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SUMMARY
Supplementation withmembers of the early-lifemicrobiota as ‘‘probiotics’’ is increasingly used in attempts to
beneficially manipulate the preterm infant gut microbiota. We performed a large observational longitudinal
study comprising two preterm groups: 101 infants orally supplemented with Bifidobacterium and Lactoba-
cillus (Bif/Lacto) and 133 infants non-supplemented (control) matched by age, sex, and delivery method.
16S rRNA gene profiling on fecal samples (n = 592) showed a predominance of Bifidobacterium and a lower
abundance of pathobionts in the Bif/Lacto group. Metabolomic analysis showed higher fecal acetate and
lactate and a lower fecal pH in the Bif/Lacto group compared to the control group. Fecal acetate positively
correlated with relative abundance of Bifidobacterium, consistent with the ability of the supplemented Bifi-
dobacterium strain to metabolize human milk oligosaccharides into acetate. This study demonstrates that
microbiota supplementation is associated with a Bifidobacterium-dominated preterm microbiota and
gastrointestinal environment more closely resembling that of full-term infants.
INTRODUCTION

Infants born <37 weeks gestation are defined as preterm and ac-

count for 1 in 9 births globally.1 Compared to full-term infants,

preterm infants are more often born via Caesarean section,

have an underdeveloped immune system, receive numerous

courses of antibiotics, and reside in neonatal intensive care units

(NICUs), all of which disrupt the establishment of the early-life

gut microbiota.2-4 This altered gut microbial ecosystem has

been linked to an increased risk of serious morbidity during the

NICU stay, including necrotizing enterocolitis (NEC),5 late-onset

sepsis (LOS),6 and later-life health problems such as asthma and

eczema.7,8

Abnormal patterns of bacterial colonization are common in the

preterm infant gut, which is dominated by genera containing

potentially pathogenic bacteria (i.e., pathobionts) such as Staph-

ylococcus, Klebsiella, Escherichia, and Clostridium.2,9 These in-
Cell Rep
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fants are also characterized by a low abundance or absence of

the beneficial genera Bifidobacterium, which is dominant in the

full-term infant gut.10,11 Thus, interventions to ‘‘normalize’’ the

preterm gut microbiota are an attractive proposition to improve

health and prevent disease in preterm infants.

Oral administration of commensal infant bacteria via probi-

otic12 supplementation is one approach to encourage gut colo-

nization by beneficial members of the early life microbiota.

Systematic review and meta-analysis of randomized controlled

trials and observational studies have reported that probiotic sup-

plementation reduces NEC, sepsis, and all-cause mortality in

preterm infants.13,14 However, one of the largest trials carried

out in the UK found no evidence of benefit.15 Despite the positive

outcome obtained in previous systematic reviews and meta-an-

alyses, a 2018 survey of all 58 UK tertiary-level NICUs found only

10 NICUs (17%) were routinely using probiotics.16 While clinical

studies have demonstrated the potential of probiotics to reduce
orts Medicine 1, 100077, August 25, 2020 ª 2020 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:lindsay.hall@quadram.ac.uk
https://doi.org/10.1016/j.xcrm.2020.100077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2020.100077&domain=pdf
http://creativecommons.org/licenses/by/4.0/


10-29 days
D E

0-9 days

A

Bifidobacterium (%)

Genus

In
fa

nt
 s

am
pl

es

C
or
yn
eb
ac
te
riu
m

E
nt
er
ob
ac
te
r

K
le
bs
ie
lla

B
ac
te
ro
id
es

E
sc
he
ric
hi
a

B
ifi
do
ba
ct
er
iu
m

La
ct
ob
ac
ill
us

S
tre
pt
oc
oc
cu
s

E
nt
er
oc
oc
cu
s

S
ta
ph
yl
oc
oc
cu
s 0 50 100

Relative
abundance (%)

0

20

40

60

80

100

Group

Control
Bif/Lacto

Genus

In
fa

nt
 s

am
pl

es

B
ac
te
ro
id
es

C
lo
st
rid
iu
m

C
ut
ib
ac
te
riu
m

K
le
bs
ie
lla

La
ct
ob
ac
ill
us

S
tre
pt
oc
oc
cu
s

E
sc
he
ric
hi
a

B
ifi
do
ba
ct
er
iu
m

E
nt
er
oc
oc
cu
s

S
ta
ph
yl
oc
oc
cu
s 0 50 100

Relative
abundance (%)

0

20

40

60

80

100

Group

Control
Bif/Lacto

Bifidobacterium

Escherichia

Klebsiella

Staphylococcus

−1

0

1

−2 −1 0 1 2
NMDS1

N
M

D
S2

Control

Bif/Lacto

Bifidobacterium

Cutibacterium

Enterococcus

Escherichia

Klebsiella

Staphylococcus

−1

0

1

−1 0 1
NMDS1

N
M

D
S2

Control

Bif/Lacto

B 0-9 days C 10-29 days

Bif/Lacto group infants (n = 101)

Control group infants (n = 133)

0-9 days 10-29 days 30-49 days 50-99 daysFaecal sample collection from birth:

Twice daily Bif/Lacto
supplementation
starts with first feed.

Sample collection finished
when infants left the neonatal
intensive care unit.

Study outline:

Bifidobacterium (%)

(legend on next page)

2 Cell Reports Medicine 1, 100077, August 25, 2020

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
NEC incidence, there are few that have also performed accom-

panying longitudinal microbiota profiling (often with relatively

low numbers of infants17-19) to determine the impact of supple-

mentation on gut microbiota composition, and little or none

that have examined the corresponding metabolome of preterm

infants20 nor included whole-genome sequencing of probiotic

bacteria isolated from the supplement used or from the recipient

infants.

A recent clinical audit at the Norfolk and Norwich University

Hospital NICU found rates of NEC fell from 7.5% to 3.1%, and

rates of LOS fell from 22.6% to 11.5% when comparing the 5

years before and 5 years after the initiation of routine probiotic

use with a combined Bifidobacterium and Lactobacillus supple-

ment.21 Building on these important clinical observations, we

aimed to explore the gut microbiota composition and fecal me-

tabolome in these preterm infants receiving routine probiotic

supplementation compared to preterm infants from NICUs not

using probiotic supplementation.

Thus, we carried out an observational study comparing longi-

tudinal samples from two cohorts of preterm infants; 101 orally

supplemented with a combination ofBifidobacterium and Lacto-

bacillus (Infloran, given twice daily with the first enteral feed) at

the Norfolk and Norwich University Hospital NICU and 133

non-supplemented infants from NICUs not using probiotic sup-

plementation. Cohorts were approximately matched by gesta-

tional age, sex, delivery method, and sample collection time

across the four tertiary-level NICUs. 16S rRNA gene profiling

was used to determine the fecal bacterial composition (n =

592), and paired 1H nuclear magnetic resonance (NMR) spec-

troscopy was used to measure the metabolic content of the

fecal samples; this included metabolites of microbial, host, and

maternal origin (n = 157). To further evaluate the supplemented

strains, we performed whole-genome sequencing to compare

supplemented strains to isolates obtained from preterm infants,

alongside in vitro studies to define factors that may impact sup-

plemented strains and their persistence within the preterm

microbiota.

RESULTS

Study Design
Fecal samples were collected from NICU-resident preterm in-

fants receiving a daily oral supplementation containing Bifido-

bacterium bifidum and Lactobacillus acidophilus (Bif/Lacto

group), and from a group of similarly aged preterm infants (con-

trol group) from three other NICUs that did not offer supplemen-
Figure 1. Premature Infant Gut Microbiota Clustering and Genus Com

NMDS (non-metric multidimensional scaling) analysis clustered with a Bray-Curt

genera driving the separation of points on the NMDS plots. Heatmaps showin

clustered by total microbiota similarity using Bray-Curtis dissimilarity and the col

the proportional abundance of Bifidobacterium in each sample.

(A) Study outline and sample collections times. Infloran supplementation was giv

received it until discharge. The control group was not given supplementation.

(B) NMDS plot of infant fecal microbiota at 0–9 days (control: n = 110, Bif/Lacto:

(C) NMDS plot of infant fecal microbiota at 10–29 days (control: n = 109, Bif/Lac

(D) Heatmap showing infant fecal microbiota at 0–9 days (control: n = 110, Bif/La

(E) Heatmap showing infant fecal microbiota at 10–29 days (control: n = 109, Bif

See also Figure S1, Data S1–S3, and Tables S1 and S3.
tation. Although there are caveats associated with this observa-

tional study design, it did avoid potential cross-contamination

among study groups, which has been reported previously in

other probiotic studies where study groups reside within the

same NICU.15,22-24 Samples were collected corresponding to

four time points at 0–9, 10–29, 30–49, and 50–99 days of age

from birth (Figure 1A).

Supplementation with Early Life Microbiota Members
Influences Preterm Gut Microbiota Composition
The preterm gut is typically dominated by pathobionts such as

Enterobacter, Escherichia, and Klebsiella. We sought to deter-

mine whether preterm infants supplemented with Bifidobacte-

rium and Lactobacillus, bacterial species associated with a

healthy term infant gut, showed a modified preterm microbiota

profile. Fecal bacterial composition was determined by 16S

rRNA gene sequencing. Genus level clustering of samples using

non-metric multidimensional scaling (NMDS) indicated clear

variation in the microbiota profiles between Bif/Lacto supple-

mented infants and controls (Figures 1B and 1C; Figures S1A

and S1B). The microbiota composition of Bif/Lacto and control

samples differed significantly at each of the four time points

(PERMANOVA 0–9 days: p < 0.01, R2 = 8.2%; 10–29 days: p <

0.01, R2 = 12%; 30–49 days: p < 0.01, R2 = 15%; 50–99 days:

p < 0.01, R2 = 12%). The clustering of the Bif/Lacto group was

driven by the genus Bifidobacterium, while the genera driving

the clustering of the control group included Staphylococcus,

Escherichia, and Klebsiella (Figures 1B and 1C; Figures S1A

and S1B). Given that microbial succession patterns differ be-

tween extremely and moderately premature infants, we divided

the dataset into infants born under or over 28 weeks gestational

age. Visualized as NMDS plots, these show similar separation

patterns between Bif/Lacto and control groups driven by Bifido-

bacterium at 0–9 and 10–29 days regardless of gestational age

with some greater complexity visible at 10–29 days of age (Fig-

ures S3A–S3D). To test for the effects of method used to

normalize the 16S sequence data, we also normalized to ac-

count for differences in sampling depth between samples using

centered-log ratio transformations and variance stabilization

transformation. NMDS plots of at 0–9 and 10–29 days of age us-

ing centered-log ratio transformed data (Data S2A and S2B) and

at 0–9 and 10–29 days of age using variance stabilization trans-

formed (Data S2C and S2D) show similar results to using rarefied

data (Figures 1B and 1C). Relative abundance ofBifidobacterium

also showed similar differences between groups regardless of

normalization method (Data S2E and S2F).
position

is dissimilarity. Arrows and genus labels on the NMDS plots indicate bacterial

g the ten genera with highest proportional abundance. Heatmap rows were

umns clustered by genera that occur more often together. Side bar plots show

en until 34 weeks old, except for very low-birth-weight infants (<1,500 g) who

n = 64).

to: n = 100).

cto: n = 64).

/Lacto: n = 100).
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Notably, while hospital NICUs may differ in their ‘‘environ-

mental’’ microbiota in ways that may influence infant coloniza-

tion, NMDS indicated no differences in the microbiota composi-

tion between infant samples from the three control hospital

NICUs involved (Data S3A–S3D; Table S10). A PERMANOVA

multivariate analysis including the infants from all four NICUs

showed no significant influence of NICUs at 0–9 and 10–

29 days after taking account of the Bif/Lacto and control study

groups (Table S10). PERMANOVA multivariate analysis followed

by multilevel pairwise comparison showed that the differences

between NICUs was due to differences between the Bif/Lacto

NICU (Norfolk and Norwich) and the three control NICUs, not be-

tween the three control NICUs (Table S11).

We also examined the ten most abundant genera by relative

abundance at each time point clustered using Bray-Curtis

dissimilarity (Figures 1D and 1E; Figures S1C and S1D), showing

infant samples clustered into six main groups based on a single

dominant bacterial genus; Bifidobacterium, Escherichia, Entero-

coccus, Klebsiella, Staphylococcus, or Streptococcus. These

data indicate that the introduction of Bifidobacterium promotes

changes in the composition of the preterm gut microbiota.

Oral Bif/Lacto Supplementation Influences Bacterial
Genus Abundance and Bacterial Diversity
We sought to further define the genus composition based on

relative abundance and diversity measures underlying these

changes in microbiota composition. Bifidobacterium dominated

the microbiota of the Bif/Lacto group with high relative abun-

dance at all time points compared to the control group (Figures

2A–2C). This indicated that the supplemented strain may persist

in the pretermmicrobiota and/or encourage colonization of other

Bifidobacterium spp. Surprisingly, Lactobacillus was only de-

tected in a minority of infants but with a higher relative abun-

dance in Bif/Lacto infants compared to the control group at all

time points (Figure 2D), which may indicate a more transient

and limited persistence for this strain. The relative abundance

of bacteria such as Klebsiella, Escherichia, and Enterobacter

was lower in Bif/Lacto infants compared to control infants at

earlier time points 0–9 and 10–29 days of age (Figures 2E–2G),

with Klebsiella still lower at 30–99 days of age (Figure 2E). Clos-

tridium was also lower at 30–49 and 50–99 days of age in Bif/

Lacto infants (Figure 2I). Staphylococcus was initially abundant

in both groups but rapidly decreased as the infants aged (Fig-

ure 2A and 2B; Figure S5F).25 The skin-associated commensal

Cutibacterium was also found in higher relative abundance in

control infants at 0–9 and 10–29 days of age (Figure 2H).
Figure 2. Genus Abundance between Bif/Lacto and Control Groups

(A) Bubble plots show the mean group abundance of the common bacterial gen

(C) Relative abundance of Bifidobacterium.

(D) Relative abundance of Lactobacillus.

(E) Relative abundance of Klebsiella,

(F) Relative abundance of Escherichia.

(G) Relative abundance of Enterobacter

(H) Relative abundance of Cutibacterium

(I) Relative abundance of Clostridium.

For all plots: 0–9 days (control: n = 110, Bif/Lacto: n = 64); 10–29 days (control: n

99 days (control: n = 33, Bif/Lacto: n = 41). Boxplots show group median and

highlight individual infant samples. Asterisks represent p values: *p < 0.05, **p <
Comparing the prevalence between groups showed that the per-

centage of infants with detectable Bifidobacterium and Lactoba-

cillus were higher while Klebsiella, Escherichia, Enterococcus,

and Clostridium were lower in the Bif/Lacto group compared to

control infants (Data S6A–S6F). This was particularly notable

for Lactobacillus, which was highly prevalent in Bif/Lacto infants

despite only a few infants having a large relative abundance of

Lactobacillus. These data suggest that the oral supplementation

impacts the microbial ecosystem patterns, displacing other

potentially pathogenic bacteria more typical of the preterm gut.

Species level analysis of the 16S rRNA gene data revealed a

relative abundance of Bifidobacterium bifidum (Figure 4A) and

Lactobacillus acidophilus (Figure S4D) in the Bif/Lacto group.

This was validated by performing bacterial isolation and whole-

genome sequencing (see below and Figure 4B). The genus

Staphylococcusmatched to S. epidermidis and S. haemolyticus,

bacterial residents on the skin, indicating that these originate

from initial colonization of skin-associated bacteria (Figures

S5G and S5H).

When examining diversity measures (Shannon and Inverse

Simpson diversity), values were initially higher at 0–9 days in

Bif/Lacto compared to control infants (Figures S2B and S2C),

although the abundance of Bifidobacterium was not correlated

with the number of bacterial genera detected (Figure S2D). At

later time points (30–99 days of age; Figures S2B and S2C),

the diversity values of the Bif/Lacto were lower than the control

group, which may correlate with the increasing Bifidobacterium

abundance (Figures S2E, S2F, S2H, and S2I). These data indi-

cate (relative abundance) dominance of Bifidobacterium within

the preterm microbiota results in a microbiota with low diversity.

External Factors Including Gestational Age, Birth
Weight, and Antibiotics Negatively Affect
Bifidobacterium Abundance in Bif/Lacto Infants
Previous studies have indicated that factors, such as gestational

age and antibiotics,26 significantly influence the developing early

life gut microbiota, with preterm infants representing an infant

cohort highly vulnerable to multiple microbiome-modulating fac-

tors. Comparing overall genus composition using PERMANOVA

multivariate analysis (using a Bray-Curtis matrix; Table S10) indi-

cated that oral supplementation was the most significant vari-

able explaining variance in the infant microbiota at each time

point. Delivery method contributed a small proportion of vari-

ance at 0–9 days. Birth weight significantly contributed to vari-

ance in microbiota composition at 0–9, 10–29, and 30–49 days

of age (Table S10).
era at each time point in the control group and the Bif/Lacto group.

= 109, Bif/Lacto: n = 100); 30–49 days (control: n = 57, Bif/Lacto: n = 48); 50–

interquartile range, diamonds indicate the group mean, and individual points

0.01 ***p < 0.001. See also Figure S2 and Data S4–S6.
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Figure 3. Effects of Birth Weight, Antibiotic Use, Delivery Mode, and Bifidobacterium Colonization in Bif/Lacto Group Infants

(A) Bifidobacterium abundance between very low birth weight (<1,000 g) and low birth weight (>1,000 g) in Bif/Lacto infants (N = 0–9: <1,000 = 20,R1,000 = 44;

10–29: <1,000 = 43, R1,000 = 57; 30–49: <1,000 = 27, R1,000 = 21; 50–99: <1,000 = 26, R1,000 = 15).

(B) Bifidobacterium abundance between very low gestational age (<28 weeks) and low gestational age (R28 weeks) Bif/Lacto infants (N = 0–9: <1,000 = 18,

R1,000 = 46; 10–29: <1,000 = 43, R1,000 = 57; 30–49: <1,000 = 29, R1,000 = 19; 50–99: <1,000 = 23, R1,000 = 18).

(C) Infant birth weight in grams correlated with gestational age in weeks (n = 100).

(legend continued on next page)
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Focusing on Bifidobacterium as the dominant bacteria in the

Bif/Lacto group, we noted that infants with a birth weight

R1,000 g showed higher relative abundance of Bifidobacterium

at 0–29 days (Figure 3A; Figure S3A). This was also the case at

10–29 days of age in Bif/Lacto infants born at a gestational age

R28 weeks (Figure 3B), indicating that the underdeveloped pre-

term gut may not represent an optimal niche for Bifidobacterium

persistence. Birth weight and gestational agewere closely corre-

lated (Figure 3C) and correlated inversely with length of NICU

stay (Figures S3E and S3F) as smaller infants remained in

NICU for a longer time. Higher Bifidobacterium proportions in

control infants with birth weights R1,000 g compared to those

of <1,000 g supports this hypothesis (Figure S3A). There was

no difference in length of stay in NICU between Bif/Lacto and

control infants (Table S1; Data S4E).

Preterm infants receive numerous antibiotics over the course

of their NICU stay. Within the Bif/Lacto infants Bifidobacterium

abundance was lower in infants currently being treated with an-

tibiotics at all time points compared to those not receiving anti-

biotics, indicating antibiotic susceptibility of this genus (Fig-

ure 3D). In contrast, the relative abundance of Staphylococcus,

Klebsiella, and Escherichia was unchanged in infants receiving

antibiotics, suggesting these were resistant to antibiotic treat-

ment (Figures S3I–S3K).

EmergencyCaesarean sections formaternal or fetal indications

account for a largenumberof pretermbirths, andprevious studies

have indicated that Caesarean-section delivery can directly inter-

rupt the transfer ofmaternalmicrobes (e.g.,Bifidobacterium) to in-

fants.10,27 We observed no significant difference in the relative

abundance of Bifidobacterium within the Bif/Lacto group in in-

fants born by vaginal or cesarean birth (Figure 3E). Gestational

age, current antibiotic treatment, and delivery method did not

significantly alter Bifidobacterium proportions in control infants;

however, the low abundance of this bacteria in this cohort make

robust statistical analysis difficult (Figures S3B–S3D).

In Bif/Lacto infants, supplementation ceased when infants

reached a post-conceptual age of 34 weeks. However, no

reduction was observed in the relative abundance of Bifidobac-

terium in samples collected from these infants after oral supple-

mentation had ceased (Figure 3F), with proportions maintained

for up to 60 days (Figures 3G–3I). Bifidobacterium species and

strain level analysis using bacterial isolation and whole-genome

sequencing is examined in more detail in the following section to

assess the potential persistence of the supplemented strain in

these infants.

Diet is proposed to be one of the major factors modulating

the early life microbiota, with significant differences between
(D)Bifidobacterium abundance in Bif/Lacto infants receiving antibiotics at the time

49: Yes = 3, No = 44; 50–99: Yes = 3, No = 37).

(E)Bifidobacterium abundance in Bif/Lacto infants delivered by caesarean or vagin

99: C = 18, V = 23).

(F)Bifidobacterium abundance in Bif/Lacto infants still receiving or no longer receiv

22, No = 23; 50–99: Yes = 8, No = 30).

(G) Bifidobacterium abundance in Bif/Lacto infants by days after ceasing supple

(H) Bifidobacterium abundance in Bif/Lacto infants by days after ceasing supple

(I) Bifidobacterium abundance in Bif/Lacto infants by days after ceasing supplem

Boxplots show group median and interquartile range, diamonds indicate the gr

represent p values: *p < 0.05, **p < 0.01 ***p < 0.001. See also Figure S3 and Da
formula and breast-fed infants.28 Unusually, almost all infants

recruited to this study were fed either their own mothers’ breast

milk (BM), their mothers’ BM and donor BM (DBM) in combina-

tion, or BM supplemented with preterm cows’ milk-based for-

mula. However, there were group differences in the prevalence

of exclusive feeding of mother’s BM and duration of antibiotic

treatment between the Bif/Lacto and control groups of infants

(Table S1). Seventy percent of the Bif/Lacto group infants

received an exclusive BM-based diet (70%), while the majority

of infants in the control group received a mixed BM and DBM

(BM+DBM) diet (51%) or an exclusively BM diet (27%) (Table

S1). These differences may act as a confounder between the

study cohorts, with the pasteurization process of DBM impact-

ing the milk microbiome.29 However, in this study use of DBM

was always given to supplement shortfalls in mothers’ own BM,

with the infant still receiving BM. Indeed, we observed no differ-

ences in the overall microbiota composition in either Bif/Lacto

infants or control infants between those fed mothers’ BM

compared to those fed a combination of mothers’ BM and

DBM (Data S4A–S4D). PERMANOVA multivariate analysis indi-

cated that type of infant diet fed at time of sample collection did

not contribute to the differences in overall microbiota composi-

tion between Bif/Lacto and control groups (Table S10). To

further investigate the potential confounding effect of diet,

a sensitivity analysis restricted to infants only receiving

mother’s BM at the time of sample collection showed similar

differences in relative abundance of Bifidobacterium, Lactoba-

cillus, Klebsiella, Escherichia, Enterococcus, and Clostridium

between Bif/Lacto and control infants as seen in all infants

(Data S5G–S5L). Additionally, PERMANOVA indicated no

consistent effects of diet on the relative abundance of Bifido-

bacterium, and none of the relative abundance of potential

pathobionts Klebsiella and Escherichia between Bif/Lacto and

control group infants (Table S12). Regarding exclusively for-

mula-fed infants, only a very small number of infants were re-

cruited in this study (i.e., 7 out of 234), which may explain our

findings that the relative abundance of Bifidobacterium was

not consistently affected by diet (Table S12). There were no dif-

ferences between infants fed mother’s BM or mixed mother’s

BM and DBM.

Investigating the potential confounding effects of duration of

antibiotic treatment using PERMANOVA multivariate analysis

showed that antibiotic treatment duration did not contribute to

the differences in overall microbiota composition between Bif/

Lacto and control groups (Table S10). A sensitivity analysis

restricted only to infants receiving short duration antibiotic treat-

ment showed similar differences in relative abundance of
of sample collection (N = 0–9: Yes = 33, No = 31; 10–29: Yes = 23, No = 77; 30–

al birth (N = 0–9: C = 39, V = 25; 10–29: C = 46, V = 54; 30–49: C = 17, V = 31; 50–

ing supplementation (N = 0–9: Yes = 63; 10–29: Yes = 77, No = 20; 30–49: Yes =

mentation at 10–29 days of age (n = 97).

mentation at 30–49 days of age (n = 45).

entation at 50–99 days of age (n = 38).

oup mean, and individual points highlight individual infant samples. Asterisks

ta S7.
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Bifidobacterium, Lactobacillus, Klebsiella, Escherichia, Entero-

coccus, and Clostridium between Bif/Lacto and control infants

as seen in all infants (Data S5A–S5F). Additionally, testing the ef-

fects of group, diet, and antibiotic duration on the relative abun-

dance of either Bifidobacterium, Klebsiella, or Escherichia using

PERMANOVA (Table S12) indicated a small influence on Bifido-

bacterium abundance due to antibiotic duration at 10–29, 30–49,

and 50–99 days of age, while Klebsiella and Escherichia abun-

dance was unaffected by antibiotic duration.

Bif/Lacto Infants Show Persistence of the
Bifidobacterium bifidum Infloran Strain, Which
Correlated with Human Breast Milk Metabolism and
Routine Supplementation
Our data so far indicated a dominance of Bifidobacterium in the

Bif/Lacto cohort and lower relative abundance of Lactobacillus in

the preterm gut. To probe this with greater resolution, we

compared the abundance of species present within these two

genera. B. bifidum was highly abundant in Bif/Lacto infants,

while only being abundant in 2/133 control infants (Figure 4A).Bi-

fidobacterium breve was also more abundant in the Bif/Lacto

supplemented group (Figure S4A), with Bifidobacterium longum

present in a small number of infants from both groups (Fig-

ure S4A). B. bifidum relative abundance declined with increasing

infant age (Figure 4A), with concurrent increases in B. breve (Fig-

ure S4A). As B. breve coexisted with, rather than replaced (Fig-

ure S4I) B. bifidum this suggests close species interactions,

potentially via metabolite cross-feeding. In contrast, while the

relative abundance of Lactobacillus acidophilus Infloran strain

was significantly enhanced in Bif/Lacto infants (Figure S4D),

abundance decreased to zero within days after cessation of sup-

plementation (Figures S4E–S4H), indicating low-level persis-

tence of this species. To confirm species classification of Lacto-

bacillus acidophilus Infloran strain, genome comparison analysis

was performed against other Lactobacillus species (Figures

S10D and S10E).

Previous research studies have shown that colonization of

the gut by probiotic bacteria may vary depending on the strains

used, mode of administration, dose, and inclusion of prebi-

otics.30 To understand whether the B. bifidum Infloran strain

was able to persist within the preterm microbiota after supple-

mentation, we obtained nine Bifidobacterium isolates cultured

from fecal samples from seven Bif/Lacto infants (five of them

received supplementation at the time of sample collection

and two had stopped supplementation). We performed

whole-genome sequencing on all the isolates and compared
Figure 4. Comparison of B. bifidum Genomes and Phenotypic Charac

(A) B. bifidum abundance in Bif/Lacto and control group infants (0–9 days (contro

49 days (control: n = 38, Bif/Lacto: n = 46); 50–99 days (control: n = 22, Bif/Lact

(B) Mid-point rootedmaximum-likelihood tree based on 12 SNPs called via referen

genomes. The gray box denotes pairwise SNP distance between these 6 genom

(C) Growth curves of B. bifidum Infloran, B. breve 20213, and B. longum subsp.

(D) Growth curves B. bifidum Infloran in human milk oligosaccharides (HMO) Lac

(E) Heatmap representing B. bifidum genes involved in utilization of human milk

(F–I) Correlation between B. bifidum abundance and days after ceasing receiving

99 days: n = 39).

Boxplots show group median and interquartile range, diamonds indicate the gr

represent p values: ***p < 0.001. See also Figures S4 and S5 and Tables S2 and
their sequence to the B. bifidum Infloran strain. Core-genome

single nucleotide polymorphism (SNP) analysis indicated the

five B. bifidum isolates were identical at 0 SNP difference

(based on 87 core genes; Figure S5A). Reference-based

genome mapping of whole-genome sequences of five

B. bifidum genomes to B. bifidum Infloran strain (as reference

genome; Figure 4B) indicated a near-identical similarity (mean

SNP distance: 2.80 ± 1.30 SNPs), strongly suggesting they

belong to the same bacterial strain (i.e., Infloran). Average

nucleotide identity (ANI) analysis also supported these findings

(100.00% nucleotide identity, Figure S5B). These data support

the elevated B. bifidum relative abundances in our 16S rRNA

gene profiling data (Figure 4A), including samples P8Z and

P8ZA, which were collected at 41 and 50 days after supple-

mentation had finished, indicating longer-term persistence of

this strain (Figures 4F–4I).

Bifidobacterium represents a dominant genus in the full-term

healthy breast-fed infant selectively fed by complex oligosac-

charides (i.e., human milk oligosaccharides [HMOs]) within BM.

However, the ability of Bifidobacterium to digest HMOs varies

between species and strains of this genus.31,32 Thus, we

analyzed B. bifidum genomes (our 5 isolates and Infloran strain)

for the presence of genes involved in HMO utilization; all

B. bifidum isolates contained specific genes involved in HMOuti-

lization (Figure 4E), and mucin degradation genes that may aid

gut persistence (Figure S5C). Notably, growth curves in whole

BM (Figure 4C) confirmed that the B. bifidum Infloran strain uti-

lized whole BM. Further phenotypic analysis indicated this strain

was able to metabolize specific HMOs; 2-fucosyllactose (20-FL)
and Lacto-N-Neotetraose (LnNT), corresponding to genes

AfcA and BBgIII, respectively, encoding for extracellular en-

zymes involved in their utilization (Figure 4D). Therefore, the

ability to digest BM and HMOs in these predominantly BM-fed

infants may correlate with higher rates of Bifidobacterium

abundance.

Bacterial strains used as probiotics commonly lack antibiotic

resistance genes. However, the high levels of antibiotic usage

in the NICU may reduce abundance of supplemented strains in

the preterm gut. Analysis of theB. bifidum Infloran strain genome

indicated the presence of only the intrinsic ileS gene (associated

with mupirocin resistance; Table S2). Minimum antibiotic con-

centration testing confirmed sensitivity to commonly prescribed

antibiotics in NICUs (Table S2). These data are in agreement with

the reduced relative abundance of Bifidobacterium in Bif/Lacto

infants receiving antibiotics (Figure 3D) However, by giving the

supplement twice daily (up to 34 weeks post-conceptual age),
terization of B. bifidum Infloran Strain

l: n = 62, Bif/Lacto: n = 63); 10–29 days (control: n = 70, Bif/Lacto: n = 97); 30–

o: n = 39)).

ce-based approach (strain Infloran as the reference genome) from 5B. bifidum

es. Data: mean ± SD.

infantis 20088, in whole human milk.

to-N-tetraose and 2-fucosyllactose.

oligosaccharides.

supplementation (0–9 days: n = 63; 10–29 days: n = 97; 30–49 days: n = 46; 50–

oup mean, and individual points highlight individual infant samples. Asterisks

S5.

Cell Reports Medicine 1, 100077, August 25, 2020 9



A B

C D E

F G H

I J

(legend on next page)

10 Cell Reports Medicine 1, 100077, August 25, 2020

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
this may have aided rapid re-establishment after antibiotic

treatment.

Infants Receiving Oral Supplementation Show
Differences inMetabolomic Profiles and Lower Fecal pH
Microbial metabolites are key molecules involved in microbe-

microbe and microbe-host interactions.33 To define the ‘‘func-

tional’’ impact of Bif/Lacto supplementation, 1H NMR spectros-

copy was used to characterize the metabolomes of a subset of

fecal samples (75 from Bif/Lacto group, and 81 from control

group; all time points; n = 157), which were also profiled using

16S rRNA gene sequencing. A principal-component analysis

(PCA) model (R2 = 53.6%) was built using these metabolic phe-

notypes, and clear biochemical variation was observed between

the Bif/Lacto and control samples (Figure 5A). Pairwise orthog-

onal projection to latent structures-discriminant analysis

(OPLS-DA) models constructed for each time point confirmed

these metabolic differences throughout the study period (p <

0.01, Figure S6A). A covariate-adjusted PLS-DA (CA-PLS-DA)

model comparing the fecal profiles at all sampling points and

adjusted for sampling age showed that infants in the Bif/Lacto

group excreted greater amounts of the short-chain fatty acid

(SCFA) acetate (Figure 5C) and lower amounts of the sugars

20-FL, 3-fucosyllactose (30-FL), arabinose, and trehalose

compared to those in the control group (Figures 5E–5H). Fecal

lactate was also higher in Bif/Lacto infants compared to control

infants (Figure 5D). Notably, the differences observed in fecal

metabolites were maintained throughout the study period.

The relative abundance of Bifidobacterium was found to be

significantly positively associated with fecal acetate and nega-

tively associated with fecal 20-FL, 30-FL, arabinose, and treha-

lose (Figure 5I). Acetate and lactate are known metabolic by-

products of Bifidobacterium, while 20-FL and, 30-FL are common

components of HMOs, with certain Bifidobacterium strains

(including Infloran Figure 4E) able to selectively metabolize these

BM components.32 These results indicate that the higher relative

abundance of Bifidobacterium in Bif/Lacto infants may correlate
Figure 5. Metabolomic Profiling of Fecal Samples from the Bif/Lacto a

(A) Principal-component analysis (PCA) scores plot comparing the fecal metabo

(B) Discriminatory metabolites that contribute to the covariate-adjusted projectio

fecal metabolic profiles of the Bif/Lacto and control infants adjusted for samplin

tabolites that are excreted in greater amounts by the Bif/Lacto infants (red) and

Manhattan plot showing p values calculated for each variable in the multivariate m

false discoveries). Horizontal lines indicate cutoff values for the false discovery ra

control feces and red points indicate those metabolites significantly higher in the

(C) Relative acetate concentration.

(D) Relative lactate concentration.

(E) Relative 20-fucosyllactose (2-FL) concentration.

(F) Relative 30-fucosyllactose (3-FL) concentration.

(G) Relative arabinose concentration.

(H) Relative trehalose concentration.

(I) Spearman correlation heatmap displaying main fecal metabolites (rows) versu

lation and blue denotes for negative correlation.

For metabolite data (N = 0–9 days (control: n = 17, Bif/Lacto: n = 18); 10–29 days (c

50–99 days (control: n = 13, Bif/Lacto: n = 11)).

(J) Group fecal sample pH (N = 0–9 days (control: n = 9, Bif/Lacto: n = 6); 10–29 da

10); 50–99 days (control: n = 5, Bif/Lacto: n = 7)).

Boxplots show group median and interquartile range, diamonds indicate the gr

represent p values: *p < 0.05, **p < 0.01, ***p < 0.001. See also Figures S6 and S
with the ability tometabolize HMOs, andwith acetate and lactate

generated as major end products.

To determine the impact of increased acetate and lactate on

the infant gut environment, fecal pH was measured in a subset

of infants (n = 74). At 0–9 days of age, fecal pH was 5.5 (SD =

0.7) in Bif/Lacto infants compared to pH 7.0 (SD = 0.5) in control

infants (Table S9). These differences in fecal pH remained

throughout the study (Figure 5J), and fecal pH was significantly

negatively correlated with fecal acetate and lactate (Figures

S6C and S6D) and the relative abundance of Bifidobacterium

(Figure S6E). Comparing the relative bacterial abundance at spe-

cies level, B. bifidum had a stronger negative correlation with

fecal pH and positive correlation with fecal acetate and lactate

(Figures S7A–S7C) compared to B. breve, the other main Bifido-

bacterium species present (Figures S7D–S7F). Metabolomic

analysis on bacterial culture supernatant confirmed the strong

acetate producing ability of the supplemented strain B. bifidum

(Figure S7G).

DISCUSSION

Our results show that preterm infants supplemented with

B. bifidum and L. acidophilus contain a fecal microbiota compo-

sition and environment more similar to a healthy full-term breast-

fed infant.10,11 We determined that certain clinical practices and

relevant external factors may positively or negatively influence

the abundances of Bifidobacterium within the preterm infant

gut microbiota.

Diet is a major driver of microbiota diversity, particularly the

strong relationship between BM and Bifidobacterium abun-

dance.34 Although both groups of preterm infants received

high rates of BM, via maternal or donor milk, the low abundance

of Bifidobacterium found in control infants indicates BM con-

sumption itself (without supplementation) was not sufficient to

encourage high levels of Bifidobacterium. We could not differen-

tiate between (solely) donor versus maternal BM and impact on

Bifidobacterium as within our study DBM was given to
nd Control Groups via 1H NMR Spectroscopy

lic profiles of the Bif/Lacto and control groups at all time points.

n to latent structures-discriminant analysis (CA-PLS-DA) model comparing the

g age. Top panel: average 1H NMR spectrum from all samples indicating me-

those excreted in greater amounts by the control infants (blue). Bottom panel:

odel, corrected for multiple testing using the false discovery rate (allowing 5%

te on the log10 scale. Blue points indicate metabolites significantly higher in the

Bif/Lacto feces.

s the most abundant bacterial groups (columns). Red denotes positive corre-

ontrol: n = 23, Bif/Lacto: n = 21); 30–49 days (control: n = 22, Bif/Lacto: n = 23);

ys (control: n = 10, Bif/Lacto: n = 7); 30–49 days (control: n = 11, Bif/Lacto: n =

oup mean, and individual points highlight individual infant samples. Asterisks

7 and Table S8.
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supplement the mother’s supply of BM. However, 16S rRNA

gene profiles and sensitivity analyses indicate no consistent dif-

ferences between microbiota composition (both for Bifidobacte-

rium and pathobionts) in either Bif/Lacto infants or control infants

between those fed mothers’ BM compared to those fed a com-

bination of mothers’ BM and donor BM. Maternal to infant trans-

mission of Bifidobacterium occurs in term infants10,35,36; howev-

er, the NICU environment and antibiotic treatment may limit

establishment of parental Bifidobacterium, leaving infants sus-

ceptible to colonization by hospital-environmental bacteria.2,37

For the Bif/Lacto group, the combination of supplementation of

early-life microbiota members and a known prebiotic food

source, i.e., BM and HMOs, likely aided in enhanced persis-

tence.32,34 Crucially, this synbiotic approach may allow the

‘‘right’’ bacterial strain matched to the appropriate nutritional

environment. In this case, a B. bifidum strain with the genetic po-

tential to metabolize HMOs and phenotypically shown to use

these early-life dietary sources for growth. Interestingly, previous

studies show B. bifidum secretes extracellular enzymes that

facilitate cross-feeding of oligosaccharide degradation products

among other Bifidobacterium species.31,32 Furthermore,

B. bifidum strains are known to break down mucin, which may

aid gut colonization.38 This microbiota supplementation strat-

egy, including genomic and phenotypic analysis of the probiotic

strain to confirm the ability to metabolize components of the

early life diet, i.e., BM, is an important consideration for future

studies.

Extremely low-birth-weight infants (<1,000 g) represented the

most vulnerable cohort in this study and presented less abun-

dance of genus Bifidobacterium, potentially due to several fac-

tors including, lengthened antibiotic courses,39 underdeveloped

gut physiology (i.e., poorer gut motility, and thinner mucus

layer40), and difficulties in establishing full enteral feeding.41

Indeed, previous clinical studies have had difficulties evaluating

the beneficial effects of supplementation in this at-risk cohort of

preterm infants,42 while others have seen a reduction in LOS but

not in NEC.42,43 Notably, although extremely low-birth-weight

Bif/Lacto infants had lower Bifidobacterium abundance than

those infants weighing R1,000 g, supplementation in our study

did enhance levels when compared to control infants. Thus,

from an intervention strategy perspective, daily and prolonged

supplementation may contribute to faster (re)establishment of

Bifidobacterium, which may also promote colonization resis-

tance against exogenous or resident pathogens in this particu-

larly fragile preterm cohort.

Bifidobacterium abundance was not affected by delivery

method with similarly high or low abundance of Bifidobacterium,

respectively, within supplemented and control infants regardless

of delivery method, either vaginal or caesarean. In contrast, vagi-

nally delivered, full-term infants have been shown to have greater

abundance of Bifidobacterium than infants born by caesarean

delivery.10 Frequent antibiotic treatment in preterm infants may

impact colonization by Bifidobacterium from the mother elimi-

nating any early differences resulting from delivery method.

Rates of antibiotic prescription in preterm infants are remark-

ably high, ranging from 79% to 87% in extremely low-birth-

weight (<1,000 g) preterm infants.44,45 Antibiotic treatment

favors the establishment of antibiotic-resistant bacteria while
12 Cell Reports Medicine 1, 100077, August 25, 2020
indirectly eradicating highly susceptible microbiota members

such as Bifidobacterium.2,46 Indeed, it appears that long- (but

not short-) term antibiotic usage is correlated with reduced Bifi-

dobacterium abundance (linking with low antimicrobial resis-

tance genomic and phenotypic profiles in the supplemented

B. bifidum strain), while potentially multidrug-resistant patho-

bionts such as Klebsiella and Escherichia abundance were unaf-

fected by antibiotic duration. Recent research in infants corre-

lated abundance of Bifidobacterium species (with/without

supplementation) with a reduction in antimicrobial resistance

genes and transferable elements.17,47 As Bif/Lacto infants had

high relative abundance of Bifidobacterium, this may have

contributed to reduce the reservoir of pathogens (i.e., Staphylo-

coccus, Escherichia, and Klebsiella), which were prevalent in

control infants, and which have previously been shown to harbor

a large repertoire of AMR determinants (including in this

cohort).48,49

Previous studies have indicated that, although preterm infants

are particularly at risk of serious diseases with a bacterial cause

(e.g., NEC and LOS), probiotic supplementation can reduce inci-

dence.13,14 However, there has been variability in results, which

may relate to the differences in strain(s) chosen, infant diet, or in-

fant age. Notably, a recent clinical audit in the same NICU where

the oral supplementation was given (i.e., Norfolk and Norwich

University Hospital), indicated a >50% reduction in NEC rates

and LOS when comparing 5-year epochs before and after intro-

ducing probiotic supplementation, with no episodes of probiotic

‘‘sepsis’’ indicated.21 While the processes leading to life-threat-

ening conditions including NEC in preterm infants are complex,

overgrowth of potentially pathogenic bacteria is thought to be

a key factor.48,50,51 We show that supplemented preterm infants

have lower relative abundance and overall prevalence of patho-

bionts including Klebsiella and Escherichia, which have previ-

ously been linked to NEC and LOS and links to a recent study

that performed MinION shotgun metagenomics and AMR

profiling on samples from this cohort.48 Thismay be due to direct

inhibition through compounds secreted by Bifidobacterium

(e.g., bacteriocins52), competition for space, and/or nutrient

availability.

Low Bifidobacterium abundance has been consistently re-

ported in preterm infants in NICUs without any supplementation

use.2,51,53 This indicates that the primary finding of high propor-

tions of bifidobacteria and associated changes in gut metabo-

lites, in supplemented infants in this study is unlikely to be due

to chance. Higher proportions of infants receiving probiotic sup-

plements did receive mothers BM compared to a mix of BM and

donor BM in controls. However, this did not result in anymeasur-

able difference (after multivariate and sensitivity analysis) in Bifi-

dobacterium abundance or overall difference in microbiota

composition. The HMOs in BM remain unaffected by the

pasteurization and storage enabling donor milk to provide an

equivalent substrate for the growth of bifidobacteria as BM.54

Concerns have been raised about the safety of using probiotic

bacteria in vulnerable individuals.55 However, no adverse effects

were observed to result from over 5 years of routine clinical use

of probiotics used in this study.21

Differences in the gut environment were also indicated through

our metabolomic analyses, highlighted by elevated abundance
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of acetate and lactate in feces from the Bif/Lacto group, which

are known to be primary metabolic end products of HMO degra-

dation by Bifidobacterium.34,56 Acetate and lactate have benefi-

cial health effects enhancing defense functions in both host

epithelial cells57 and mucosal dendritic cells.58 The lower fecal

pH in Bif/Lacto group correlated with higher concentrations of

these acids and higher abundance of Bifidobacterium, creating

an acidic environment that may be less favorable for the growth

of pathobionts.57,59,60

In summary, we have conducted a comprehensive observa-

tional study examining the beneficial impact of Bif/Lacto supple-

mentation on the wider microbiota over time. Although previous

studies have investigated aspects of this before,17-20 this is the

largest observational study to combinemultiple factors: fecal mi-

crobiota composition analysis, metabolomics, fecal pH, whole-

genome sequencing of supplemented probiotic strains, and

fecal isolates to determine probiotic persistence, complemented

by phenotypic testing. A key strength relates to the size and

scope of the study, representing one of the largest reported lon-

gitudinal studies in preterm infants, where study cohorts were

approximately matched by gestational age, sex, birth mode,

and time points of sample collection, which are all factors that

may significantly impact the microbiota, and thus conclusions

obtained (see Limitations of Study below). Alongside the key

microbiological findings of this study, we have also provided

context for further trials focusing on clinical practice in NICU

and suggestions for future intervention studies in this at-risk in-

fant population. Providing maternal and donor BM may be

required for successful persistence of Bifidobacterium, which

may also contribute to the enhanced metabolic end-products

such as acetate and lactate in the preterm gut. These products

will play an important role in direct antagonism of potentially

pathogenic microbes, and the maturation of immune cells in

early life. This large-scale longitudinal observational multi-cen-

ter-controlled study emphasizes the important role that targeted

microbiota or probiotic supplementation plays in preterm infants,

exerting beneficial modifications on preterm gut microbial com-

munities, and metabolic end products.

Limitations of Study
Our study has several limitations. First, this study was observa-

tional in nature and was not designed as a double-blinded, ran-

domized controlled clinical study. One NICU recruited preterm

infants receiving the Bif/Lacto oral supplementation, and three

other NICUs recruited the control infants (not supplemented).

Therefore, although the (UK) NICUs involved had comparable

health care practices, there were some differences in feeding

and antibiotics regimes between the two cohorts (and NICUs)

that may impact microbiota profiles, with further alterations

potentially due to the NICU environment (i.e., differences in

nosocomial bacteria). This study recruited only seven infants

who were exclusively formula fed (Table S1); therefore, it was

not possible to assess the effect of routine supplementation in

these infants. We could also not determine the impact of just

DBS versus maternal BM due to the routine feeding practices

in place (i.e., DBM only used to supplement, rather than replace).

Future studies could carefully control for nutritional intake and

perform analysis to understand how these diet differences may
impact supplemented strain persistence and the wider preterm

microbiota. In-depth analysis of the effects of different antibi-

otics regimes or antibiotic dosing on the premature infant gut mi-

crobiome was beyond of the scope of this work. This was due to

the heterogeneity of timings and types of antibiotic used in

routine clinical care, although controlling for antibiotic usage

even in gold-standard clinical studies would also be problematic

due to the at-risk nature of these preterm patients. As we used

16S rRNA profiling, this limits our analysis to relative abundance

rather than absolute abundances of bacterial taxa; therefore,

future studies could use a combination of qPCR (for supple-

mented strains, to determine colonization potential) in tandem

with microbial load measurements. Another limitation is the

fact that this was not a placebo-controlled trial and as such

conclusions about (clinical) outcomes should be carefully

interpreted.
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bioc/html/ComplexHeatmap.html

Vegan package version 2.5-4 Torondel et al.65 https://cran.r-project.org/web/packages/

vegan/index.html

Megan6 Ba�gcı et al.66 https://software-ab.informatik.uni-tuebingen.de/

download/megan6/welcome.html

Phyloseq package version 1.24.2 McMurdie and Holmes67 https://bioconductor.org/packages/release/

bioc/html/phyloseq.html

Other

LNnT (donated from Glycom) Glycom https://www.glycom.com/

20FL (donated from Glycom) Glycom https://www.glycom.com/

Zirconium beads 1 mm diameter BioSpec Products Cat. No. 11079110z

Infloran Desma Healthcare https://www.desmahealthcare.com/products
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Lindsay J.

Hall (Lindsay.Hall@quadram.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The 16S rRNA and WGS datasets generated during this study are available at the European Nucleotide Archive: PRJEB31653. The

accession numbers for the European Nucleotide Archive sequence data reported in this paper are included in Data S1 and Table S3.

The code (R scripts) are available at: https://github.com/dalbymj/BAMBI-Paper-Files.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Exclusion and inclusion criteria (human cohorts)
All subjects recruited in this study were premature infants born at gestational age % 34 weeks, and resident in the same NICU for

study duration. Infants diagnosed with advanced stages of necrotizing enterocolitis or severe congenital abnormalities, were

excluded from the study.

Preterm infants were recruited from four different NICUs across England, UK (between 2013-2017); Norfolk and Norwich University

Hospital (NNUH) enrolled the Bif/Lacto group, and Rosie Hospital, Queen Charlotte’s and Chelsea Hospital, and St Mary’s Hospital

recruited Control group infants. All NICUs had comparable health care practices including antibiotic (short treatment > 3 days; long

treatment > 3 days) and antifungal policies. To minimize the influence of confounding factors Bif/Lacto versus Control groups
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included similar sex ratios and delivery mode (i.e., Caesarean-section or vaginal delivery) (Table S1). We preferably selected preterm

infants from both study groups which had received their mother’s own breast milk or donor breast milk; the majority were exclusively

breastfed or received donor breast milk (78% in Bif/Lacto Group and 76% Control Group), mixed fed with a combination of breast-

milk, formula or donor breast milk (20% Bif/Lacto Group and 20% Control Group), and exclusively formula fed (2% Bif/Lacto Group,

and 4% Control Group).

Ethical approval
Fecal collection from NNUH and Rosie Hospital was approved by the Faculty of Medical and Health Sciences Ethics Committee at

the University of East Anglia (UEA), and followed protocols laid out by the UEA Biorepository (License no: 11208). Fecal collection for

Queen Charlotte’s and Chelsea Hospital and St Mary’s Hospital was approved by West London Research Ethics Committee (REC)

under the REC approval reference number 10/H0711/39. In all cases, doctors and nurses recruited infants after parents gave written

consent.

Human study design
Two distinct preterm groups were recruited: 1) Bif/Lacto Group who routinely received oral Bifidobacterium and Lactobacillus sup-

plementation (n = 101 infants), and 2) Control Group infants who did not receive supplementation (n = 133 infants). Infants in the Bif/

Lacto group were prescribed daily oral supplementation of 109 colony forming units (CFU) ofBifidobacterium bifidum and 109 CFU of

Lactobacillus acidophilus (Infloran�, Desma Healthcare, Chiasso, Switzerland). This supplementation was given twice daily in a

divided dose and commenced with the first enteral colostrum/milk feed (usually day 1 postnatal). Oral supplementation was normally

administered until 34 weeks post-conceptual age, with the exception of very low birth weight infants (< 1500 g) who received it until

discharge. Half a capsule of Infloran (125 mg) was dissolved in 1 mL of expressed breastmilk and/or sterile water, and this dose was

given twice daily (250mg/total/day) to the infant via nasogastric tube.

Time points of sample collection for this study included 0-9 days, 10-29 days, 30-49 days, 50-99 days. Research nurses collected

clinical data from hospital databases and clinical notes including; gestational age, delivery mode, antibiotic courses received, and

dietary information (Table S3).

METHODS DETAILS

DNA extraction of preterm stool samples
FastDNA Spin Kit for Soil (MP) was used to extract DNA from preterm feces following manufacturer instructions, with extended 3min

bead-beating. DNA concentration and quality were quantified using a Qubit� 2.0 fluorometer (Invitrogen).

16S rRNA gene sequencing of fecal samples
16S rRNA region (V1-V2) primers were used for library construction. Table S4 details primers sequences used. This set of primers

allowed the amplification of one 16S rRNA gene sequencing library containing 96 different samples. PCR conditions usedwere; cycle

of 94�C 3 min and 25 cycles of 94�C for 45 s, 55�C for 15 s and 72�C for 30 s. Sequencing of the 16S rRNA gene libraries was per-

formed using Illumina MiSeq platform with 300 bp paired end reads.

Raw reads were filtered through quality control using trim galore (version 0.4.3), minimum quality threshold of phred 33, and min-

imum read length of 60 bp. Reads that passed threshold were aligned against SILVA database (version: SILVA_132_SSURef_tax_

silva) using BLASTN (ncbi-blast-2.2.25+;Max e-value 10e-3) separately for both pairs. After performing BLASTN alignment, all output

files were imported and annotated using the paired-end protocol of MEGAN6 on default Lowest Common Ancestor (LCA)

parameters66.

The number of reads required to obtain a reliable representation of the microbiota in each sample was assessed by generating

rarefaction curves using the vegan package in R. Rarefaction curves were used to identify 20,000 as the minimum number of reads

in a sample at which the number of new genus appearing plateaued. Samples contained an average of less than ten genera and so

failing to detect even one or two genera from a sample would significantly alter the composition of the sample microbiota. The 16S

rRNA gene sequence data was subsampled to an even depth of 20,000 read using the phyloseq package (version 1.24.2), which

removed 63 samples with fewer than 20,000 reads. Additionally, the 16S rRNA gene sequence data with samples with less than

20,000 reads removed was normalized using two alternative methods, mean log-transformation or variance stabilization, using

the Deseq2 package in R. The number of infants with samples in the two groups at each time point after normalization were Bif/Lacto:

0-9 days = 55; 10-29 days = 83; 30-49 days = 48; 50-99 days = 39 and Control: 0-9 days = 93; 10-29 days = 99; 30-49 days = 53; 50-

99 days = 32. Sample details with proportion of reads assigned to each bacterial genus can be found in Table S6 and species in Table

S7. R Studio version 1.1.463 including the ggplot2 R package version 3.1.0 was used for the analysis of microbiota sequence data

and generation of figures.

Genomic DNA extraction from bacterial isolates
We isolated the strains present in the oral supplementation (i.e., Bifidobacterium bifidum and Lactobacillus acidophilus) as well as

additional Bifidobacterium isolates from infant samples. Overnight pure cultures in Brain Heart Infusion Broth (BHI) were harvested
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for phenol-chloroform DNA extraction. Bacterial pellets were resuspended in 2 ml 25% sucrose in 10 mM Tris and 1 mMEDTA at pH

8. Cells were subsequently lysed adding 50 ml 100 mg/ml lysozyme (Roche) and incubating at 37�C for 1 h. 100 ml 20 mg/ml Protein-

ase K (Roche), 30 ml 10 mg/ml RNase A (Roche), 400 ml 0.5 M EDTA (pH 8.0) and 250 ml 10% Sarkosyl NL30 (Fisher) was added into

the lysed bacterial suspension, incubated 1 h on ice and left overnight at 50�C. Next, washes of phenol-chloroform-isoamyl alcohol

(PCIA, Sigma) using 15 ml gel-lock tubes (QIAGEN), with E Buffer (10mM Tris pH 8 (Fisher Scientific, UK)) added to sample to a final

volume of 5ml, mixed with 5mL of PCIA (Sigma) and centrifuged for 15min at 4000 rpm. The CIA stepwas repeated three times, after

which the final aqueous phase was transferred into sterile Corning TM 50 mL centrifuge tubes, and 2.5 volumes of ethanol (VWR

Chemicals, USA) added, incubated for 15 min at�20�C, and centrifuged 10 min at 4000 rpm and 4�C. Finally, the pellet was washed

twice with 10 mL of 70% ethanol and centrifuged at 4000 rpm for 10 min, dried overnight, and re-suspended in 300 ml of E Buffer.

Whole genome sequencing of bacterial isolates
DNA from pure bacterial cultures was sequenced at Wellcome Trust Sanger Institute using 96-plex Illumina HiSeq 2500 platform to

generate 125 bp paired end reads as described previously68. Genome assembly was performed by the sequencing provider using

the assembly pipeline described by Page et al., 201669. Next, genome assemblies were annotated using Prokka (version 1.12). We

predicted the 16S rRNA gene from the whole genome data using barrnap (version 0.7) and compare it to with existing 16S rRNA gene

sequences. Single Nucleotide Polymorphisms (SNPs) were identified using Snippy (version 4.0) by mapping assembled contigs to

annotated reference Infloran B. bifidum strain to reconstruct SNP phylogeny of six B. bifidum strains70.

To construct a phylogeny of 10 Bifidobacterium strains, we used pangenome pipeline Roary (version 3.12.0) to build a core gene

alignment (87 core genes, with options -e -n otherwise default), followed by snp-sites (version 2.3.3) to call SNPs (6,202 SNPs in to-

tal)69,71. We used the SNP site-alignments obtained from both reference-based and core-gene alignment approaches to infer

Maximum Likelihood (ML) phylogenies using RAxML (version 8.2.10) with GTR+ nucleotide substitution model at 100 permutations

conducted for bootstrap convergence test63. The ML tree reconstructed was with the highest likelihood out of 5 runs (option -N 5).

Pairwise SNP distances were calculated and compared using snp-dists (version 0.2)61. Pairwise Average Nucleotide Identity (ANI)

was computed and graphed using module pyani (version 0.2.7)62. Web tool iTOL version 4.2 was used to visualize and annotate

ML trees63.

Minimal Inhibitory Concentration analysis
The microdilution method was used to test Minimal Inhibitory Concentration (MIC) of the probiotic strains (B. bifidum) against

routinely prescribed antibiotics; benzylpenicillin, gentamicin, and meropenem. Serial twofold dilutions of antibiotics in MRS medium

(Difco) and 10 mL from fresh overnight culture were incubated for 24 h at 37�Cunder anaerobic conditions. Cell density wasmonitored

using a plate reader (BMG Labtech, UK) at 595 nm. MICs were determined as the lowest concentration of antibiotic inhibiting any

bacterial growth, with tests performed in triplicate.

Gene search using BLAST
Genomes from B. bifidum Infloran strain and five other B. bifidum isolates were searched for genes involved in utilization of human

milk oligosaccharides, and mucin degradation. Nucleotide sequences of genes of interest were extracted from National Centre of

Biotechnology Information (NCBI). Table S5 summarizes genes analyzed and publication source. BLAST alignment (ncbi-blast-

2.2.25) was performed using a filtering criteria of 80% coverage and 80% identity.

Breast milk and HMOs utilization study
Growth kinetics of the Infloran isolate B. bifidum and control type strains B. longum subsp. infantis DSM 20088 and B. breve DSM

20213 in breast milk and individual HMOs (LNnT or 20FL) were performed. Isolates were grown overnight in RCM (Oxoid) then sub-

cultured intomodifiedMRS (Difco) with breastmilk (pooled from four different mothers, collected at eight different time-points, 1%w/

v), or individual HMOs (2%w/v)32. Growth kinetics were measured every 15 minutes for 48 hours using a microplate spectrophotom-

eter (Tecan Infinite F50).

Metabolomic analysis 1D-NMR and 2D-NMR
A subset of 157 paired fecal samples (75 from Bif/Lacto group, and 81 from Control group) were analyzed by standard one-dimen-

sional (1D) 1H NMR spectroscopy using a Bruker 600 MHz spectrometer operating at 300 K. Fecal samples were chosen for meta-

bolic profiling pragmatically based on remaining sample quantity after previous analyses. Feces (50 mg) were combined with 700 mL

of phosphate buffer (pH 7.4; 100% D2O) containing 1 mmol/L of 3-trimethylsilyl-1-[2,2,3,3-2H4] propionate (TSP), and 10 zirconium

beads (1 mm diameter) (BioSpec Products). Samples were homogenized using a Precellys bead beater (Bertin) with 2 cycles of 40 s

at 6,500 Hz speed, centrifuged at 14,000 g for 10 min and the supernatant was transferred to NMR tubes. 1D NMR spectra were

acquired for each sample using a nuclear overhauser effect pulse sequence for water suppression as described by Beckonert

and colleagues72). Spectra were automatically phased and calibrated to the TSP reference using Topspin 3.6 (Bruker BioSpin).

Spectra were imported into MATLAB 9.4 (R2018a), redundant spectral regions (those arising from TSP and imperfect water suppres-

sion) were removed, and the spectral profiles were normalized using a probabilistic quotient method.
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pH measurement of the fecal samples
The pH of a randomly selected subset of fecal samples used in themetabolomics analysis (39 samples from the Bif/Lacto Group, and

39 samples from the Control Group) was assessed. Fifty mg of fecal sample was added 1mL of sterile water, vortexed andmeasured

using a glass electrode pH meter (Martini Mi151).

QUANTIFICATION AND STATISTICAL ANALYSIS

16S rRNA gene sequencing data was analyzed using NMDS (Non-metric multidimensional scaling) plots generated with a Bray-Cur-

tis dissimilarity calculation in R Studio using with the vegan package version 2.5-4 using code adapted from65. Permutational

MANOVA in the Adonis function of the vegan R package version 2.5-4 was used to determine significant differences between

NMDS community structure. Heatmaps were generated using the ComplexHeatmap package version 1.18.1 and clustered using

a Bray-Curtis dissimilarity calculation. Genus number, Shannon diversity, and Inverse Simpson diversity were calculated using

the vegan package version 2.5-4. Statistically significant differences in genus and species abundancewere determined using a Krus-

kal-Wallis test corrected for false discovery rate (FDR < 0.05). To account for differences in the proportion of infants receiving only

mother’s breast milk and long-duration antibiotics PERMANOVA was carried out to analyze the effects on the relative abundance of

the individual genera of Bifidobacterium, Klebsiella, and Escherichia. Sensitivity analysis was carried out by selecting and either

comparing only those samples collected when the infant was receiving only mother’s breast milk or only samples from infants

that had received short duration antibiotics. Within these differences in overall microbiota composition were compared between

Bif/Lacto and Control groups using NMDS and PERMANOVA as detailed previously while individual differences in genus relative

abundancewere determined using a Kruskal-Wallis test corrected for false discovery rate (FDR< 0.05). The distribution of continuous

variables was tested using the Shapiro–Wilk test with a significance threshold of < 0.05 and the appearance of boxplots, Quantile–

Quantile plots, and histograms also considered. For continuous variables, according to the distribution, either t test orWilcoxon rank-

sum test was used to test the significance of difference between groups. Differences in percentage prevalence of individual bacterial

genera were tested using tested using Fisher’s exact test. A p value of less that 0.05 was considered statistically significant for all

tests.

1D-NMR data analysis was performed using principal components analysis (PCA), orthogonal projection to latent structures

discriminant analysis (OPLS-DA) and covariate-adjusted-projection to latent structures-discriminant analysis (CA-PLSDA) using

in-house scripts. Pairwise OPLS-DAmodels (Bif/Lacto versus Control) were constructed for each sampling point and for all sampling

points combined. Here, the complete spectral data points (metabolic profile) served as the predictors (X variables) and class mem-

bership (Bif/Lacto versus Control) served as the response (Y) variable. The predictive ability (Q2Y) of themodels were calculated using

a 7-fold cross-validation approach and the validity of the Q2Y values were assessed through permutation testing (100 permutations).

A CA-PLS model was also built using the fecal profiles from all sampling points and the model was adjusted for sampling age.

Additional two-dimensional (2D) 1H-1H NMR spectroscopy was performed on two selected fecal samples to assist with metabolite

identification. Conventional 2D NMR spectra were acquired using homonuclear correlation spectroscopy (COSY) and heteronuclear

single quantum coherence spectroscopy (HSQC) experiments with water suppression to assist with structural elucidation.
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