramming of
tumor stroma in PAAD.

We innovatively established a TFs-mediated prognosis-related
IRGs regulatory network in PAAD by bioinformatics analysis.
This network showed that TFs regulated IRGs positively and
negatively, which supplied a novel method to explore the
IRGs underlying regulatory mechanisms in PAAD at the
molecular level.

Eight IRGs involved in the prognostic model were considered
to be potential biomarkers in PAAD. Among the eight genes,

TABLE 3 | Univariate and multivariate independent prognostic analyses.

Variable Univariate analysis Multivariate analysis

HR (95%CI) p HR (95%CI) p

Age 1.033 (1.006–1.062) 0.017 1.038 (1.012–1.065) 0.005

Sex 1.022 (0.625–1.671) 0.930 1.008 (0.592–1.715) 0.978

Grade 1.395 (0.982–1.982) 0.063 0.908 (0.601–1.371) 0.647

Stage 1.511 (0.986–2.314) 0.058 1.252 (0.788–1.989) 0.341

Residual tumor 1.699 (1.098–2.630) 0.017 1.678 (1.047–2.690) 0.032

Outcomes 1.404 (1.172–1.682) <0.001 1.244 (1.030–1.503) 0.023

Risk score 4.910 (3.021–7.980) <0.001 4.868 (2.899–8.175) <0.001 TA
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FIGURE 8 | Relationships between the clinical-pathological characteristics and expression of DEIRGs in PAAD. (A) Differences in expression of DEIRGs between the
pathological TNM stages I and II/III and IV in PAAD. (B,C) Differences in expression of DEIRGs between the histology G1 and 2/G3 and 4 grades in PAAD. (D,E)
Differences in expression of DEIRGs between the T stages T1 and 2/T3 and 4 in PAAD. (F–K) Differences in expression of DEIRGs between the M stages
M0/M1/MX in PAAD. (L) Differences in expression of DEIRGs between the residual tumor R0/R1 and R2 in PAAD. (M–P) Differences in expression of DEIRGs
between the outcomes (CR/PR + PD + SD) in PAAD.

MET, OASL, SHC2, and PLAU have been well studied in
PAAD compared with other IRGs. Nan and coworkers found
that hepatocyte growth factor (HGF) promotes the invasion
and migration of PC cells by activating the HGF/c-Met
pathway (Nan et al., 2019). Besides, MET/HGF co-targeting
may represent a treatment option for patients with PC (Modica
et al., 2018). As a member of the OAS protein family, OASL

is associated with the innate immune defense against viral
infections. Glaß et al. (2020) identified OASL to be a candidate
oncogenic RNA-binding protein with partially validated target
potential in PC. Recently, PLAU has been reported to be
an oncogene that activates EMT progression in PAAD (Zhao
X. et al., 2020). SHC2 was a proverbial adaptor molecule
that binds to receptor tyrosine kinases via its SH2 domain.
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FIGURE 9 | Relationships between prognostic value and degree of infiltration of six types of immune cells. The relationship of the eight-IRG prognostic model with
(A) B cells, (B) CD4 T cells, (C) CD8 T cells, (D) dendritic cells, (E) macrophages, and (F) neutrophils is revealed by scatter diagrams.

Teodorczyk and coworkers reported that CD95L could induce
SCK recruitment and activation of the phosphoinositide 3-
kinase/extracellular signal-regulated kinase (PI3K/ERK) pathway
by stimulating CD95 receptors and, ultimately, lead to PC
cell-cycle progression (Teodorczyk et al., 2015). One review
stated that high expression of IL20RB was related to poor
survival, thereby suggesting its oncogenic potential in PAAD
(Haider et al., 2014). FGF17 was a member of the FGF8
subfamily, which promotes the development and progression of
hepatocellular carcinoma (Gauglhofer et al., 2011). In addition,
FGF17 was overexpressed in human prostate cancer, and

involved in the progression of prostate cancer to high−grade
disease (Heer et al., 2004). Both studies have reported that
FGF17 may be a novel tumor-promoting gene whose expression
is upregulated in neoplasms, data which contradicted our
findings. The exact role of FGF17 in PAAD is not known.
Few related studies have reported NPPA or WFIKKN1 being
involved in PAAD.

Our TFs-IRGs-mediated network contained five of the eight
modeling genes: PLAU, OASL, FGF17, MET, and SHC2. Their
interactions with tumor-associated TFs can provide a certain
theoretical direction/basis for mechanistic studies. Therefore,
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FIGURE 10 | Validation of the eight-gene signature in the Gene Expression Omnibus (GEO) database. (A) Expression of eight IRGs in tumor tissues and normal
tissues in the GSE71729 database. (B) Kaplan–Meier curves for low- and high-risk groups in the GSE71729 database (P < 0.01). (C) ROC curve for predicting
survival from PAAD based on the risk score of the GSE71729 database. *p < 0.05; **p < 0.01; ***p < 0.001.

further study of the potential regulatory mechanisms of these
prognostic immune genes in PAAD is needed.

To clarify the immune microenvironment in PAAD, a
correlation analysis on immunocytes was done based on the
TIMER database. Results indicated that lower infiltration of DCs,
CD8+ T cells, and neutrophils may be observed in low-risk
patients, whereas the tendency of CD4+ T cells was the opposite.
DCs, neutrophils, and CD8+ T cells exhibited a significantly
positive regulatory relationship with the prognostic model.
Thus, our model may act as a predictive factor for increased
infiltration of immune cells. One study reported that higher
numbers of CD4+ T lymphocytes were significantly associated
with longer survival, which echoed our findings (Ino et al.,
2013). A recent study showed that intratumoral infiltration by
CD8+ T lymphocytes and neutrophils and a favorable prognosis
in PAAD patients were tightly linked (Miksch et al., 2019),
which is the reverse of our results. Thus, our results must be
validated by further investigations. Whether the infiltration level

of DCs in tumors indicates the clinical prognosis of PAAD
patients has not been reported. Studies on other tumors have
yielded inconsistent or even conflicting results that doubt the
value of infiltrating DCs (Karthaus et al., 2012). The exact role
of immunocytes in PAAD has not been clarified. Considering
the different levels of immunocyte infiltration between high-
risk and low-risk PAAD groups, suitable immunotherapy
strategies can be selected based on the basis of the immune
microenvironment in PAAD.

So far, several studies have proposed that prognostic gene
signatures based on mRNA levels can predict the OS of PC
prognosis. For instance, Birnbaum et al. (2017) built a 25-
gene classifier that helped select patients with resectable disease
for immediate surgery or neoadjuvant chemotherapy. Another
study established a four-gene signature for prediction of OS
from PC based on gene-expression data from the GEO database
[1-, 2-, and 3-years survival area under the curve (AUC)
reached 0.715, 0.654, and 0.715, respectively] (Yan et al., 2019).
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FIGURE 11 | Representative immunohistochemistry images for expression of FGF17, MET, and SHC2 in pancreatic cancer tissues and normal tissues were shown
with the fraction of samples with antibody staining/protein expression level high, medium, low, or not detected. (A–B) Expression of FGF17 in PAAD tissues were
lower than that in normal tissues. (C–D) Expression of MET in PAAD tissues were higher than that in normal tissues. (E–F) Expression of SHC2 in PAAD tissues were
obviously lower than that in normal tissues.

A recent study investigated the survival-associated genes from
the integrated analysis of multiple datasets, and established
prognostic signatures in PAAD (1-, 2-, and 3-years survival
AUC reached 0.699, 0.637, and 0.621, respectively; Wu et al.,
2019). At present, there are few studies on the relationship
between IRGs and the prognosis of PAAD. The latest research
developed an immune prognostic model to identify low-risk
patients who may benefit from immunotherapy (Gu et al.,
2021). However, this predictive model still lacks an external
cohort to verify the effectiveness of the model. We used a
specialized immune database to explore the relationship between
many IRGs and the prognosis of PAAD patients. Subsequently,
we established a new immune-related prognostic signature.
No overlap was found between the eight-gene signatures
we developed and the one defined previously. Besides, the
riskscore had a robust predictive performance with 1-, 2-,
and 3-years survival AUC reached 0.750, 0.697, and 0.704,
respectively. The predictive performance of our prognostic
model was superior or comparable with that reported in other
studies, and this model prediction is verified in an external
validation cohort. These results suggest that an immune-related

prognostic signature may be a valid marker for the prediction of
the PC prognosis.

Nevertheless, our study still has perceived limitations. Firstly,
we only used data from sections of public databases to build
and validate our prediction model. Therefore, one must conduct
more prospective studies to verify its clinical applicability.
Secondly, we excluded many prominent prognostic genes in
PAAD, so the potential weakness inherent in constructing a
prognostic model with a single hallmark is inevitable. Moreover,
the protein expression of IRGs related to the prognosis, and
their potential molecular mechanisms in the pathogenesis
and development of PAAD, must be confirmed by additional
experimental studies.

CONCLUSION

We defined a novel eight-IRG model as an independent
prognostic predictor for PAAD. The prognostic value of this
model was verified by an external validation database. Moreover,
the correlation between the eight-IRG prognostic model and
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infiltrated immunocytes could demonstrate its pivotal role in the
PAAD immune microenvironment, which could be utilized as a
new prognostic and therapeutic biomarker in PAAD patients.
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