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Abstract

Mitochondrial transfer RNA (mt-tRNA) mutations are the commonest sub-type of mitochondrial (mtDNA) mutations associated with human
disease. We report a patient with multisytemic disease characterised by myopathy, spinal ataxia, sensorineural hearing loss, cataract and cognitive
impairment in whom a novel m.7539C>T mt-tRNAAsp transition was identified. Muscle biopsy revealed extensive histopathological findings
including cytochrome c oxidase (COX)-deficient fibres. Pyrosequencing confirmed mtDNA heteroplasmy for the mutation whilst single muscle
fibre segregation studies revealed statistically significant higher mutation loads in COX-deficient fibres than in COX-positive fibres. Absence from
control databases, hierarchical mt-tRNA mutation segregation within tissues, and occurrence at conserved sequence positions, further confirm this
novel mt-tRNA mutation to be pathogenic. To date only three mt-tRNAAsp gene mutations have been described with clear evidence of pathogenicity.
The novel m.7539C>T mt-tRNAAsp gene mutation extends the spectrum of pathogenic mutations in this gene, further supporting the notion that
mt-tRNAAsp gene mutations are associated with multisystemic disease presentations.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/3.0/).
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1. Introduction

Mitochondrial diseases are associated with a wide range of
different clinical phenotypes, from mild to severe. Diagnosis
is difficult if no classical syndrome is present [1]. Some well-
characterised, heteroplasmic mitochondrial DNA (mtDNA)
mutations associated with specific clinical phenotypes (e.g.
m.3243A > G MELAS and m.8344A > G MERRF) are
routinely screened, although > 300 different pathogenic
mt-tRNA mutations have been described exhibiting marked
clinical heterogeneity and hereditability, and are only identified
following sequence analysis of the entire 16.6 kb mitochondrial
genome [2,3]. Assigning pathogenicity to novel mt-tRNA
variants is very important particularly regarding the highly
polymorphic nature of mtDNA [4].

A pathogenic heteroplasmic mtDNA mutation has to exceed
a certain mutation level within a cell or tissue to cause a disease
phenotype [5]. This threshold level varies for each mutation
and tissue and is dependent on the OXPHOS metabolism of
the tissue [6]. Here we report on a 51-year-old woman, who
presented with myopathy, spinal ataxia, deafness, cataract
and cognitive impairment, due to a new heteroplasmic point
mutation in the mt-tRNAAsp gene.

2. Patient and methods

2.1. Case report

A 51-year-old woman presented with a one-year history of
muscle weakness of arms and legs and intermittent muscle pain
in the right thigh. The patient had bilateral hearing loss and
had worn a hearing aid for 10 years in her left ear. She had
undergone cataract surgery on both eyes at the age of 47. She
also complained of intermittent dysphagia and lack of
concentration, although a history of seizures was not noted.
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Family history was unremarkable; her mother developed
dementia at a higher age, whilst her 21 year old daughter was
healthy.

Neurological examination revealed pathological laughter
and crying, dysarthric speech, proximal accentuated paresis
(MRC 4/5), hammer toes and talipes cavus. Arm deep tendon
reflex zones were broadened with exhaustible ankle clonus
on both sides. Pallhypesthesia of the lower distal extremity
has been examined. Romberg test revealed loss of stand.
Unterberger’s test showed undirected falling tendency.
Electroencephalogram revealed multifocal reliable signs of
increased cerebral excitability. Needle electromyogram of the
brachioradialis muscle revealed distinctive myopathic changes
and nerve conduction studies of the tibialis nerve showed
an indication for a mixed motoric neuropathy. Sensory
neurography was normal. Audiogram revealed severe
bilateral inner ear hearing loss on both sides. Ophthalmologic
examination showed a regenerative post-cataract on both
eyes. Neuropsychological testing revealed severely restricted
information processing and instructional understanding.
Minimental state examination, however, showed normal results.
cMRI showed generalised brain volume reduction (Fig. 1A).
Resting lactate levels were normal but mildly elevated in a
validated bicycle exercise test (after 10 minutes cycling on
30 Watt 3.9 mmol/l, normal: <2.0) [7]. Creatine kinase was
elevated up to 15.2 µmol/l (normal: <2.4) in multiple samples
taken at different time points.

2.2. Histopathology, biochemistry and molecular
genetic studies

Standard histopathological analysis of a muscle biopsy
from the biceps brachii muscle was performed. Activities
of respiratory chain complexes were determined
spectrophotometrically [8]. Total DNA from all available tissue
(muscle, urinary epithelia, buccal epithelia, hair shafts,
and blood) was extracted by standard procedures; tissues
from maternally-related family members were, unfortunately,
unavailable. Long-range PCR of muscle DNA was undertaken
to detect large-scale rearrangement of mtDNA [9], followed by
sequencing of the entire mitochondrial genome in this tissue

[10]. Analysis of mtDNA heteroplasmy was carried out by
quantitative pyrosequencing including segregation studies
within individual cytochrome c oxidase (COX)-positive
and COX-deficient fibres. The PyromarkQ24 Assay Design
Software v.2.0 (Qiagen, Crawley, West Sussex, UK) was
used to design locus-specific PCR and pyrosequencing
primers for the m.7539C>T mutation (GenBank reference
number NC_012920.1). Pyrosequencing was performed on the
Pyromark Q24 platform according to the manufacturer’s
protocol. Quantification of m.7539C>T heteroplasmy levels
was determined using Pyromark Q24 software to directly
compare the relevant peak heights of both the wild-type and
mutant nucleotides at this position [11].

3. Results

Muscle biopsy analysis revealed numerous COX-deficient
fibres (25% of the total biopsy) and COX-intermediate
reacting fibres (25%) in addition to ragged-red-fibres and
subsarcolemmal mitochondrial accumulation (5% of all fibres)
(Fig. 1B). Biochemical analysis showed decreased activity of
respiratory chain complex IV in the patient’s muscle (Table 1).

Long-range PCR showed no large-scale deletions of
mtDNA, prompting sequencing of the entire mitochondrial
genome in muscle revealing a novel mutation in the mt-tRNAAsp

(MTTD) gene – m.7539C>T (Fig. 2A). The highest mutation
load level was found in muscle (85% levels of mtDNA
heteroplasmy), with lower levels present in urinary epithelial
sediment (27%), buccal epithelial cells (15%), hair shafts
(10%) and blood (8%), consistent with the segregation pattern
of a pathogenic mtDNA mutation. Single muscle fibre analysis
of individual COX-positive and COX-deficient fibres detected a
statistically-significant higher mutation load in COX-deficient
fibres (96.05 ± 0.38 (n = 21)) than in COX-positive fibres
(69.12 ± 2.98 (n = 17), p < 0.0001), confirming high levels of
the m.7539C>T mutation were associated with a respiratory-
deficient phenotype (Fig. 2B).

4. Discussion

The phenotype of our patient was characterised by a
multisytemic disease presentation with myopathy, spinal ataxia,
deafness, cataract and cognitive deficit. These symptoms do not
fit with a distinct mitochondrial syndrome such as MELAS or
MERRF, but affection of muscle and central nerve system
together with inner ear is highly indicative of a mitochondrial

BA

Fig. 1. MRI and histochemical findings: (A) cMRI (t1) showing generalised
brain volume reduction. (B) Histochemical demonstration of sequential COX
and SDH activities revealing numerous COX-deficient (blue reaction product)
fibres and evidence of subsarcolemmal mitochondrial proliferation.

Table 1
Enzyme activity of respiratory chain complexes showing decreased activity of
respiratory chain complex IV in patient muscle.

Respiratory
chain complexes

Enzyme activity (U/g tissue)

Patient Controls (n = 20) mean
± SD [range]

Complex I 0.44 0.9 ± 0.6 [0.35–2.5]
Complexes II + III 1.0 1.8 ± 0.8 [0.8–2.6]
Complex IV (COX) 1.6 6.3 ± 1.5 [4.5–9.3]
Citrate synthase 4.9 8.4 ± 2.7 [4.0–11.2]
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aetiology. Sensorineural hearing loss is a common symptom of
mitochondrial disease associated with mt-tRNA mutations;
cataracts are reported in single patients only (e.g. reported
pathogenic m.14685G > A, m.12264C > T, m.1606G > A and
m.3274A > G mutations) [12].

The clinical picture together with the histopathogical
findings characterised by focal COX deficiency and
mitochondrial proliferation prompted us to perform sequencing
of the mitochondrial genome leading to the identification
of a novel heteroplasmic mt-tRNA point mutation. The
pathogenicity of the m.7539C>T mutation is unequivocally
proven according to accepted criteria published by Yarham
et al. [13]. First, it is not listed as a SNP on publically-
available databases of common mtDNA variants
including MitoMAP (http://www.mitomap.org/MITOMAP)
or the Human Mitochondrial Genome Database (http://

www.mtdb.igp.uu.se/index.html) and we have not detected this
variant amongst > 980 in-house human mtDNA sequences.
Second, the m.7539C>T mutation is heteroplasmic and
located at a conserved position – within the DHU-stem of
the mt-tRNAAsp – leading to the disruption of a relatively
evolutionary-conserved base pair (Fig. 2C and D). The
mutation is present at highest levels in the patient’s muscle, a
clinically-affected tissue, whilst single muscle fibre analysis
clearly demonstrates that the mutation segregates with COX-
deficiency. The mutation showed a very high threshold in
muscle suggesting a rather mild functional effect of the
mutation. In urinary epithelial cells there was a higher level of
heteroplasmy of the m.7539C>T mutation compared to blood
as seen in other mtDNA tRNA mutations. However, the relative
proportions of mtDNA heteroplasmy observed in our patient
confirm that muscle remains the tissue of choice for Sanger

Fig. 2. Molecular genetic investigation of patient muscle: (A) sequencing electropherogram demonstrating the heteroplasmic m.7539C>T transition detected in
patient muscle. (B) Single fibre PCR analysis clearly shows a marked segregation of the m.7539C>T mutation with a biochemical defect in individual COX-deficient
muscle fibres (n = 21) which harbour higher levels of mutation than COX-positive fibres (n = 17). (C) Schematic representation of the mt-RNAAsp cloverleaf
structure, illustrating the localisation of the m.7539C>T mutation in the stem of the DHU arm three other known mutations. (D) Phylogenetic conservation of this
region of the mt-tRNAAsp gene sequence indicates the mutation affects an evolutionary conserved residue.
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sequencing of the mitochondrial genome although this would
represent less of a concern with next-generation sequencing
protocols. The low level of heteroplasmy in blood makes
it more likely that the mutation is sporadic and is not
transmitted [14]. Unfortunately our patient’s mother and
clinically-unaffected daughter declined genetic testing so we
are unable to determine whether the mutation within this family
has arisen de novo or exhibits a maternal transmission
pattern.

Given the large repertoire of reported mt-tRNA mutations,
it is perhaps surprising that to date only three MTTD gene
mutations have been described with clear evidence of
pathogenicity. These include a m.7526A > G transition
associated with exercise intolerance [15], a m.7543A > G
mutation leading to myoclonic seizures, developmental
delay, and severe behavioural problems [16] and a
m.7554G > A transition associated with a multisystemic
disease presentation comprising myopathy, ataxia, nystagmus,
and migraine [17]. In conclusion, the novel m.7539C>T
mt-tRNAAsp gene mutation extends the spectrum of pathogenic
mutations in this gene, further supporting the notion that
mt-tRNAAsp gene mutations are associated with multisystemic
disease presentations.
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