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Abstract: Biomedical signals carry valuable physiological information and many researchers have
difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals.
Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and
wavelet methods. However, these methods do not offer an informative visualization of main events
within the processed signal. This paper attempts to provide an event-related framework to overcome
the drawbacks of the traditional visualization methods and describe the main events within the
biomedical signal in terms of duration and morphology. Electrocardiogram and photoplethysmogram
signals are used in the analysis to demonstrate the differences between the traditional visualization
methods, and their performance is compared against the proposed method, referred to as the
“eventogram” in this paper. The proposed method is based on two event-related moving averages
that visualizes the main time-domain events in the processed biomedical signals. The traditional
visualization methods were unable to find dominant events in processed signals while the eventogram
was able to visualize dominant events in signals in terms of duration and morphology. Moreover,
eventogram-based detection algorithms succeeded with detecting main events in different biomedical
signals with a sensitivity and positive predictivity >95%. The output of the eventogram captured
unique patterns and signatures of physiological events, which could be used to visualize and identify
abnormal waveforms in any quasi-periodic signal.

Keywords: quasi-periodic signals; time-series visualization; signal transformation; event detection;
signal segmentation; time-domain representation; spatio-temporal analysis; pattern discovery;
waveform recognition

1. Introduction

Periodogram, spectrogram, and wavelet methods are the current standard methods for
visualizing and analyzing one-dimensional, quasi-periodic biosignals. Such visualizations generate
temporal-spatial information in order to gain scientific insights into the physical measurement.
These powerful visualization techniques play a key role in understanding large and complex signals.
The task of a visualization algorithm is to translate the raw signals into a meaningful graphical
representation to facilitate interpretation by the scientist. In many cases, sophisticated analysis
techniques can help to extract essential information from the biomedical signals.

The periodogram is a frequency visualization of the processed signal, while the spectrogram
and wavelet are time-frequency visualizations. However, these techniques do not provide detailed
information of the dominant events in terms of morphology and duration. Many researchers attempted
to visualize signals in the time domain [1–8]; however, this massive research effort did not lead to a
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generic, intuitive implementation framework that is specifically applied across different disciplines,
including current clinical problems [9].

The aim of this paper is to introduce a new, simple, easy-to-use visualization algorithm that
extracts the main events in signals, especially in one-dimensional, quasi-periodic biosignals such as
electrogradiograms (ECGs) and photoplethysmograms (PPGs). These biosignals contain valuable
information represented by physiological events. Once an event has been detected, the corresponding
signal can be extracted and analyzed in terms of its amplitude (peak), morphology, energy and
entropy distribution, frequency content, and intervals between events. Determining the dominant
events within these biomedical signals that will provide more insight into the information of the
signal can ultimately improve the development of more accurate diagnostic tools. The commonly
used visualization methods known as the periodogram, spectrogram, and wavelet methods will be
evaluated followed by the introduction, evaluation and comparison of the new algorithm, referred
to as the “eventogram” throughout this paper. The eventogram provides and detects the dominant
time-domain events within the biomedical signals using two moving averages and performs at a level
that the traditional methods cannot achieve.

2. Materials and Methods

2.1. Data Used

ECG and PPG signals were used for testing the algorithms, as shown in Figure 1. The ECG signal
(sampling frequency of 360 Hz) was obtained from the MIT-BIH Arrhythmia Database [10], while the
PPG signal (sampling frequency of 367 Hz) was obtained from the Heat Stress PPG Database [11].
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Figure 1. Data used in the analysis ECG signal (left) and PPG signal (right). Note, ECG stands for
electrocardiogram while PPG stands for photoplethysmogram.

2.2. Method I: Periodogram

Periodogram (also called spectral analysis) views the processed biomedical signal as a sum of
cosine waves with varying amplitudes and frequencies. It is obtained by the fast Fourier transform and
usually shows frequency as an x-axis, and magnitude of the spectrum as a y-axis. The main goal of the
periodogram is to identify the important frequencies (or periods) in the processed biomedical signal.
In other words, the periodogram graph shows the dominant frequency behavior within the signal.
The periodogram, R( f ), was calculated as follows:

R( f ) =
1
N
|
N−1

∑
n=0

xne−i2πn f |2, (1)

where x is the biomedical signal with length N, n is the data sample, and f is the frequency.
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2.3. Method II: Spectrogram

The main difference between the spectrogram and periodogram methods is that the spectrogram
is a time-frequency visualization (takes into consideration time localization) while the periodogram
relies only on the frequency domain. A spectrogram can be seen as multiple short periods of spectrum
combined together. It is three-dimensional by nature, including the time, frequency, and magnitude
of the spectrum. Typically, the spectrogram is displayed by using time as an x-axis and frequency
as a y-axis. It also uses colors to show the magnitude of the spectrum. It is usually obtained by the
short-time fast Fourier transform (FFT), which commonly includes a windowing function to extract the
local time signal before conducting a short-time FFT. The main goal of the spectrogram is to identify
the dominant frequencies with respect to time in the processed biomedical signal. The spectrogram,
S(t, f ), is calculated as follows:

S(t, f ) = |
∫ ∞

−∞
x(τ)W(τ − t)ej f τdτ|2, (2)

where x is the biomedical signal, W(τ) is the window function, and f is the frequency. The time index,
t, is normally considered to be ‘slow’ time and is usually not expressed in as a high resolution as
time τ.

2.4. Method III: Wavelets

A wavelet is the same as a spectrogram, but a wavelet transform can offer a multiresolution
while the spectrogram can only offer a fixed resolution. Wavelets are closely related to filter banks.
The wavelet transform (WT) of the biomedical signal x(t) is an integral transform defined by:

D(a, b) =
∞∫
−∞

x(t)ψ∗a,b(t) dt, (3)

where D(a, b) is known as the wavelet detail coefficient at the scale and location indices (a, b) of
the biomedical signal x(t), and ψ∗(t) denotes the complex conjugate of the wavelet function ψ(t).
The transform yields a time-scale representation similar to the time-frequency representation of the
short-time Fourier transform (STFT). In contrast to the STFT, the WT uses a set of analyzing functions
that allow a variable time and frequency resolution for different frequency bands. The set of analyzing
functions—the wavelet family ψa,b(t)—is deduced from a mother wavelet ψ(t) by:

ψa,b(t) =
1√
2

ψ
( t− b

a

)
, (4)

where a and b are the dilation (scale) and translation parameters, respectively. The scale parameter a of
the WT is comparable to the frequency parameter of the STFT. The mother wavelet is a short oscillation
with a zero mean. The orthonormal dyadic discrete wavelets are associated with scaling functions and
their dilation equations. The scaling function is associated with the smoothing of the signal and has
the same form as the wavelet, given by φa,b(t) = 2−a/2φ(2−at− b). However, the convolution of the
biomedical signal with the scaling function produces approximation coefficients as follows:

A(a, b) =
∞∫
−∞

x(t)φa,b(t) dt, (5)

where the biomedical signal x(t) can then be represented by a combined series expansion, using both
the approximation coefficients A and the detail coefficients D.
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2.5. Method IV: Eventogram

The eventogram is a novel visual-representation algorithm based on the fundamental concept of
two moving averages. The idea of using two moving averages has already been tested over different
biomedical signals for detecting a waves in APG (acceleration of PPG) signals [12–14], for detecting
c, d, and e waves in APG [15], for detecting systolic waves in PPG signals [11], for detecting QRS
complexes in ECG signals [16,17], for detecting T waves in ECG signals [18], and for detecting heart
sounds [19]. An essential step of the two-moving-averages approach is the generation of the blocks
of interest, and it is this step that is specifically applied in the eventogram methodology proposed in
this paper. The blocks of interest are generated using two moving averages, which are now used to
produce the eventogram. Noisy events rejection, power calculation, and image display are the new
additional steps introduced to produce the eventogram. The structure of the eventogram is given in
Figure 2.

Generating
Blocksvofv
Interest

Signal Noise
Rejection

Power
Calculation

Image
Display
(Eventogram)

Figure 2. Flowchart for generating an eventogram. Generating an eventogram consists of four main
stages: feature extraction (generating potential blocks using two moving averages), noisy events
rejection, power calculation, and image display.

Generating Blocks of Interest: Blocks of interest are generated using two event-related moving
averages that demarcate the systolic and heartbeat areas. In this procedure, the first moving average
(MA1) is used to emphasize the first event and is given by

MA1[n] =
1

W1
(y[n− (W1 − 1)/2] + · · ·+ y[n] + · · ·+ y[n + (W1 − 1)/2]), (6)

where W1 represents the window size of the first-event duration. The resulting value is rounded to the
nearest odd integer.

The second moving average (MA2) is used to emphasize the second event area to be used as a
threshold for the first moving average and is given by

MA2[n] =
1

W2
(y[n− (W2 − 1)/2] + · · ·+ y[n] + · · ·+ y[n + (W2 − 1)/2]), (7)

where W2 represents the window size of approximately one beat duration. Its value is rounded to the
nearest odd integer.

In this stage, the blocks of interest are generated by comparing the MA1 signal with MA2. If any
sample in MA1 ≤ MA2, it will be replaced by zero. If not, it will be replaced by a value of one.
The generated time series of a binary string is called blocks of interest. However, some blocks of
interest will contain noise segments that occur multiple times. The data within a series of ones are
referred to as a B.

Since we obtained the blocks of interests, the next steps will start by rejecting the blocks that
contain noise, calculating the power of each block, and then visualizing the power of the blocks in
terms of W1 and W2, as follows:
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Noise Rejection: Rejection is based on the average value of the standard deviations of all blocks.
The standard deviation of each block (m) is calculated as follows:

σm =

√√√√ 1
L

L

∑
n=1

(Bm[n]− B̄m)2, (8)

where L is the length of the data within each data block B.
After calculating the standard deviations of all blocks, a threshold (THR) is applied to reject blocks

that contain noise as follows:

THR =
1
M

M

∑
m=1

σm, (9)

where M is the number of data blocks and THR is the average value of the standard deviations of
all blocks. Usually, the noisy segments have small standard deviation compared to the ones that
contain informative events (i.e., wave, spike, or peak). Thus, the block that satisfies σ > THR is
accepted; otherwise, it is rejected.
Power Calculation: The power of each block, calculated at a specific window length W1 and a specific
window length W2, is used to represent a value in the eventogram, as follows:

P(W1, W2) =
M

∑
m=1

B2
m, (10)

where B is the data segment within a specific block m. This step generates a power matrix: Pu×v,
where u is the different values of (W1) and v is the number of values of (W2).
Image display: The P matrix (obtained in the previous step) is displayed as an image with a full range
of colors. Each element of P specifies the color for one pixel of the image representing the intensity
of the power over the data block generated using W1 and W2. Here, the jet range is used from blue
to red, and passes through the colors cyan, yellow, and orange. The blue color refers to the lowest
value of power while the red color refers to the highest value of power. The resulting image is a u-by-v
grid of pixels, where u is the number of columns W1 and v is the number of rows W2 in P. The visual
representation of this step is called an eventogram—the image display step produces the eventogram.
The main goal of the eventogram is to identify the dominant time-domain events and their associated
signal morphologies within the processed biomedical signal using W1 and W2. The pixel associated
with the highest value of power is considered to contain the main event. The eventogram is a time–time
representation of a signal.

3. Results and Discussion

Figure 3 shows the periodogram for ECG and PPG; it provides frequency information about
the processed signal. Both ECG and PPG examples have the direct current component and some
low frequency noise. On the other hand, the spectrogram provides different frequency information
about the signal, which is the frequency range that holds most of the energy of the processed signal.
For example, most of the energy for the ECG signal lies in the range 0–30 Hz, while the PPG signal is
in the range 0–10 Hz, as shown in Figure 4.

A continuous wavelet transform is used with the “sym2” wavelet and a 1–32 scale based on the
recommendation in [20], as shown in Figure 5. However, the wavelet visual presentation did not
provide any information about the signal.

Running the eventogram algorithm on the ECG and PPG signals (cf. Figure 6) provided useful
information about the signals that was not provided by the traditional visualization methods.
For example, in the ECG signal, W1 and W2 were varied and the maximum power value was found at
window size W1 = 46 samples and W2 = 91 samples. This means there is a dominant event of length
46 samples occurring within a periodic event of length 91 samples. For PPG signals, the window sizes
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(W1 and W2) were also varied, and the maximum power value was found at W1 = 41 samples and
W2 = 61 samples. However, the traditional visualization methods did not provide any insights into
the events within the ECG and PPG signals.

0 20 40 60 80 100 120 140 160 180
−60

−40

−20

0

20

40

60

80

Frequencyp(Hz)

P
ow

er
/fr

eq
ue

nc
yp

(d
B

/H
z)

PeriodogrampPowerpSpectralpDensitypEstimate

0 10 20 30 40 50 60 70 80 90 100
−80

−70

−60

−50

−40

−30

−20

−10

0

10

FrequencygsHzE

P
ow

er
/fr

eq
ue

nc
yg

sd
B

/H
zE

PeriodogramgPowergSpectralgDensitygEstimate

Figure 3. Periodogram for ECG signal (left) and PPG signal (right) shown in Figure 1.
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Figure 4. Spectrogram for ECG signal (left) and PPG signal (right) shown in Figure 1.

The eventogram describes the biomedical signal in terms of two time-domain window sizes W1

and W2. The eventogram is a time–time representation which is different from the time-frequency
representation produced by the spectrogram and wavelet methods. The time–time representation of a
biomedical signal in terms of two windows will help clinicians understand the dominant durations and
visualize their morphologies. Thus, the eventogram is more informative than the classical visualization
methods. Note, the Recurrence Plot [21] was not included in this study, as it represents phase space
trajectory of the processed signal. The phase analysis is not meaningful for physicians or biomedical
engineers when analyzing and diagnosing biomedical signals—correlating phase changes with a
disease is not easy nor precise.

The application of the eventogram methodology on PPG and ECG signals is demonstrated in
Figure 6. Dominant events are marked by red pixels where the combination of W1 and W2 scored
the highest power. Once W1 and W2 are identified for the most dominant event, the next step is to
visualize its corresponding waveform in terms of duration and morphology, as shown in Figure 7.
In the case of ECG signal, the eventogram picked the QRS complexes to be the most dominant event,
while the eventogram detected the systolic wave as the most dominant event in the PPG signal. Note



Bioengineering 2016, 3, 22 7 of 13

that examination of the second highest power, the third highest, and so on, in the eventogram is also
possible to check their corresponding dominant events.
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Figure 5. Wavelet for ECG signal (left) and PPG signal (right) shown in Figure 1.
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Figure 6. Eventogram for ECG signal (left) and PPG signal (right) shown in Figure 1. The red
color indicates strong dominance of a main event while the blue color indicates non-existence of a
main event. The eventogram is stored as a two-dimensional (W1-by-W2) array of integers in the range
[1, length(colormap)]; colormap is a W1-by-3 matrix of real numbers between 0.0 and 1.0. The eventogram
returns the index value in terms of W1 and W2 for the most dominant event that is associated with the
red color or RGB (0.5,0,0)—the RGB color model is an additive color model in which red, green, and
blue light are added together in various ways to reproduce a broad array of colors.

Another advantage of the eventogram is that the search area can be either customizable
or automated. For example, the search ranges for the ECG signal were 1–115 samples for W1 and W2,
while 1–65 samples for the PPG signal. In Figures 8 and 9, the search areas are automatically adjusted
to equal the sampling frequency, and the step sizes are automatically adjusted to be the log of the
sampling frequency—the value will then be rounded toward negative infinity.

The window lengths for the ECG signals (cf. Figure 8) are 360 samples with a step size of
five samples for ECG data length of 100 s, while the window lengths for the PPG signals (cf. Figure 9)
are 367 samples with a step size of five samples for PPG data length of 20 s.
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Figure 7. The main events (superimposed) detected by the eventograms shown in Figure 6 based on the
highest value of power scored with W1 and W2 for the ECG (left) and the PPG (right) signals shown in
Figure 1. Note, ECG stands for electrocardiogram while PPG stands for photoplethysmogram.
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Figure 8. Examples of eventogram output using ECG signals. (a) normal beats; (b) paced beats; (c) left
bundle branch block beats; and (d) noisy ECG signal. The red color indicates strong dominance of
a main event while the blue color indicates non-existence of a main event. The eventogram is stored
as a two-dimensional (W1-by-W2) array of integers in the range [1, length(colormap)]; colormap is a
W1-by-3 matrix of real numbers between 0.0 and 1.0. The eventogram returns the index value in terms
of W1 and W2 for the most dominant event that is associated with the red color or RGB (0.5,0,0).
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The eventogram analysis of biomedical signals with regular heart rhythm is simple and efficient as
the heart beats are repeated with an equally spaced pattern. This regularity helps the time-domain
threshold methodologies to detect main events successfully. The regular heart rhythm is called the
normal sinus rhythm [22], which means that the rhythm is constant and the occurrence of the next
beat is predictable. The eventogram easily detects the QRS complexes and systolic peaks correctly in a
regular heart rhythm in ECG and PPG signals, respectively, as shown in Figures 8a and 9a. Moreover,
the eventogram is able to detect main events in biomedical signals with irregular rhythm, as shown in
Figures 8b,c and 9c. The results show that the eventogram is suitable for any quasi-periodic biomedical
signals, as it is robust against the irregular rhythm, non-stationary effects (cf. Figures 8b–d and 9b–d),
and low signal-to-noise ratio (cf. Figures 8d and 9d).

Classical visualization methods do not provide precise information in terms of event morphology
and duration within the processed signal. These methods rely only on qualitative examination,
compared to the proposed eventogram method that relies on both qualitative and quantitative analysis.
The eventogram uses different window size choices, where dominant events can be quantitatively and
qualitatively visualized, therefore providing more precise insight into signal characteristics. To validate
the concept, application, and performance of the eventogram, rigorous testing over multiple data sets
for detecting different events were conducted, as follows:

• For QRS detection in ECG signals: The eventogram-based QRS detector has two additional steps
to the eventogram: one at the beginning before applying the eventogram (preprocessing step) and
one at the end after applying the eventogram (thresholding step). The eventogram is considered to
be the feature extraction step. Interestingly, the eventogram-based QRS detector, with W1 = 97 ms
and W2 = 611 ms, obtained a sensitivity (SE) of 99.29% and a positive predictivity (+P) of 98.11%
over the first lead of 10 databases with a total of 1,179,812 beats. When applied to the well-known
MIT-BIH Arrhythmia Database, an SE of 99.78% and a +P of 99.87% were attained [17].

• For T wave detection in ECG signals: The eventogram-based T wave detector has three additional
steps to the eventogram: two steps at the beginning before applying the eventogram (filtering
and QRS removal) and one at the end after applying the eventogram (thresholding based
on RR intervals). The eventogram is considered to be the feature extraction step. Over the
MIT-BIH Arrhythmia Database, the eventogram-based T wave detector, with W1 = 70 ms
and W2 = 140 ms, achieved a SE of 99.86% and a +P of 99.65%, which are promising results
for handling the non-stationary effects, low SNR, normal sinus rhythm (NSR), left bundle
branch block, right bundle branch block, premature ventricular contraction, and premature
atrial contraction in ECG signals [18].

• For systolic wave detection in PPG signals: The eventogram-based systolic wave detector
has two additional steps to the eventogram: one step at the beginning before applying
the eventogram (filtering) and one at the end after applying the eventogram (thresholding).
The eventogram is considered to be the feature extraction step. The eventogram-based systolic
wave detection algorithm, with W1 = 111 ms and W2 = 667 ms, was evaluated using 40 records
after three heat stress simulations, containing 5071 heartbeats, with an overall SE of 99.89% and
the +P was 99.84% [11].

• For a and b wave detection in PPG signals: The eventogram-based a and b waves detector has
two additional steps to the eventogram: one step at the beginning before applying the eventogram
(filtering) and one at the end after applying the eventogram (thresholding). The eventogram is
considered to be the feature extraction step. The eventogram-based a wave detection algorithm,
with W1 = 175 ms and W2 = 1000 ms, demonstrated overall SE of 99.78%, +P of 100% over signals
that suffer from (1) non-stationary effects; (2) irregular heartbeats; and (3) low amplitude waves.
In addition, the b detection algorithm (based on the detection of a waves) achieved an overall SE
of 99.78% and a +P of 99.95% [14].
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Figure 9. Examples of eventogram output using PPG signals. (a) PPG waveforms with Salient
dicrotic notch; (b) PPG waveforms with a nonsalient dicrotic notch; (c) PPG signal measured after
simulated heat stress; and (d) noisy PPG signal. The red color indicates strong dominance of a
main event while the blue color indicates non-existence of a main event. The eventogram is stored
as a two-dimensional (W1-by-W2) array of integers in the range [1, length(colormap)]; colormap is a
W1-by-3 matrix of real numbers between 0.0 and 1.0. The eventogram returns the index value in terms
of W1 and W2 for the most dominant event that is associated with the red color or RGB (0.5,0,0).

• For c, d, and e wave detection in PPG signals: The eventogram-based c, d, and e waves detector
has three additional steps to the eventogram: two steps at the beginning before applying the
eventogram (filtering and removal of ab segment) and one at the end after applying the eventogram
(thresholding). The eventogram is considered to be the feature extraction step. The performance of
the eventogram-based c, d, and e waves detector, with W1 = 5 ms and W2 = 15 ms, was tested on
27 PPG records collected during rest and after two hours of exercise, resulting in 97.39% SE and
99.82% +P [15].
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• For S1 and S2 detection in heart sounds: The eventogram-based heart sounds detector has
two additional steps to the eventogram: one step at the beginning before applying the eventogram
(filtering) and one at the end after applying the eventogram (thresholding). The eventogram is
considered to be the feature extraction step. The SE and +P of the eventogram-based S1 and
S2 detector, with W1 = 130 ms and W2 = 270 ms, were 70% and 68%, respectively, in heart sounds
collected from children with pulmonary artery hypertension [19].

Finally, eventogram-based detectors succeeded in detecting QRS and T waves in ECG signals,
systolic and a, b, c, d, e waves in PPG, and S1 and S2 in heart sounds. Results show that the
eventogram-based detectors are promising in terms of computational complexity and efficiency.
This paper is considered to be a proof-of-concept work. The proposed visualization method is simple
and efficient when applied to ECG and PPG signals; however, it may fail when applied to other signals.
As it is a new concept, there is a need to publish the current results and let the scientific community
evaluate its performance on their studies.

Presently, the eventogram is tested over one-dimensional biomedical signals collected and analyzed
independently, covering temporal and spatial visualization. However, for multiple signals collected
simultaneously, there will be a need to test the vectorial and interactive visualizations capability of the
eventogram. Note that vectorial visualizations present signals with respect to direction and magnitude,
while interactive visualization facilitates efficient interrogation of biomedical signals at different
levels of detail. As the core implementation of the eventogram relies mainly on two simple moving
averages (fast algorithms), it is expected that there will be no issue in terms of computational efficiency
with vectorial and interactive visualizations. Because of the eventogram’s intuitive visualization and
computational efficiency, it can be implemented on mobile devices.

The significance of the eventogram comes from incorporating two types of visualization: temporal
and spatial. Note that temporal visualizations present signals with respect to time, while spatial
visualizations present data in 2D or 3D space. Moreover, the design and implementation of the
eventogram set a framework that can be modified in a standard way, as suggested in [23]. In other words,
we can consider the eventogram as LEGO building blocks. The eventogram has three main building
blocks: generating blocks of interest, noise rejection, and power calculation. Each one of these steps
can be modified independently based on the detection problem, which makes the eventogram more
flexible, universal, and applicable to achieve high accuracy.

The eventogram offers the advantages of being used as is or can be customized by researchers
to build a new and better eventogram following the LEGO analogy (e.g., change the filter type,
filter order, moving average type based on their applications). The use of moving averages provides
efficient temporal filtering to the processed signal where it is statistically stationary at least over the
duration of the moving window. Exploring these findings across different types of signals, such as
the optical signal, the communication signal, the geophysical and astrophysical signal, the earth
resources signal, the acoustic and vibration signal, the radar signal, and the sonar signal, will improve
generalization across the entire signal analysis discipline.

4. Conclusions

Event detection in biomedical signals is an important step before analyzing the corresponding
waveform in more detail. A newly introduced visualization algorithm, referred to as the eventogram,
depends on two event-related moving averages. The eventogram provides us with important
information about the signal, such as the duration of the most dominant event and its morphology.
It also provides new information and insight into the processed signal when compared to the traditional
signal visualization techniques. Dominant events identified by the eventogram will provide a clearer
set of information for clinicians to improve their decision making. Moreover, the performance of
the eventogram-based detector is promising, as it has been tested on different databases that contain
unusual noise and different waveform morphologies. One of the unique and powerful characteristics
of the eventogram is its ability to be applied to different types of biomedical and quasi-periodic signals.
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