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Abstract

Background: The use of early decompression in the management of acute spinal cord injury (SCI) remains
contentious despite many pre-clinical studies demonstrating benefits and a small number of supportive clinical
studies. Although the pre-clinical literature favours the concept of early decompression, translation is hindered by
uncertainties regarding overall treatment efficacy and timing of decompression.
Methods: We performed meta-analysis to examine the pre-clinical literature on acute decompression of the injured
spinal cord. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria
consisted of (i) the reporting of efficacy of decompression at various time intervals (ii) number of animals and (iii) the
mean outcome and variance in each group. Random effects meta-analysis was used and the impact of study design
characteristics assessed with meta-regression.
Results: Overall, decompression improved behavioural outcome by 35.1% (95%CI 27.4-42.8; I2=94%, p<0.001).
Measures to minimise bias were not routinely reported with blinding associated with a smaller but still significant
benefit. Publication bias likely also contributed to an overestimation of efficacy. Meta-regression demonstrated a
number of factors affecting outcome, notably compressive pressure and duration (adjusted r2=0.204, p<0.002), with
increased pressure and longer durations of compression associated with smaller treatment effects. Plotting the
compressive pressure against the duration of compression resulting in paraplegia in individual studies revealed a
power law relationship; high compressive forces quickly resulted in paraplegia, while low compressive forces
accompanying canal narrowing resulted in paresis over many hours.
Conclusion: These data suggest early decompression improves neurobehavioural deficits in animal models of SCI.
Although much of the literature had limited internal validity, benefit was maintained across high quality studies. The
close relationship of compressive pressure to the rate of development of severe neurological injury suggests that
pressure local to the site of injury might be a useful parameter determining the urgency of decompression.
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Introduction

Most human acute spinal cord injuries (SCI) are
accompanied by significant on-going compression as a result
of fractures, dislocations and associated trauma to the
vertebral column [1,2]. A longstanding question has been
whether prompt relief of this compression improves clinical

outcomes in patients with SCI. Systematic reviews of the pre-
clinical data have concluded that there is compelling evidence
that early decompression improves outcomes in animal models
of compressive SCI [3–9]. Recent human studies examining
early decompression within 24hrs of injury have suggested a
substantial benefit in around 15-20% of patients [10–13], while
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studies evaluating the effects of decompression beyond this
time have been negative [14–19].

Despite this evidence, there is not yet consensus as to
whether early decompression should be undertaken. While this
is in part because the human data are not yet conclusive, it is
also because of uncertainties in the interpretation of the pre-
clinical literature. Pre-clinical studies use different
methodologies and forming an overall estimate of the
effectiveness of decompression is difficult, as is determining
the extent to which the pre-clinical literature might be at risk of
bias. An additional area of uncertainty is the timing of
decompression, with some studies suggesting benefit only if
compression is relieved within minutes, while others
demonstrating decompression is effective even after many
hours. Also unclear is what degree of canal compromise is
required to cause significant compression and whether the
window in which decompression is effective varies with this.

To address these questions we conducted a systematic
review and meta-analysis of the pre-clinical literature on spinal
cord decompression with particular emphasis on the
relationship of outcome to the force and duration of
compression.

Methods

Systematic Review
In December 2011 electronic searches were performed on

three separate databases; PubMed, ISI Web of Science and
Embase. The following search strategy was employed to
identify all possible publications: (decompression OR
compression OR canal narrowing) AND (spinal cord injury OR
contusion injury); search results were limited to animal studies.
The review protocol entitled ‘Systematic review and meta-
analysis of decompression in animal models of traumatic spinal
cord injury’ can be found on the CAMARADES website at
www.camarades.info/index_files/Protocols.html

Inclusion and Exclusion Criteria
Studies for inclusion were screened by three independent

reviewers (TW, ES and PB). To be included, studies must have
reported the efficacy of decompression at different time
intervals in an in vivo animal model of SCI. For inclusion in the
systematic review, studies must have reported a behavioural
outcome, lesion size or volume of preserved white matter. For
inclusion in the meta-analysis, studies must have reported the
number of animals, the mean outcome and the variance in
each group. In each experiment we identified the control group
to be the experimental group where compression was
maintained for the longest period. Studies that did not describe
such a group were excluded. For this reason, studies
evaluating the effect of different compressive forces at a single
time point were not included.

Studies examining decompression following injury using
methods other than trauma (e.g. models of malignancy or disc
herniation), and individual case reports describing outcomes
from veterinary procedures for decompression were excluded.
Meta-analysis was not conducted on histological or

electrophysiological outcomes because these were performed
too infrequently and variably for analysis to be reliable.

Data collection
Reported behavioural outcomes, lesion size volumes and/or

volume of preserved white matter were entered into the
CAMARADES data manager (TW). In studies reporting more
than one experiment, each experiment was considered as
independent and data extracted for each, ensuring that correct
weighting was provided in meta-analysis to reflect the number
of experimental groups assessed for each control group.
Where multiple behavioural outcomes were reported, data
were extracted for each test. If numerical behavioural data
were not available within the text, we extracted the data values
and associated variance from the figures presented. Where the
mean in the sham data was presented, this was taken to
represent the outcome for uninjured animals. Where sham data
were not available, pre-injury baseline data were extracted or
inferred where possible (i.e. 21 on the BBB scale).
Experimental animal species, sex and age were also extracted,
as well as additional publication information including type of
publication (abstract or full publication article), date and funding
source. Data entries were checked by an independent
investigator (PB) with any disagreements resolved via
discussion with a third person (ES). Study quality was
assessed according to the CAMARADES quality checklist,
adapted from the consensus statement ‘Good Laboratory
Practise’ in the modelling of stroke [20]. One point was given
for each of the following items included in the checklist; (i)
publication in a peer reviewed journal; (ii) statement describing
control of temperature; (iii) randomisation to treatment group;
(iv) allocation concealment; (v) blinded assessment of
outcome; (vi) avoidance of anaesthetics with known marked
intrinsic neuroprotective properties; (vii) sample size
calculation; (viii) compliance with animal welfare regulations;
(ix) and whether the authors declared any potential conflict of
interest.

Meta-analysis
For each experimental comparison reporting a behavioural

outcome, a normalised effect size for decompression was
calculated as the percentage improvement compared with
outcome in the control (i.e. longest duration of compression)
group. If the same group of animals were assessed using
several different neurobehavioural scores in the one study, a
summary estimate of efficacy in those animals was derived
using fixed effects meta-analysis of the individual outcomes,
and this summary was carried forward for further analysis. The
DerSimonian and Laird weighted mean differences random
effects model was used to aggregate the normalised effect size
from each individual comparison.

Based on examination of the decompression literature and
previous studies utilising meta-regression in SCI and stroke,
we hypothesised that treatment specific parameters
(compressive pressure and duration as well as the presence of
co-treatment), model specific parameters (level of injury,
method of compression, modelling paradigm, species, and
anaesthetic agent), outcome specific parameters
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(neurobehavioural scale and time of final assessment) and
measures to reduce experimental bias (blinded assessment of
outcome, allocation concealment, randomisation, and sample
size calculation) would influence outcome. The extent to which
these study design characteristics explained differences
between studies (study heterogeneity) was assessed using
meta-regression with the metareg function of STATA/SE10 with
the significance level set at p<0.05. Because the duration of
compression used in experiments varied from seconds to 72
hours, meta-regression of compressive time against effect size
was not valid. To adjust for the varying durations of
compression and enable analysis by linear meta-regression,
time points within each experiment were converted to
percentages of the duration of the control group. The overall
amount of heterogeneity is presented as an I2 value; 0-50%
reflects low heterogeneity; 50-75% reflects moderate
heterogeneity; and >75% reflects high heterogeneity. The
extent that study characteristics account for between study
heterogeneity is presented as the adjusted R2.

Evidence of publication bias was assessed using a funnel
plot and Egger regression. We estimated the likely effect size
in the absence of publication bias using the trim and fill method
in STATA.

Regression analysis
To determine the relationship between compressive pressure

and the duration of compression that results in paraplegia, the
pressure applied to the spinal cord in each experiment was
estimated. Where studies reported the compressive pressure
this was extracted from the methods section. In studies where
the applied force was known (e.g. a 20g aneurysm clip), the
compressive pressure was calculated from the area in contact
with the spinal cord. In studies where a spacer or similar
method was used to narrow the spinal canal the pressure was
estimated by reference to the graphs of pressure versus canal
diameter in Batchelor et al. (2011). Two different reference
graphs were used depending on whether the cord had an initial
contusion injury or not. The estimated compressive pressure
was then plotted against the mean duration of compression
necessary to produce severe neurological injury, defined as
definite non-weight bearing locomotion. This outcome was
chosen because non-weight bearing locomotion could be
reasonably identified regardless of the neurobehavioural test
used.

Results

Study Characteristics
Our systematic search identified 6045 publications. After

removal of duplicate studies (n = 2015) and screening of titles
and abstracts we retrieved 272 publications (Figure 1). Thirty-
seven studies met the pre-specified inclusion criteria. Twenty
one publications were suitable for meta-analysis [21–41]. The
remaining 16 studies did not report sufficient data to be
included in the meta-analysis and contributed only to the
systematic review [32,42–56].

Publications included in the meta-analysis contained a total
of 79 separate experiments (using 873 animals) investigating

the neurobehavioural effects of decompression after SCI, with
several publications presenting multiple experiments. The
overall effect size of the improvement in neurobehavioural
outcome as a result of decompression was 35.1% [95%CI 27.4
to 42.8] and substantial heterogeneity was present (I2=94%,
p<0.0001; Figure 2). Meta-regression was used to identify
factors significantly influencing the effectiveness of spinal cord
decompression.

Treatment Specific Parameters
The degree of compression was difficult to compare directly

across studies because of methodological differences. For
example, some studies introduced spacers to narrow the canal
diameter, others compressed the cord with aneurysm clips or
weights exerting different forces, while a few studies
compressed the cord with devices exerting known pressures.
To compare the degree of compression between studies, the
compressive pressure was calculated for each experiment.
Compressive pressure (mmHg) was found to significantly
influence neurobehavioural outcome, with higher pressures
generally associated with a smaller effect size (p=0.004; Figure
3).

When examined by univariate analysis, the duration of
compression was not significantly related to outcome (p=0.13).
However, on multivariate analysis there was an inverse

Figure 1.  Flow diagram depicting the number of
publications initially identified, number of records
following removal of duplicates and exclusions, and the
final number of publications included for analysis.  Image
adapted from: Moher D, Liberati A, Tetzlaff J, Altman DG, The
PRISMA Group (2009). Preferred Reporting Items for
Systematic Reviews and Meta-Analyses: The PRISMA
Statement. PLoS Med 6(6): e1000097. doi: 10.1371/journal.
pmed1000097.
doi: 10.1371/journal.pone.0072659.g001
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relationship between compressive pressure and the duration of
compression (p=0.001). To explore the relationship between
the force and duration of compression we recorded, for each
cohort of animals, the period of compression necessary for

those animals to develop clear paraplegia (defined as non-
weight bearing locomotion), and compared this, in each case,
with the compressive pressure used. These parameters could
be extracted from 20 experiments in 16 of the 21 studies

Figure 2.  Effect size and 95% confidence intervals of the neurobehavioural assessments in the 79 experiments included in
meta-analysis.  The reference line represents the overall effect size of 35.1% with the gray shaded bar the 95% confidence
intervals (27.5-42.8) of the global estimate.
doi: 10.1371/journal.pone.0072659.g002
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included in the meta-analysis, but only in two of the 16
excluded studies.

Using these data, compressive pressure and compressive
duration were associated by a power law (R2=0.64; Figure 4). A
characteristic of this distribution is a linear association on a log-
log plot of the variables (Figure 4 inset). This association
suggests that as pressure increases the duration of
compression necessary to produce severe neurological injury
shortens increasing quickly.

Although the data were closely correlated when all studies
were included, the correlation between the data points was
substantially greater when the analysis was limited to studies
where an initial injury to the spinal cord was followed by
compression (Figure 5A; R2=0.98). In models that utilised an
initial injury to the spinal cord followed by the insertion of a
spacer to narrow the spinal canal (which tend to replicate the
human pattern of injury [25]), the curve of best fit again had a
power law association, although at a different scale (Figure 5B;
R2=0.93). The lower pressures generated in these models were
associated with relatively long (8-72hrs) durations of
compression before severe neurological injury was apparent.

The presence of a co-treatment (methylprednisolone or
hypothermia) was not associated with a significant change in
neurobehavioural outcome, although only 3 studies examined
the effects of using a co-treatment with decompression
[21,22,36].

Model Specific Parameters
We stratified the level of injury on the spinal cord into three

groups (i) cervical and high thoracic injuries (C1-T4) (ii). mid-
thoracic injuries (T5-T12) and (iii) lower thoracic and lumbar
(T13 and below) injuries. Most experiments used mid-thoracic
injuries. The benefit from decompression was inversely
proportional to the level of injury (p=0.002; adjusted R2 =
17.5%; Figure 6A) with the greatest improvement in

Figure 3.  Meta-regression of functional (neurobehavioral)
improvement versus compressive pressure (p=0.004).  The
size of each point reflects the precision of each comparison.
doi: 10.1371/journal.pone.0072659.g003

neurobehavioural outcome in lower thoracic/lumbar injuries
(57.7% [40 to 75.4]), followed by mid-thoracic injuries (37.3%
[17.1 to 57.5]) and then injuries to the cervical/high thoracic
region (17.9% [-4.2 to 39.9]).

The method of compression significantly influenced
neurobehavioural outcome (adjusted R2=17.2%; p=0.02).
Compression with a screw or a balloon was associated with the
largest neurobehavioural improvement (62.4% [27.2 to 97.7]
and 59% [36.2 to 81.8%] respectively) with piston compression
reporting only a 10.3% improvement [18.3 to 38.9]. Use of an
aneurysm clip, balloon compression and spacer were the more
common methods, with the least number of studies applying
tube or piston compression (Figure 6B).

Four different animal species (dog, mouse, rat and sheep)
were used in experiments, with rats most commonly utilised
(n=700 animals; 61 experiments). Although there was a trend
for greater behavioural improvements in dogs (59.2% [38.3 to
80.2]; n=66, 10 experiments) compared to rats (30.2% [21.9 to
38.5]) and mice (35.1% [1.7 to 68.6]), results did not achieve
significance (p = 0.06).

Two different modelling paradigms were used; an initial
spinal cord contusion injury with subsequent compression (5
studies) or compression of the spinal cord alone (16 studies).
There was no significant difference in neurobehavioural
outcome between these two groups (p=0.22).

A total of seven different anaesthetic agents were reported.
However, the choice of anaesthetic did not impact on
neurobehavioural outcome (p = 0.29).

Outcome Parameters
Seven different scales of neurobehavioural assessment were

reported. The use of multiple tests, the Basso, Beattie,
Bresnahan (BBB) scale, and inclined plane test were the most
frequently used assessment regimes. The smallest
improvements in effect size occurred in studies employing the
inclined plane test (24.8% [5.4 to 44.1]) and the BBB scale
(17.9% [-3.7 to 39.4]), while the use of multiple tests, the
neurologic deficit score, Olby score and Tarlov scale were
associated with the highest magnitudes of improvement (Figure
6C).

The time of final assessment of experimental animals ranged
from a few days to months after the initial injury. The effect of
decompression appeared to decrease as the time from the
injury to final assessment increased (adjusted R2=1.1%)
(p=0.046; Figure 6D).

Experimental and Publication Bias
We sought to determine the influence of measures to reduce

experimental bias on neurobehavioural outcome. Less than
half of the publications (9/21) reported blinded assessment of
outcome. These blinded studies reported 20% smaller effect
sizes than non-blinded studies (adjusted R2=10.2%) (24%
[9.1-38.8] versus 44.2% [34.2 to 54.3]; p<0.008, Figure 7).

Only 3 publications reported allocation concealment. Seven
of 21 studies (33.3%) reported random allocation to treatment
group and 2 publications reported sample size calculations.
Eight studies contained a statement of potential conflict of
interest. These factors did not affect neurobehavioural
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outcome, although the small number of studies reporting these
factors precludes confidence in the statistical analyses.

Significant publication bias was apparent using Egger
regression, with the 95% confidence intervals of the regression
line not including the origin (Figure 8A). Trim and fill analysis
also suggested the presence of publication bias and the
possible absence of 29 negative experiments (Figure 8B)
leading to an overstatement of efficacy of 18.5%.

Studies Excluded from Meta-analysis
Sixteen of the 37 studies did not report sufficient quantifiable

data to be included in the meta-analysis, although 2 studies
[32,55] were able to be included in the regression analysis of
compressive pressure versus duration. The quality of excluded
studies (median quality score of 2) was lower than those
included in the meta-analysis (median quality score of 4).
These studies were undertaken in 5 different species (mouse,
rat, rabbit, dog and primate) and all but one study reported

positive effects of early decompression on neurobehavioural
outcomes or the degree of tissue preservation.

Discussion

This study assesses the pre-clinical literature reporting acute
decompression of the injured spinal cord using meta-analysis.
The overall behavioural improvement following decompression
was 35.1%, with all but one study included in the meta-analysis
reporting a beneficial impact of decompression on behaviour.
Sufficient heterogeneity was present between studies to allow
the impact of individual factors on outcome to be evaluated
using meta-regression. A number of factors emerged from this
analysis as having an impact on outcome, including both the
pressure and duration of compression.

Figure 4.  Line graph demonstrating the relationship between the duration of compression producing severe neurological
injury and the compressive pressure in studies included in the meta-analysis.  The association obeys a power law distribution
(y = 743.17x-0.443), evidenced by a linear relationship on a log-log plot of the variables (inset).
doi: 10.1371/journal.pone.0072659.g004
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Relationship between Compressive Pressure and
Duration

In univariate analyses the effect size and compressive
pressure followed an inverse relationship, with higher
pressures associated with smaller effects. The duration of
compression was not related to outcome. However, in
multivariate analysis of both the pressure and duration of
compression we observed a strong relationship with outcome.
Therefore, it appears that the duration of compression is an
important factor in determining outcome, but only in relation to
the compressive pressure; when the influence of pressure is
removed, time ceases to be an important factor.

While meta-regression demonstrated an association
between pressure and time, we sought to determine the nature
of that relationship by comparing the force of compression in
each study with the duration of compression necessary for
animals to develop paraplegia. Interestingly, the association
evident between these variables obeyed a power function. This
association suggests that with low compressive forces (e.g.
exerted by spacers narrowing the spinal canal) longer
durations of compression are necessary to significantly affect
outcome. In contrast, with high compressive forces (such as
exerted by most aneurysm clips), only short durations of
compression are necessary to produce the same severity of
neurological injury. Considering the independent nature of the
studies, the data demonstrate remarkable concordance. The
strongest correlation was evident in data derived from

experiments where there was an initial injury to the spinal cord
followed by compression. Models that arguably most closely
simulate the mechanism and timing of injury in humans are
those employing fixed degrees of canal narrowing following an
initial spinal cord contusion injury [21,25,40]. These models
were associated with relatively low pressures and relatively
long times to severe neurological injury.

These data suggest that the duration of compression
resulting in poor outcome is critically dependent on the
pressure applied to the spinal cord. The compressive
pressures accompanying human injuries are unknown.
However, experimental canal narrowing of a similar degree to
that present in complete human injuries is accompanied by
compressive pressures of around 30-35mmHg [22]. Pressure
and canal narrowing of this magnitude applied to the injured
rodent spinal cord results in significant deficits in 2-6 hours and
severe paraparesis in 8-12 hours [21,25,40]. Ischaemia is an
important mechanism of injury following compressive SCI
[29,57–63] and equivalent ischaemic times in humans are
around 2-3 times longer than those in rodents [64–67].
Together, this information suggests that decompression before
approximately 12 hours post-injury in humans might result in
substantial benefits, with a lesser degree of benefit occurring
with decompression between 12 and 24 hours.

Although the degree of canal compromise is an important
variable, in human injuries pressure is also likely to depend on
other factors such as congenital canal diameter, cord oedema

Figure 5.  Line graph exploring the relationship between compressive duration and compressive pressure.  (A) The
association between the duration of compression producing severe neurological injury and the compressive pressure in those
studies in which there was an initial injury to the spinal cord followed by compression. The data demonstrates a close correlation
and again obeys a power law relationship (y = 829.06x-0.459) with a linear distribution on a log-log plot of the variables (upper inset).
(B) Power law (y = 144.62x-0.248) relationship between compressive pressure and duration in studies employing an initial injury to the
spinal cord followed by narrowing of the spinal canal to induce compression. These models had lower estimated pressures and
longer durations of compression were necessary to produce paraplegia.
doi: 10.1371/journal.pone.0072659.g005
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and haematomyelia [68–72]. Given that the relationship
between force and time obeys a power law, small increases in
pressure would be expected to rapidly increase the urgency of
decompression. Conversely small reductions in pressure with
therapies such as hypothermia [22] might lengthen the time
available for decompressive surgery.

Because the compressive force applied to the injured spinal
cord appears to dictate the rate of progression to severe
neurological injury, measuring intracanal pressure local to the
site of injury could potentially be clinically useful and allow
patients to be better triaged according to the urgency of
surgery. Non-invasive methods of determining pressure would
be preferable and one potential approach might be to adapt
MRI methods of measuring intracranial pressure [73,74].

Modelling Compressive SCI
The data demonstrate that experimental models using very

high compressive forces generally result in paraplegia with
durations of compression measured in minutes. In contrast, the
duration of compression needed to produce paraplegia in
animal models with relatively low compressive forces (such as
canal narrowing) is many hours (Figure 3). This latter
timeframe seems to concord better with the human timeframe
of injury, with clinical data suggesting that early decompression
is of benefit in at least a proportion of patients when performed
6-20 hours post-injury [10–12]. These data support the use of
low compressive pressures when modelling the effects of early
decompression on acute SCI. However, power curves have the

Figure 6.  The change in effect size with (A) Region of injury, (B) Method of compression (Clip = aneurysm clip), (C)
Neurobehavioural score (NDS = Neurologic deficit score; Olby = Olby score; Tarlov = Tarlov scale; Multiple = ≥2
behavioural tests; Motor = Motor test; BBB = Basso Beattie Bresnahan scale).  The shaded gray bar represents the 95%
confidence limits of the global estimate. The vertical error bars represent the 95% confidence intervals for the individual estimates.
The width of each bar reflects the log of the number of animals contributing to that comparison. Each stratification accounts for a
significant proportion of the heterogeneity observed between studies. (D) Meta-regression of functional neurobehavioural
improvement versus the time of final assessment (p=0.046). The size of each point reflects the precision of each comparison.
doi: 10.1371/journal.pone.0072659.g006
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useful property of allowing accurate extrapolation [75]; thus
times relevant to human injury might be obtained if data is fitted
to a power curve and extrapolated to the range of lower
pressures likely to accompany human injury.

Figure 7.  Effect of reported study blinding on effect
size.  The shaded gray bar represents the 95% confidence
limits of the global estimate. The vertical error bars represent
the 95% confidence intervals for the individual estimates. The
width of each bar reflects the log of the number of animals
contributing to that comparison.
doi: 10.1371/journal.pone.0072659.g007

Of the species employed in pre-clinical studies of early
decompression, a trend towards a larger effect size was seen
in studies using dogs. However, this may simply reflect the
different neurobehavioural scales used in each species as well
as differing study designs. For example, the duration of
compression tended to be shorter in dog studies, while an
initial injury prior to compression of the spinal cord was present
in a number of rodent studies. Supporting this interpretation,
when these effects were removed and just the time to
paraplegia examined in relation to the duration of compression,
the data regardless of whether derived from a mouse, rat, dog,
sheep or primate model fell around the same curve (Figure 2).
The consistent relationship of the data regardless of species
suggests that small animal models are equally as valid as their
larger counterparts, at least for modelling compressive SCI.

Compressive injury to the cervical/high thoracic region was
accompanied by the smallest effect size. This may reflect the
use of the inclined plane test to assess neurobehavioural
recovery in these studies, without separate assessments of
forelimb recovery. Relatively poorer performance on the
inclined plane test would be expected with both forelimb and
hindlimb function affected compared to the majority of other
studies where impairments were confined to the hindlimbs.

Outcome appeared to be significantly affected by the method
of compression. However, although piston compression had a
smaller overall effect size there were only two studies utilising
this method, one of which was positive, while the other was
one of the few studies with negative findings. This is reflected
in the wide confidence interval.

A generally smaller effect size was observed as the interval
to final assessment increased. This may in part reflect the

Figure 8.  Evidence of publication bias demonstrated by (A) Egger regression analysis of early decompression
experiments.  The 95% confidence intervals of the regression line do not include the origin, suggesting the presence of a significant
publication bias. (B) Funnel plot showing the data in black and the additional missing studies suggested by trim and fill in red. The
red vertical line indicates the possible global estimate in the absence of publication bias.
doi: 10.1371/journal.pone.0072659.g008
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slower and more protracted pattern of recovery by animals with
severe injuries. In some studies, differences between animals
with the most severe injuries and those animals with milder
injuries as a result of earlier decompression were relatively
greater initially, before decreasing as the more severely injured
animals recovered [21–25,28]. Methodological differences may
also be responsible; those studies with long assessment times
more often had injuries in the cervical/high thoracic region, an
initial injury to the spinal cord prior to commencement of
compression, or evaluated behaviour using the BBB and
inclined plane tests, all factors associated with at least trends
to smaller effect sizes.

Only two of the included studies found no benefit from
decompression. In the meta-analysis group, 1/21 studies were
negative, while in the group excluded from meta-analysis 1/16
reported negative findings. Variations in the animal models
may account for the findings in these studies. Lee et al. (2008)
employed a balloon occlusion model, with the balloon
completely occluding the spinal canal for 30 or 60 minutes.
This likely resulted in a very high compressive pressure and no
recovery of the animals was reported. Swartz et al., (2009)
employed a model with an initial injury followed by a very high
compressive force for varying short periods (10s-5min).
Although decompression was found to be of benefit overall, no
difference was reported between the groups with different
durations of compression. The reasons for this result are
unclear and different explanations have been proposed [76].
The traumatised cord is particularly vulnerable to compression
[25] and it may be that even a very short duration of high
pressure compressive injury creates a maximal lesion.

Study Quality and Publication Bias
A number of investigations have demonstrated the

importance of study quality, with a decrease in effect size
consistently observed as quality improves [20,77–80]. Although
7 decompression studies had quality scores of 5 or more
[21,22,29,33,37,40,41], the overall quality of the dataset was
modest, with a median quality score of 4 in studies included in
the meta-analysis and 2 for those studies excluded. Blinding is
a key factor in maintaining the internal validity of an experiment
but was only reported in approximately half of decompression
studies. Those studies reporting blinding were associated with
a significantly smaller effect size (24% vs. 44%). Relatively few
studies reported other key factors required to minimise the
introduction of experimental bias including randomisation,
concealed allocation and sample size calculations. Statistical
analysis was impaired by the small number of studies reporting
these items.

An important finding was the potential presence of
publication bias. The funnel plot of the data was not
symmetrical, with trim and fill analysis showing the possible
absence of 29 negative experiments from the published
literature. However, these data do not definitively prove the

presence of publication bias and an alternative interpretation is
simply that low precision experiments are sometimes
associated with exaggerated estimates of efficacy. Regardless
of the explanation, these results are in keeping with an
overstatement of efficacy in the early decompression literature,
an interpretation supported by the reduction in efficacy seen as
study quality improves.

Study Limitations
This meta-analysis is weakened by the overall modest study

quality and the possibility that a considerable amount of data
remain unpublished. Although the search strategy is likely to
have ascertained the majority of relevant publications it is
possible that some studies were not retrieved. We would have
liked also to examine histological outcomes using meta-
analysis. However, the limited number of studies reporting
quantitative histology prevented this. The approach is
correlative and observational rather than experimental and
therefore limits the ability to draw definite conclusions.

Conclusion

Meta-analysis of the pre-clinical literature suggests that early
decompression is an effective therapeutic strategy. The
majority of studies report positive findings, with an overall
estimated effect size of behavioural improvement following
decompression of 35.1%. The true effect size may, however,
be smaller than this, as blinded assessment was associated
with a significant reduction in effect size (24%) and publication
bias appears to be present. Outcome following acute
compressive spinal cord injury appears to be closely tied to the
compressive pressure and duration. As compressive pressure
rises, the duration of compression necessary to produce
severe neurological injury rapidly shortens. The close
relationship of compressive pressure to the rate of
development of severe paraplegia suggests that pressure local
to the site of injury may be a useful, potentially measurable
parameter to determine the urgency of decompressive surgery.
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