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Abstract
Temperate mountain ranges such as the European Alps have been strongly affected 
by the Pleistocene glaciations. Glacial advances forced biota into refugia, which were 
situated either at the periphery of mountain ranges or in their interior. Whereas in 
the Alps peripheral refugia have been repeatedly and congruently identified, support 
for the latter scenario, termed “nunatak hypothesis,” is still limited and no general 
pattern is recognizable yet. Here, we test the hypothesis of nunatak survival for spe-
cies growing in the high alpine to subnival zones on siliceous substrate using the 
cushion plant Androsace alpina (Primulaceae), endemic to the European Alps, as our 
model species. To this end, we analyzed AFLP and plastid DNA sequence data ob-
tained from a dense and range‐wide sampling. Both AFLPs and plastid sequence data 
identified the southwestern‐most population as the most divergent one. AFLP data 
did not allow for discrimination of interior and peripheral populations, but rather 
identified two to three longitudinally separated major gene pools. In contrast, in the 
eastern half of the Alps several plastid haplotypes of regional or local distribution in 
interior ranges—the Alpine periphery mostly harbored a widespread haplotype—
were indicative for the presence of interior refugia. Together with evidence from 
other Alpine plant species, this study shows that in the eastern Alps silicicolous spe-
cies of open habitats in the alpine and subnival zone survived, also or exclusively so, 
in interior refugia. As the corresponding genetic structure may be lost in mostly nu-
clear‐derived, rapidly homogenizing marker systems such as AFLPs or RAD sequenc-
ing tags, markers not prone to homogenization, as is the case for plastid sequences 
(Sanger‐sequenced or extracted from an NGS data set) will continue to be important 
for detecting older, biogeographically relevant patterns.
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1  | INTRODUC TION

Biota of temperate and northern regions have been strongly af-
fected by Pleistocene climate oscillations. Two independent sets 
of hypotheses addressing range changes associated with these 
climatic oscillations have been proposed. One is concerned with 
whether cold‐adapted species had larger distributions during cold 
periods, due to expansion into suitable peripheral and lowland re-
gions (interglacial contraction hypothesis; Hewitt, 2004; Stewart, 
Lister, Barnes, & Dalén, 2010; Espíndola et al., 2012; Theodoridis 
et al., 2017), or during interglacial periods, when formerly glaci-
ated areas became habitable (interglacial expansion hypothesis; 
Birks, 2008; Stewart et al., 2010). The second set of hypothe-
ses, which is the focus of this study, is concerned with whether 
persistence in strongly glaciated areas was possible exclusively 
in their ice‐free or only weakly glaciated periphery (tabula rasa 
hypothesis), which may also include areas in lowlands, or also 
on unglaciated peaks (so‐called nunataks) within the ice shield 
(nunatak hypothesis; Brochmann, Gabrielsen, Nordal, Landvik, & 
Elven, 2003; Schneeweiss & Schönswetter, 2011). The different 
geographic settings of peripheral versus nunatak refugia and the 
resulting demographic differences with respect to, for instance, 
population size do not only affect current genetic diversity of a 
species, but also the extent of colonization of formerly glaciated 

areas (Willi, van Buskirk, & Hoffmann, 2006). Whereas periph-
eral refugia have been repeatedly and congruently identified 
(Allen, Marr, McCormick, & Hebda, 2012; Schönswetter, Stehlik, 
Holderegger, & Tribsch, 2005; Soltis, Morris, McLachlan, Manos, 
& Soltis, 2006; Walker, Stockman, Marek, & Bond, 2009), support 
for nunatak survival is more limited (Escobar García et al., 2012; 
Stehlik, Blattner, Holderegger, & Bachmann, 2002; Wachter et al., 
2016; Westergaard et al., 2011, in press) and no general pattern is 
recognizable yet.

A geographic model system to test the tabula rasa and nunatak 
hypotheses are the European Alps, hereinafter simply referred to 
as the Alps. During glacials, the Alps were nearly entirely covered 
by ice (Ehlers & Gibbard, 2004) with numerous nunataks within 
the ice sheet and larger unglaciated areas at the Alpine periph-
ery, most prominently in the southwestern, southern, and east-
ern Alps (Jäckli, 1970; Nagl, 1972; Schönswetter et al., 2005; Van 
Husen, 1997). The latter's eminent role as Pleistocene refugia is 
supported by both biogeographic and molecular data (Tribsch & 
Schönswetter, 2003; Tribsch, 2004; Schönswetter et al., 2005). 
In contrast, molecular evidence for nunatak refugia, although 
already postulated by early Alpine biogeographers (Brockmann‐
Jerosch & Brockmann‐Jerosch, 1926), remains limited (Bettin, 
Cornejo, Edwards, & Holderegger, 2007; Escobar García et al., 
2012; Stehlik et al., 2002; Wachter et al., 2016). A potential rea-
son for this is that genetic signatures of nunatak survival may be 
lost in mostly nuclear‐derived marker systems such as AFLPs or 
RADseq due to genetic swamping by (re‐)colonizers (Todesco 
et al., 2016). This is in line with the observation that evidence 
for nunatak survival of Alpine plants has so far come almost ex-
clusively from plastid markers (e.g., Bettin et al., 2007; Escobar 
García et al., 2012; Stehlik et al., 2002). Introgression from local 
nunatak populations into invading populations is expected to be 
particularly strong in markers experiencing reduced gene flow 
(Currat, Ruedi, Petit, & Excoffier, 2008) as is the case for plastid 
markers, which lack recombination and are largely uniparentally 
inherited in angiosperms (Bock, 2007). Consequently, distinct 
haplotypes, which are expected to evolve after longer periods of 
geographic isolation on nunataks, can be retained even in the face 
of hybridization.

Here, we test the hypothesis of nunatak survival using Androsace 
alpina (Primulaceae; Figure 1a), endemic to the Alps, as our model 
species. This species is restricted to alpine and subnival zones (Lüdi, 
1927), where it grows in fell‐fields, on moraines or rocks (Figure 1b), 
and as such is expected to have been able to survive (also) on nun-
ataks. Although already studied previously (Schönswetter, Tribsch, 
& Niklfeld, 2003), the former study only used AFLP data and may, 
therefore, be biased against identifying interior refugia. Analyzing 
AFLP and plastid DNA sequence data obtained from a dense and 
range‐wide sampling, we want to identify the locations of putative 
refugia of A. alpina. Thus, we can assess whether any of the two 
marker systems commonly used in plant phylogeography, plastid 
sequences and AFLP data, are biased against identifying interior 
refugia.

F I G U R E  1   (a) Habit and (b) habitat of the study species 
Androsace alpina

(a)

(b)
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2  | MATERIAL S AND METHODS

Plants were sampled from 44 populations covering the entire distri-
bution range of this species (Figure 2a) except for the southernmost 
ones (Maritime Alps, Italy/France). Compared to the previous study of 
Schönswetter, Tribsch, & Niklfeld (2003), the population‐level sampling 

has been thinned in the eastern Alps, but extended southwards in the 
southwestern Alps. For the re‐analyzed populations, numbering cor-
responds to the previous study and is, therefore, not consecutive 
(Schönswetter, Tribsch, & Niklfeld, 2003; Supporting Information 
Table S1). For AFLP data, we included 2–5 (median 4) individuals per 
population (totaling 159 individuals); for plastid DNA sequencing, we 

F I G U R E  2   Distribution, sampled 
populations, and genetic structure of 
Androsace alpina as well as maximum 
extent of the Alpine ice sheet at the 
Last Glacial Maximum (dashed line). (a) 
Sampled populations (see Supporting 
Information Table S1 for further 
information); toponyms used in the text 
are indicated. (b, c) Genetic structure 
derived from analyses of AFLP markers 
using (b) the Bayesian clustering approach 
of STRUCTURE (with the number of 
clusters, K, being 3) or (c) a principal 
co‐ordinate analysis at the population 
level. (d) Within‐population rarity of AFLP 
markers (frequency‐down‐weighted 
marker values), its magnitude being 
proportional to dot size
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included 2–5 (median 3) individuals per population (totaling 131 indi-
viduals). Leaf material was collected and immediately stored in silica 
gel. Voucher specimens are deposited at the University of Vienna, 
Austria (WU, voucher details in Supporting Information Table S1).

Total genomic DNA was extracted from dried tissue (c. 10 mg) 
with the DNeasy 96 plant mini kit (Qiagen, Hilden, Germany) follow-
ing the manufacturer's protocol. The AFLP procedure was carried 
out as described in Schönswetter, Solstad, Escobar García, and Elven 
(2009). We used the same primer combinations for the selective PCR 
(fluorescent dye in brackets) as in our previous study (Schönswetter, 
Tribsch, & Niklfeld, 2003), that is, EcoRI (6‐Fam)‐ATC/MseI‐CTG, 
EcoRI (VIC)‐ATG/MseI‐CTT, and EcoRI (NED)‐AGG/MseI‐CTG. 5 μl of 
each of the differently labeled selective PCR products were purified 
using Sephadex G‐50 Fine (GE Healthcare Bio‐Sciences, Uppsala, 
Sweden) applied to a Multi Screen‐HV plate (Millipore, Molsheim, 
France). 1.2 μl of the elution product was mixed with 10 μl forma-
mide (Applied Biosystems, Foster City, USA) and 0.1 μl GeneScan 
500 ROX (Applied Biosystems), the internal size standard, and run on 
an ABI 3130x automated capillary sequencer (Applied Biosystems). 
Raw AFLP data were aligned with the internal size standard using 
ABI Prism Genescan 3.7.1 (Applied Biosystems) and imported into 
GenoGraPher 1.6.0 (version no longer available) for scoring. The error 
rate (Bonin et al., 2004) was calculated based on eight replicated in-
dividuals as the ratio of mismatches (scoring of 0 vs. 1) over matches 
(1 vs. 1) in AFLP profiles of replicated individuals. Fragments with 
single presences or absences were excluded.

The three plastid regions ccmp3f–trnR, rpl20–5′‐rps12, and 
trnS(UGA)–trnfM(CAU), successfully employed for intraspecific 
comparisons in other Androsace species (Dixon, Schönswetter, 
& Schneeweiss, 2007, 2008; Dixon, Schönswetter, Suda, 
Wiedermann, & Schneeweiss, 2009; Dixon, Schönswetter, Vargas, 
Ertl, & Schneeweiss, 2009; Schneeweiss & Schönswetter, 2010; 
Schneeweiss, Winkler, & Schönswetter, 2017), were sequenced 
as described in Dixon, Schönswetter, Suda, et al. (2009) and 
Schneeweiss et al. (2017). Briefly, the three regions were ampli-
fied using standard chemistry with primers ccmp3f (Weising & 
Gardner, 1999) and trnR (Dumolin‐Lapegue, Pemonge, & Petit, 
1997); rpl20 and 5′‐rps12 (both Hamilton, 1999); and trnS(UGA) 
and trnfM(CAU) (both Demesure, Sodzi, & Petit, 1995) with the 
following PCR conditions: 30 s at 96°C; 35 cycles of 5 min at 94°C, 
45 s at 48°C, and 10 min at 68°C; 10 min at 68°C. After cleaning 
the PCR products with Exonuclease I and Calf Intestine Alkaline 

Phosphatase (Fermentas, St. Leon‐Rot, Germany), cycle sequenc-
ing using BigDye Terminator chemistry (Applied Biosystems) fol-
lowed by electrophoresis with an ABI 3130x capillary sequencer 
(Applied Biosystems, Foster City, USA) was conducted.

Population structure was inferred using a Bayesian clustering 
approach developed for dominant markers (Falush, Stephens, & 
Pritchard, 2007; Pritchard, Stephens, & Donnelly, 2000) as im-
plemented in structure 2.2 run at the Bioportal of the University 
of Oslo (http://www.bioportal.uio.no/). We used an admixture 
model with uncorrelated allele frequencies and recessive alleles. 
Ten replicate runs for each K (number of groups) ranging from 1 
to 10 were calculated using a burn‐in of 105 iterations followed by 
106 additional MCMC iterations. The optimal number of groups 
was identified using DeltaK (Evanno, Regnaut, & Goudet, 2005) 
implemented in structureharvester web 0.6.94 (Earl & vonHoldt, 
2012). A principal co‐ordinate analysis at the population level (i.e., 
as done in the previous study of Schönswetter, Tribsch, & Niklfeld, 
2003) was computed using FAMD 1.31 (Schlüter & Harris, 2006). 
Population distances were calculated using chord distances for 
many loci (Takezaki & Nei, 1996) with null allele frequencies es-
timated using a nonuniform prior derived from among‐population 
information (Zhivotovsky, 1999). In order to quantify the genetic 
“uniqueness” of populations, frequency down‐weighed marker val-
ues (DW; Schönswetter & Tribsch, 2005) were calculated for each 
population (“rarity 1”) with the R‐script AFLPdat (Ehrich, 2006).

DNA sequences were edited with seqman II 5.05 (DNAStar Inc., 
Madison, WI, USA) and aligned manually using bioedit 7.0.4.1 (Hall, 
1999). Prior to all analyses, an inversion in the ccmp3f–trnR region, 
present in nearly 40% of the samples, was manually reversed, as it 
would introduce substitutional mutations, which in fact are the re-
sult of a structural mutation (Löhne & Borsch, 2005). A haplotype 
network was constructed using statistical parsimony as implemented 
in TCS 1.21 (Clement, Posada, & Crandall, 2000). Since gaps were 
treated as fifth character state, insertions/deletions of motifs of more 
than 1 bp and the inversion in the ccmp3f–trnR region were re‐coded 
as single characters by reducing them to single base pair columns.

3  | RESULTS

We scored 165 AFLP fragments in 159 individuals. The error rate 
(Bonin et al., 2004) was 2.45%. DeltaK identified K = 2 as the 

F I G U R E  3   Delta K values (left) and ‐ln 
likelihood (mean and standard deviation; 
right) derived from analyses of AFLP data 
using structure for Androsace alpina

http://www.bioportal.uio.no/
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optimal number of groups (Figure 3). These groups were separated 
by longitudinal breaks, one cluster (hereinafter termed Western 
Cluster) comprising pops. 0–11 from the western Alps, the second 
(hereinafter termed Eastern Cluster) comprising pops. 12–53 from 
the eastern Alps (Figure 4a). The southernmost population from the 
Western Cluster (pop. 0) and western populations from the Eastern 
Cluster (e.g., pops. 12 and 15) showed admixture, the minority clus-
ter never exceeding 25%. If taking the likelihood distribution over 
different values of K into account, K = 3 was suggested by a stable 
likelihood maximum (Figure 3). Accordingly, the Eastern Cluster was 
further divided longitudinally (hereinafter termed Eastern Cluster 1 
and Eastern Cluster 2 corresponding to pops. 12–33 and pops. 35–
53, respectively), roughly along the Adige valley in northern Italy, 
with admixture (the minority cluster reaching maximally 30%) in 
some populations close to the contact zone (Figure 2b). The Western 
Cluster remained unaffected with the exception of its southernmost 
population (pop. 0) that showed a nearly 1:1 admixture between the 
Western Cluster and the Eastern Cluster 2 (Figure 2b).

A principal co‐ordinate analysis (Figure 2c) separated the west-
ern populations from the eastern populations along the first axis 
(27.87%). The western populations were separated along the second 

axis (13.58%) into three groups arranged latitudinally (pop. 0; pops. 
1–4; pops. 5–11). Within the eastern populations, no separation into 
two groups as identified by structure at K = 3 was evident. The DW 
varied strongly and ranged from 0.74 in population 53 to 2.23 in 
population 3 (Figure 2d, Supporting Information Table S1).

Based on plastid sequence data, 21 haplotypes (14 if disregarding 
mononucleotide repeats) were identified within the investigated spe-
cies (Figure 4b). The most common and widespread haplotype (HT1) 
together with rarer haplotypes differing from it only by the number of 
base pairs in mononucleotide repeats and/or the inversion in ccmp3f–
trnR (HT2, HT3, HT4, HT9, HT10, HT17) jointly were found over the 
entire distribution range except for the southern southwestern Alps 
(Figure 4b). The remaining haplotypes, differing from HT1 by at least 
one nucleotide substitution, were geographically restricted to one or 
a few populations and thus also to single AFLP clusters. These in-
cluded several unique haplotypes (HT5–HT7, HT20, HT21) restricted 
to the southern populations (pops. 0–1) in the southwestern Alps; 
several unique haplotypes (HT16 as well as HT18 and HT19 differing 
from it only by the number of base pairs in mononucleotide repeats) 
restricted to some of the easternmost populations (pops. 44–50); a 
unique haplotype (HT14) restricted to four populations (pops. 18, 26, 

F I G U R E  4   Genetic structure of 
Androsace alpina as well as maximum 
extent of the Alpine ice sheet at the 
Last Glacial Maximum (dashed line). (a) 
Genetic structure derived from analyses 
of AFLP markers using the Bayesian 
clustering approach of STRUCTURE 
with the number of clusters, K, being 
2. (b) Geographic distribution of the 
21 chloroplast DNA haplotypes and, 
as insert, their relationships visualized 
as parsimony network, where lines 
correspond to mutational steps

(a)

(b)
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29, 31) in the Central Alps; two unique haplotypes (HT11 and HT12) 
restricted to a single population in the western Alps (pop. 5 from the 
Pennine Alps); a unique haplotype (HT13) restricted to the northeast-
ernmost population (pop. 52); and two unique haplotypes (HT8 and 
HT15) being found in single individuals of single populations other-
wise harboring HT1 from the Swiss Alps (pop. 8) and from the south-
ern Alps (pop. 16 from the Bergamo Alps).

4  | DISCUSSION

In a previous study using AFLP data, Schönswetter, Tribsch, & Niklfeld 
(2003) identified four groups within A. alpina. These are, however, 
only partially recovered by our structure analyses (Figures 2b and 
4a). Specifically, their southwestern and western groups, SW and W 
(pops 1–4 and pops. 5–11, respectively; pop. 0 was not studied by 
Schönswetter, Tribsch, & Niklfeld, 2003), are united in the Western 
Cluster (irrespective of the number of groups, K = 2 or K = 3), whereas 
their eastern groups, E1 and E2 (pops. 12–18 & 20–26 & 33–34 and 
pops. 19 & 27–32 & 35–53, respectively), correspond to Eastern 
Cluster 1 and Cluster 2, respectively, albeit with an eastward shifted 
boundary, as pops. 19 and 27–32 grouped into E2 by Schönswetter, 
Tribsch, & Niklfeld (2003) are recovered to belong to the Eastern 
Cluster 1 from the structure analysis (Figure 2b). These discrepancies 
likely are due to the use of different methods to delimit groups, that 
is, principal co‐ordinate analysis, as used by Schönswetter, Tribsch, & 
Niklfeld (2003), versus structure, as used here. In fact, PCoA from the 
new data agrees with the previous results (Schönswetter, Tribsch, & 
Niklfeld, 2003) concerning a strong differentiation within the Western 
Cluster. No separation into two groups is, however, detected within 
the Eastern Cluster (Figure 2c), but such a separation was considered 
ambiguous already in the original study (Schönswetter, Tribsch, & 
Niklfeld, 2003). Taken together, both previous and new AFLP data 
are consistent with the hypothesis of the survival of A. alpina in three 
peripheral refugia (from west to east: Cottic Alps; Grajic and Pennine 
Alps; Bergamo Alps to southern Dolomites) as suggested previously 
(Schönswetter, Tribsch, & Niklfeld, 2003) and in accordance with pat-
terns found in numerous silicicolous high‐elevation species from the 
Alps (Schönswetter et al., 2005).

Taking patterns of haplotype divergence and distribution into 
account, the inference of putative refugia is, however, considerably 
modified. The three peripheral refugia suggested by AFLP data are 
supported also by unique haplotypes (Figure 4b). This is particu-
larly pronounced for the southwestern refugium, which harbors 
five unique haplotypes (four found in the southernmost popula-
tion pop. 0) what may indicate the presence of distinct microre-
fugia (Patsiou, Conti, Zimmermann, Theodoridis, & Randin, 2014). 
The admixture of the southernmost population 0 inferred from the 
structure analysis (Figure 2b) is likely artifactual. It is known for 
this software that small, divergent groups—such as this particu-
lar population, which forms the sister to all other populations in a 
neighbor‐joining analysis (not shown)—tend to be resolved as ad-
mixed instead of forming separate gene pools (Lawson, van Dorp, & 

Falush, 2018). For the two peripheral refugia further east support 
from plastid data is less pronounced. Specifically, two unique hap-
lotypes are found in a single population, pop. 8, from the Pennine 
Alps and one unique haplotype is present in a single individual from 
a single population, pop. 16, from the Bergamo Alps. In addition 
to those three areas, two more are characterized by unique hap-
lotypes (Figure 4b). One is in the western Central Alps (pops. 18, 
26, 29, 31), thus being in the same region as the interior refugium 
suggested for Senecio carniolicus s. l. (Escobar García et al., 2012), 
the second is in the easternmost Central Alps (pops. 44–50), thus 
encompassing a peripheral refugium identified for several spe-
cies, including Androsace wulfeniana (Primulaceae) and Saponaria 
pumila (Caryophyllaceae; Tribsch, Schönswetter, & Stuessy, 2002; 
Schönswetter, Tribsch, Schneeweiss, & Niklfeld, 2003).

While not contradicting groups identified by structure analysis of 
the AFLP data, plastid sequence data allow more refined inferences 
on Pleistocene refugia. For the Eastern Cluster 1, plastid data iden-
tified both peripheral and interior refugia rather than just a periph-
eral one (Figures 2b and 4b). For the Eastern Cluster 2, plastid data 
identified a refugium (Figures 2b and 4b), whereas in the previous 
study of Schönswetter, Tribsch, & Niklfeld (2003) the weak differen-
tiation, together with patterns of diversity and genetic correlations 
among populations, was interpreted as the result of recent eastward 
leading edge migration rather than evidence for a separate refugium. 
Interestingly, the distribution of rare AFLP markers (DW; Figure 2d) 
does not support a refugium within the Eastern Cluster 2; popula-
tions with regionally endemic plastid haplotypes are among the ones 
with the lowest DW values range‐wide (Supporting Information 
Table S1). The failure to detect putative refugia by AFLP data likely 
is data‐type inherent, because the mostly nuclear‐derived, rapidly 
homogenizing AFLPs are prone to loose signal for in situ survival, 
if immigrant genotypes swamp resident genotypes (Gabrielsen, 
Bachmann, Jakobsen, & Brochmann, 1997; Todesco et al., 2016). 
Swamping by immigrants is likely for the eastern Alps (Eastern 
Cluster 2), where AFLP data, as mentioned previously, do support 
an eastward colonization (Schönswetter, Tribsch, & Niklfeld, 2003). 
Assuming that nunatak populations were small and that colonization 
progressed mainly from the periphery toward the center following 
the retreating ice shield, nunatak populations are expected to have 
been particularly prone to genetic swamping, as evidently has been 
the case for the interior refugium within Eastern Cluster 1. Major 
postglacial range shifts are in line not only with the weak phylogeo-
graphic structure of A. alpina compared to other silicicolous species 
(Schönswetter, Tribsch, & Niklfeld, 2003), but also with the wide 
occurrence of a few and, based on their interior position in the hap-
lotype network, probably ancestral haplotypes (e.g., HT1 and HT9).

5  | CONCLUSION

Phenetic and model‐based phylogeographic analyses of AFLP data 
return results that, although differing in details, generally yield 
similar conclusions. Fundamentally different patterns, however, 
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may emerge when combining biparentally inherited, mostly nu-
clear‐derived, rapidly homogenizing marker systems such as AFLPs 
or RADseq with mostly uniparentally inherited markers not prone 
to homogenization, as is the case for plastid or mitochondrial se-
quences (Wachter et al., 2012; this study). In the present study, the 
sole use of AFLPs allows only the current relationships determined 
by massive gene flow over wide distances to be recovered, whereas 
plastid sequences can identify traces of long‐term survival in interior 
parts of the Alps, which were the focus of our study. Organellar se-
quences are no panacea, as even in extreme high‐elevation species 
such as Ranunculus glacialis (Ranunculaceae), where nunatak survival 
appears equally likely as in A. alpina, plastid sequences may fail to 
provide support for the nunatak hypothesis (Ronikier, Schneeweiss, 
& Schönswetter, 2012). Likewise, other characteristics of AFLPs, 
such as frequencies of rare fragments (DW values: Schönswetter & 
Tribsch, 2005), may provide evidence for nunatak survival (Escobar 
García et al., 2012), but, as shown by the present study, this is not 
necessarily the case. We are thus confident that, even in the face of 
unprecedentedly well‐supported RADseq phylogenies—which like 
AFLPs may be biased toward reflecting younger history related to, 
for instance, the current landscape—plastid and mitochondrial data, 
which are expected to easily introgress into invading, that is, (re‐)
colonizing, populations (Currat et al., 2008), will continue to be cru-
cial for detecting older, biogeographically relevant patterns.
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