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a b s t r a c t 

The discovery and development of new potent antimicrobial and antioxidant agents is an essential lever 

to protect living beings against pathogenic microorganisms and free radicals. In this regard, new func- 

tionalized pyrazoles have been synthesized using a simple and accessible approach. The synthesized 

aminobenzoylpyrazoles 3a-h and pyrazole-sulfonamides 4a-g were obtained in good yields and were 

evaluated in vitro for their antimicrobial and antioxidant activities. The structures of the synthesized 

compounds were determined using IR, NMR, and mass spectrometry. The structure of the compound 4b 

was further confirmed by single crystal X-ray diffraction. The results of the in vitro screening show that 

the synthesized pyrazoles 3 and 4 exhibit a promising antimicrobial and antioxidant activities. Among 

the tested compounds, pyrazoles 3a, 3f, 4e, 4f , and 4g have exhibited remarkable antimicrobial activity 

against some microorganisms. In addition, compounds 3a, 3c, 3e, 4a, 4d, 4f , and 4g have shown a signifi- 

cant antioxidant activity in comparison with the standard butylhydroxytoluene (BHT). Hence, compounds 

3a, 4f , and 4g represent interesting dual acting antimicrobial and antioxidant agents. In fact, pyrazole 

derivatives bearing sulfonamide moiety ( 4a-g ) have displayed an important antimicrobial activity com- 

pared to pyrazoles 3a-h , this finding could be attributed to the synergistic effect of the pyrazole and 

sulfonamide pharmacophores. Furthermore, Molecular docking results revealed a good interaction of the 

synthesized compounds with the target proteins and provided important information about their inter- 

action modes with the target enzyme. The results of the POM bioinformatics investigations (Petra, Osiris, 

Abbreviations: POM, Petra/Osiris/Molinspiration; PSH, Pyrazoles-Sulfonamide Hybrids. 
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. Introduction 

Pathogenic microbes remain a constant threat for human health 

1] . They are responsible for serval serious infectious diseases that 

ead to death [2] . In addition, these pathogenic agents have the 

bility to undergo genetic modification through spontaneous mu- 

ations and become therefore resistant to existing antimicrobials 

rugs [ 3 , 4 ]. Furthermore, the production of free radicals in living

rganisms is a physiological process, regulated by various chemi- 

al or enzymatic detoxification processes. However, when the pro- 

ective system of the human organism shows some failure and 

oses its efficiency, the number of free radicals increases signifi- 

antly and leads to oxidative stress [5] . This oxidative effect leads 

o the damage of certain biomolecules, including lipids, DNA and 

roteins, …etc. [6] . This damage causes serious threat to human 

ealth, such as cancer, Alzheimer’s, and Parkinson’s [ 7 , 8 ]. Hence, 

he development of new antimicrobial and antioxidant agents able 

o overcome these health problems is urgently needed. 

In this context, chemists have devoted great efforts to design 

ew compounds with excellent therapeutic effects. In fact, pyrazole 

harmacophore have attracted considerable attention since their 

iscovery as a key building blocks of many drugs [ 9 , 10 ]. Moreover,

ulfonamides are among of antibiotics widely used as preventive 

nd curative agents against various infectious diseases [ 11 , 12 ]. Re- 

ently, different innovative strategies have been proposed in the 

nvestigation of molecules with potential antimicrobial and antiox- 

dant activities. The association of two or more pharmacophores in 

he one molecular skeleton may lead to a synergistic effect [ 13 , 14 ].

he conception of molecular scaffolds containing pyrazole hetero- 

ycle and sulfonamide moiety is part of this strategy [ 11 , 15 , 16 ].

ence, molecules containing the two pharmacophores sulfonamide 

nd pyrazole exhibit a wide array of biological activities, such 

s: antioxidant [13] , antimicrobial [ 13 , 17 , 18 ], anti-inflammatory 

 17 , 19 ], anticancer [20] , selective inhibitor of carbonic anhydrase 

21] , …etc. Some of these compounds are commercially available 

s antibiotics like sulfaphenazole and anti-inflammatory, in partic- 

lar, celecoxib [ 15 , 16 ]. 

Chemo-informatics approaches have become an effective and 

apid tool in the design of new molecules with significant bi- 

logical activity [ 22 , 23 ]. Recently, various structure-based virtual 

creening techniques are used to design new drug candidates 

gainst the novel coronavirus [24–26] . In this context, several stud- 

es have been conducted on many organic molecules [25–27] . In 

ilico simulations have identified new compounds with potential 

ntiviral activity, which need further experimental studies. Pyra- 

oles and sulfonamides are known for their remarkable antiviral 

ctivities [ 28 , 29 ]. In the best of our knowledge, there is no pre-

ious study performed on molecules that incorporate these two 

otifs towards SARS-CoV-2 proteins. This prompted us to carry 

ut an in-silico study on these compounds with the SARS-CoV-2 

ain protease, in order to identify new active molecules against 

his pathogenic agent. 

Based on literature data, in particular, those related to phar- 

acological interest of pyrazole and sulfonamide moieties, and 

n continuation of our ongoing research focused on the synthe- 

is of new heterocyclic systems [ 30 , 31 ]. We describe herein, the

ynthesis of a new series of hybrid heterocyclic molecules, which 
2

tudied heterocycles present a very good non toxicity profile, an excellent

netics. Finally, an antiviral pharmacophore (O 

δ−, O 

δ−) was evaluated in

erves all our attention to be tested against Covid-19 and its Omicron and

© 2022 Elsevier B.V. All rights reserved. 

he pyrazole and sulfonamide moieties were linked together via 

 benzoyl group ( Fig. 1 ). The synthesized compounds were eval- 

ated in vitro for their antimicrobial and antioxidant properties. 

he antimicrobial activity was performed using the conventional 

roth microdilution method against the different bacterial and fun- 

al strains, and the antioxidant activity through the DPPH radical 

cavenging assay. The results obtained indicate that some studied 

ompounds display interesting antimicrobial and antioxidant ac- 

ivities. Furthermore, a molecular docking study was carried out 

o predict the possible binding interactions between the studied 

ompounds and the target enzyme. In addition, a docking study 

as done against SARS-CoV-2 main protease, to identify inhibitors 

hat could the potentially effective anti-COVID-19 drug candidates. 

s well as to identify the pharmacophores sites in the synthesized 

ompounds for the antibacterial, antifungal, antiviral activities us- 

ng Petra/Osiris/Molinspiration (POM) analyses were also carried 

ut. 

. Results and discussion 

.1. Chemistry 

The synthesis of the targeted pyrazole derivatives bearing sul- 

onamide moiety was carried out using the procedure described 

n scheme 1 . The intermediates 5-(2-aminobenzoyl)-3,4-diaryl- 

-phenylpyrazoles 3a-h were prepared in two steps from aza- 

urones 1a-d : 1,3-dipolar cycloaddition reaction followed by ring 

pening of spiropyrazolines 2a-h [30] . Then, the pyrazoles 3a-h 

ere used as a key synthon to synthesize the target pyrazole- 

ulfonamide hybrid compounds 4a-g . The chemical structure of the 

ynthesized compounds was established using FT-IR, 1 H NMR, 13 C 

MR and HRMS techniques. In addition, the structure of compound 

b was further confirmed by single crystal X-ray diffraction ( Fig. 3 ). 

For example, the infrared spectrum of compound 4a shows the 

resence of two absorption bands at 3303 cm 

−1 and 1622 cm 

−1 

orresponding to N-H and -C = O stretchings, respectively. In addi- 

ion, its 1 H NMR spectrum reveals the presence of a signal at 2.45 

pm owing to CH 3 protons of tosyl group. It showed also a sig- 

al at 11.07 ppm exchangeable with D 2 O attributable to the pro- 

on of NH group. Furthermore, 13 C NMR spectrum displays tow 

haracteristic signals at 21.65 ppm and 192.25 ppm belonging to 

ethyl carbon ( C H 3 ) and ketone carbon (C = O), respectively. The 

ass spectrum of compound 4a shows a peak for the molecular 

on [M + Na] + at m/z = 592.16635. The spectral data are in perfect

greement with the proposed structures. 

.2. Tautomeric analysis and prediction of bioactivity 

For PSH and certainly for their analogues, depending on the pH 

nd position of the dissociate amidogen hydrogen atom, thre pos- 

ible PSH tautomerisation can be described for the neutral forms. 

hese relevant structures are sketched in Fig. 2 . 

In past, attention was mainly devoted to the N-H structure. 

owever, from a chemical point of view, all other structures are 

ossible. 

For the development of binding approaches for PSH and their 

nalogues in the environment, the identification of the active sul- 

onamide structures present is important. Neither experimental 
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Fig. 1. Target compounds design concept based on commercially antibiotic drug containing pyrazole and sulfonamide scaffolds. 

Scheme 1. Route of synthesis of compounds 4a-g . 
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or theoretical data is available for the identification of water- 

olved PSH species. Theoretically, NMR spectroscopy could be use- 

ul for identifying chemical structures. Theoretical ab initio studies 

ould supplement these measurements. Additionally, calculations 

f energetics, atomic charges, minimum energy structures, geom- 

try, and natural bond orbital (NBO) could indicate the electronic 

ensity distribution of each atom. Finally, by taking NBO results 

howing the presence of S–O single bonds in consideration, realis- 

ic Lewis structures can be determined. These systematic data, re- 

arding the variation of molecular properties, are important for the 
3 
hemical structure and could therefore provide first insights into 

he still poorly understood chemical bonding of PSH complexes to 

oil. 

In brief, the objective of this study is to investigate the potential 

harmacophore sites of PSH species using antibacterial and anti- 

ungal screenings dependence on pH and comparison with the cal- 

ulated molecular properties. To verify these structures, further X- 

ay analysis becomes necessary to fix the predominant tautomer. 

hen the Petra/Osiris/Molinspiration (POM) analyses were carried 

ut for example calculation of net atomic charges, bond polarity, 
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Fig. 2. Possible tautomers and their corresponding pharmacophore sites [POM Theory]. 
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tomic valence, electron delocalization and lipophicity. Finally, to 

nvestigate the combined antibacterial/antifungal/Antiviral bioac- 

ivity of the PSH species, tautomeric structure was performed. 

Current thinking in the generation of specific drug leads em- 

odies the concept of achieving high molecular diversity within 

he boundaries of reasonable drug-like properties. Natural and 

emi-natural products, examples penicillin and, imipenemhave 

igh chemical diversity, biochemical specificity and other molec- 

lar properties that make them favourable as lead and standard 

eferences (SD) structures for drug discovery, and which serve to 

ifferentiate them from libraries of synthetic and combinatorial 

ompounds. Various investigators have used computational meth- 

ds to understand differences between natural products and other 

ources of drug leads. Modern drug discovery is based in large part 

n high throughput screening of small molecules against macro- 

olecular disease targets requiring that molecular screening li- 

raries contain drug-like or lead-like compounds. We have an- 

lyzed known standard references (SD) for drug-like and lead- 

ike properties. With this information in hand, we have estab- 

ished a strategy to design specific drug-like or lead-like PSH 

 4a-g ). 

To be sure of the real and dominant tautomeric form, it be- 

omes necessary to get some crystallographic data of someone of 

ested compounds 3a-h and/or 4a-g . 
4 
.3. X-ray diffraction data and crystal structure of compound 4b 

The X-ray measurement conditions, crystal data and structure 

efinement details are summarized in Table S1. The selected inter- 

tomic distances and angles listed in Table S2 are close to those 

bserved in the structures of similar compounds [31–33] . The plot 

f the molecular structure of the title compound is shown in Fig. 3 .

he central pyrazoline ring (N2–N3–C15–C16–C17) is almost planar 

ith the largest deviation from the mean plan of -0.012(2) at C17 

tom. It is connected to three benzene rings and to a sulfonamide 

onjugates as shown in Fig. 3 . The dihedral angles between the 

yrazole ring and the different substituents namely: chlorobenzene 

ing (C18—C23) and the two benzene rings (C24—C29) and (C30—

35) are of 37.35(11) °, 49.98(11) ° and 34.75(13) °, respectively. The 

ean plan through the aminobenzene ring (C8—C13) is nearly or- 

hogonal to that of the chlorobenzene ring as indicated by the di- 

edral angle between them of 87.95(11) °. On the other hand, the 

ihedral angle formed by the two benzene rings (C2—C7) and (C8—

13) linked to sulfoamine group is 79.30(12) °, which indicates that 

hese two rings are almost orthogonal to each other. 

In the crystal, the molecules are interconnected through C4—

4…Cl1 hydrogen bond building a chain running along the b-axis. 

he chains are linked by π…π interaction between the pyrazoline 

nd one benzene ring (C30—C35), with inter-centroid distance of 
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Fig. 3. Ortep drawing the structure of the title compound (4b) and its numbering scheme. Thermal ellipsoids were drawn at the 50 % probability level at 296 K. 

Fig. 4. The crystal packing for the title compound, showing molecules linked by hydrogen bonds (dashed cyan lines) and π…π interactions (dashed green lines). 
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.92 (2) Å as shown in Fig. 4 and Table S3. The resulting three-

imensional framework is represented in Fig. 4 . Moreover, the 

olecular conformation is stabilized by two stark intra-molecular 

ydrogen bonds completing two S(6) rings (see Fig. 4 and Table 

3). 

. Biological activities 

.1. Antimicrobial activity 

The new series of synthesized compounds ( 3a-h and 4a-g ) were 

ested in vitro for their antimicrobial activity against Gram-positive 

acteria: Staphylococcus aureus (S. A.), Gram-negative bacteria: Es- 

herichia coli (E. C.), Klebsiella pneumoniae (K. P.) and Pseudomonas 

eruginosa (P. A.), and yeasts: Candida albicans (C. A.) and Saccha- 

omyces cerevisiae (S.C.). The antibacterial and antifungal activities 

f the target compounds were determined as minimum inhibitory 

oncentrations (MICs) by the broth microdilution method. The an- 

ibiotics Ampicillin and Streptomycin were used as positive con- 

rols against bacterial strains, and Fluconazole as a positive control 

or fungal strains. The results of the antimicrobial activity are given 

n Table 1 . 

The results of the preliminary studies show that the two 

eries of pyrazoles ( 3a-h and 4a-g ) exhibit antimicrobial activ- 
5 
ty at concentrations between 31.25 and 250 μg/mL against the 

athogenic microorganisms tested. Some compounds of these two 

eries display significant antibacterial and antifungal activity, in 

articular, those containing the sulfonamide moiety. Compound 

f shows remarkable activity against Candida albicans (62.5μg/mL) 

nd Saccharomyces cerevisiae (31.25 μg/mL) compared to flucona- 

ole. The antifungal activity obtained for compound 4cb can be 

ttributed to the presence of two chlorine atoms (Cl) in para 

osition on the benzene rings [ 34 , 35 ]. Compounds 3a, 3f , and

e show significant inhibitory activity against Saccharomyces cere- 

isiae with a MIC value of 62.5 μg/mL, whereas they manifested 

oderate activity against Candida albicans (MIC values between 

2.5 and 125 μg/mL), compared to the same standard reference. 

he antifungal activity observed for these compounds is com- 

arable to that described in the literature for analogous com- 

ounds [ 17 , 35 , 36 ]. However, for antibacterial activity compound 

g shows remarkable inhibition against the gram-positive strain 

taphylococcus aureus with a MIC value of 62.5 μg/mL and mod- 

rate activity against other bacteria with MIC values in the range 

f 125 μg/mL. The activity observed for the 4g product com- 

ared to the other compounds can be attributed to the syner- 

istic effect of the bromine atom and the sulfonamide moiety 

 17 , 36 ]. 
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Table 1 

Antimicrobial activity (MIC, μg/mL) of the synthesized compounds (3a-h and 4a-g) 

Compd. R R1 

Bacterial strains Fungal strains 

E. C. K. P. P. A. S. A. C. A. S. C. 

3a H H 125 250 250 125 62.5 62.5 

3b H Cl 250 125 250 250 125 125 

3c OCH 3 H 250 125 250 250 125 125 

3d OCH 3 Cl 250 125 250 250 125 125 

3e Cl H 250 250 250 125 250 250 

3f Cl Cl 250 125 250 250 125 62.5 

3g Br H 250 250 125 125 125 250 

3h Br Cl 250 125 250 250 125 125 

4a H H 250 250 250 125 250 125 

4b H Cl 250 125 250 250 125 125 

4c OCH 3 H 250 125 125 250 125 125 

4d OCH 3 Cl 250 125 125 250 125 125 

4e Cl H 125 125 125 250 125 62.5 

4f Cl Cl 250 125 250 250 62.5 31.25 

4g Br H 125 125 125 62.5 125 125 

Streptomycin — — 25 3.12 — 12.5 — —

Ampicillin — — 50 25 1.56 25 — —

Fluconazole — — — — — — 40 20 

Bacteria strains : E. C. (Escherichia coli (ATB:57) B6N ), K. P. (Klebsiella pneumoniae), P. A. (Pseudomonas aeruginosa), 

S. A. (Staphylococcus aureus); Fungal strains: C. A. (Candida albicans ATCC10231 ) and S. C. (Saccharomyces cerevisiae 

ATCC9763 ). 

Table 2 

The antioxidant activity of the synthesized compounds and the BHT reference. 

Percentage inhibition of antioxidant activity of tested compounds 

Comp R R 1 R 2 3 μg/mL 15 μg/mL 31 μg/mL 62.5 μg/mL 250 μg/mL 10 0 0 μg/mL 

3a H H - 41.81 ±0.67 43.03 ±0.09 45.63 ±0.23 46.20 ±0.19 46.51 ±0.45 64.84 ±0.88 

3b H Cl - 21.06 ±0.42 36.51 ±0.35 37.87 ±0.79 39.09 ±0.41 42.87 ±0.45 58.93 ±0.34 

3c OCH 3 H - 23.18 ±0.56 24.84 ±0.45 28.03 ±0.27 28.48 ±0.45 50.15 ±0.3 65.75 ±0.66 

3d OCH 3 Cl - 2.7 ±0.63 18.93 ±0.34 22.27 ±0.3 23.78 ±0.28 42.72 ±0.43 62.87 ±0.68 

3e Cl H - 38.03 ±0.76 45 ±0.6 45.30 ±0.31 46.06 ±0.51 46.36 ±0.44 68.63 ±0.35 

3f Cl Cl - 3.78 ±0.69 17.12 ±0.32 20.15 ±0.96 20.60 ±0.46 23.33 ±0.56 64.54 ±0.65 

3g Br H - 15 ±0.09 18.33 ±0.97 19.84 ±0.8 20.30 ±0.63 22.12 ±0.32 63.48 ±0.97 

3h Br Cl - 13.18 ±0.82 28.48 ±0.72 30.60 ±0.54 46.51 ±0.25 49.84 ±0.43 56.51 ±0.72 

4a H H tosyl 25.30 ±0.67 25.75 ±0.85 29.39 ±0.94 35 ±0.54 38.63 ±0.22 62.27 ±0.37 

4b H Cl tosyl 3.63 ±0.64 5.75 ±0.24 14.39 ±0.35 32.27 ±0.63 43.78 ±0.82 59.69 ±0.93 

4c OCH 3 H tosyl 14.84 ±0.8 24.24 ±0.86 44.84 ±0.24 45.60 ±0.34 47.42 ±0.76 64.54 ±0.17 

4d OCH 3 Cl tosyl 9.24 ±0.42 10.60 ±0.23 15 ±0.32 38.33 ±0.92 51.21 ±0.35 57.27 ±0.43 

4e Cl H tosyl 14.01 ±0.93 19.84 ±0.22 26.66 ±0.43 30 ±0.43 33.78 ±0.06 59.24 ±0.77 

4f Cl Cl tosyl 14.39 ±0.39 22.87 ±0.98 36.66 ±0.7 43.18 ±0.23 43.93 ±0.76 66.21 ±0.76 

4g Br H tosyl 17.12 ±0.12 19.84 ±0.64 40.45 ±0.24 46.81 ±0.65 48.18 ±0.34 67.87 ±0.26 

BHT — — — 43.93 ±0.93 59.09 ±0.09 63.63 ±0.63 75.75 ±0.75 80.30 ±0.30 87.87 ±0.87 
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.2. Antioxidant activity 

To evaluate the antioxidant potential of our prepared hetero- 

yclic compounds, the free radical scavenging capacity was deter- 

ined by the DPPH assay, using butylhydroxytoluene (BHT) as a 

tandard antioxidant. It is a commonly used assay that provides 

nformation on the ability of a compound to donate an electron or 

roton to the DPPH radical, and allows for the measurement of the 

ree radical scavenging capacity in a in a high speed, simple, and 

conomic way. The percentages of inhibition at different concen- 

rations are expressed as an average and summarized in Table 2 . 

The results of this preliminary study show that some com- 

ounds have a remarkable free radical scavenging capacity (DPPH) 

ompared to the BHT standard. The study reveals that compounds 

a (% PI = 41.81) and 3e (% PI = 38.03) show an antioxidant ac-

ivity comparable to that of the BHT (% PI = 43.93) at a low con-

entration (3 μg/mL). For compounds 3b, 3c, 4a, 4d, 4f , and 4g we 

oticed that the antioxidant activity increases with concentration 

nd becomes close to that of the standard at high concentrations. 

he analysis of the obtained results shows that the substituents 

CH 3 , Cl, and Br have no significant influence on the antiradical 

ctivity of the studied compounds, this suggests that this activity 

s related to the amino group NH and NH 2 in both types of com-

ounds [ 37 , 38 ]. 
6 
. Molecular Docking 

The docking results obtained from Auto-Dock showed that 

he studied compounds can be accommodated in the bind- 

ng pocket of DHPS with a comparable orientation to the one 

bserved in the STZ-DHPP covalent adduct in the reported 

rystal structure [39] . The top-ranked docking poses reproduce 

he key interactions observed in the STZ-DHPP–DHPS complex 

 Fig. 5 ). 

Analysis of molecular docking results of pyrazoles-sulfonamide 

ybrids derivatives 4a-4g shows that most of these derivatives ex- 

ibit the same polar H-interaction and hydrophobic interaction of 

TZ ligand (referent) with the site of action DHPs, this interaction 

imilarity is due to the sulfonamide moiety ( Fig. 6 , Table 3 and fig-

re S1). The good antibacterial activity presented by the good in- 

eraction of the oxazaphosphinanes compounds with the DHPs tar- 

et can be explained by the presence of hydrophobic interactions 

dentical to those of the co-crystallized ligand and the interesting 

tability inside the DHPs cavity with a binding energy varying be- 

ween -5.96 and -7.01 (kcal / mol). 

Compounds 4f and 4g present the best interaction with the tar- 

et with binding energy respectively 7.1 and 6.89. 
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Fig. 5. Re-docking of the co-crystallized ligand (PDB ID: 3JQ9) 

Fig. 6. Molecular docking analysis of PSH derivatives ( 4c, 4e, 4f and 4g) . Pose view of interaction with receptor DHPs . 

Table 3 

Ranking of the PSH derivatives 4a-4g derivatives after docking study. 

Compds 

Binding Energy 

(kcal/mol) Vdw Energy 

Electrostatic 

Energy Nature of interactions Amino acids on active sites with 

4a -6.01 -8.46 0.06 -Hydrophobic interaction 

- Polar H interactions 

-Phe190 

- Ser222, Arg255 

4b -6.48 -8.72 -0.14 -Hydrophobic interaction 

- Polar H interactions 

-Lys221, Phe190 

- Ser222, Arg255 

4c -6.92 -9.46 -0.14 -Hydrophobic interaction 

- Polar H interactions 

-Phe190 

-Arg255, Thr62 

4d -6.41 -9.01 -0.08 -Hydrophobic interaction 

- Polar H interactions - Arg255, Thr62 

4e -6.96 -9.2 -0.14 -Hydrophobic interaction 

- Polar H interactions 

- Arg255, Lys221, Phe190 

- Arg255, Thr62 

4f -7.01 -9.02 -0.38 -Hydrophobic interaction 

- Polar H interactions 

- Arg255 

- Lys221, Thr62 

4g -6.89 -9.18 -0.1 -Hydrophobic interaction 

- Polar H interactions 

-Phe190, Lys221 

-Arg255, Thr62 

co-crystallized 

ligand 

-9.41 -10.13 -1.37 - Hydrophobic interaction 

- Polar H interactions 

-Phe190, Lys221 

-Asn115, Ser222, Asp155, Gly189 

7 
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Fig. 7. Atomic charge of tested compounds 3a-h and 4a-g. 

8 
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Fig. 7. Continued 
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. POM Analyses 

Now, it becomes easier, by using the POM (Pe- 

ra/Osiris/Molinspiration) Theory, to identify and to optimize most 

f the antibacterial [40–49] , antifungal [50–52] , antiviral [53–55] , 

ntiparasital [ 56 , 57 ], and antitumor [58–60] pharmacophore sites, 

ne by one, on the basis of their different physico-chemical 
9 
arameters and their different electronic charge repartition of 

orresponding heteroatoms. This young POM Theory was extended 

o other various and different biotargets [ 61 , 62 ]. Here we treate 

he series of compounds 3a-h and 4a-g in the goal to identify 

heir pharmacophore sites. 

The Osiris analysis of series of tested compounds shows that 

ost of compounds represent no side effects, except compounds 
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Fig. 8. Identification of potential Antiviral (O1, O2)-pharmacophore site. 
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Fig. 9. Superimposition of docked pose and crystal structure pose of ligand RZG in 

wild type of SARS-CoV-2 main protease (PDB ID: 5R80). 

s

s

4

s

c

a

(

t

a

t

p

b

t

p

c, 3d, 4c and 4d (Table S4). The Molinspiration analysis of se- 

ies of tested compounds shows clearly that there are more sub- 

tituents than the necessary because the molecular weight de- 

asses 500 g/mol. This constitutes the first violation of Lipinski 5 

ules. A second violation will appear when the cLogP depasses 5 

Table S5). 

. Identification of a combined Antibacterial/Antiviral pharmacophore 

ite 

Recently, we discovered the Dithymoquinone as potential anti- 

ovid-19 with MIC in range of nano-Molar [63] . Interestingly, we 

ompare the pharmacophore site of the Dithymoquinone (dO1- 

2 = 4.5 A) and the combined antibacterial/antiviral pharma- 

ophore site of compound 4b (dO1-O2 = 4.6 A). This important 

imilarity encourages us to go ahead without hesitation in anti- 

ovid screening of series 4a-g . Who knows?! Maybe a great sur- 

rise is waiting for our group ( Figs. 7 and 8 ). 

. In-silico screening the anti-Covid-19 activity of PSH by Molecular 

ocking 

In order to understand the interactions between protein and 

igand, molecular docking study was performed to explore the 

inding mode of the prepared pyrazole-sulfonamide derivatives to 

he SARS-CoV-2 main protease, Autodock Tools were employed for 

dentifying the torsion angles in the ligand, by adding the solvent 

odel and assigning the Kollman atomic charges to the protein. 

he Methyl 4-sulfamoylbenzoate was taken as reference ligand to 

nvestigate the binding mode of the studied synthesized derivatives 

a-g . 

The RMSD value is 0.84 Ǻ, which allowed us to validate 

ur docking methodology and to obtain a good prediction of 

he ligand-protein confirmation in absence of water molecules. 

ig. 9 shows docked Methyl 4-sulfamoylbenzoate RZG and co- 

rystallized one in almost same position among the receptor. 

The co-crystallized ligand RZG ( PDB ID: 5R80 ) forms a po- 

ar hydrogen interaction with the amino acid Glu166 and several 

ydrophobic alkyl and Pi-alkyl interactions in the receptor tyro- 
10 
ine kinase transmembrane EGFR, the hydrophobic interactions are 

hown in the Fig. 10 . 

The docking results of the synthesized compounds and Methyl 

-sulfamoylbenzoate were reported in Table 4 . Compounds 4a-g 

how interesting stability inside the SARS-CoV-2 main protease 

avity ( Fig. 11 , figures S2-S8 in Supplementary information) with 

 binding energy varying between -6.10 and -10.10 (kcal/mol) 

 Table 4 ). 

Analysis of the molecular docking results showed that the in- 

eractions within the active site of SARS-CoV-2 main protease were 

ttributed to hydrogen bonds, hydrophobic and electrostatic attrac- 

ion forces . Compounds 4b, 4d and 4f were the most stable com- 

ounds, they form a hydrogen bond with the Glu166 residue as the 

inding of the reference ligand. all compounds form other impor- 

ant hydrogen bonds with the residues Gln192 and Asn142. Com- 

ound 4c , which has the least binding energy (-10.10 kcal/mol) 
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Fig. 10. Binding site structure of SARS-CoV-2 main protease-RZG. 

Table 4 

Ranking of the pyrazole-sulfonamide derivatives after docking study. 

N ° protein Compound RMSD Free Energy of Binding Inhibition Constant, Ki Amino acids involved in interactions 

1 5R80 RZG 0.00 -5.27 137.38 uM hydrogen bonding GLU166 

hydrophobic interaction GLN189 , MET165, MET49, HIS41 

2 5R80 4a 0.70 -8.72 403.64 nM hydrogen bonding GLN189 

hydrophobic interaction GLN189 , MET165, HIS41, PRO168 

3 5R80 4b 0.00 -6.85 9.59 uM hydrogen bonding ASN142, GLU166 (2), CYS145 

hydrophobic interaction GLN 189 , MET165, MET49, HIS41, 

GLU166 

4 5R80 4c 0.00 -10.10 39.32 nM hydrogen bonding GLN189 

hydrophobic interaction GLN 189 , HIS41, PRO168, ALA191, 

GLU166 

5 5R80 4d 0.00 -7.64 1.98 uM hydrogen bonding GLU166 (2), GLN189 

hydrophobic interaction MET165, MET49, GLU166, GLN 189 , 

PRO168, ALA191 

6 5R80 4e 0.00 -9.39 130.62 nM hydrogen bonding GLN189 

hydrophobic interaction GLN 189 , HIS41, PRO168, MET165, 

CYS145, GLU166 

7 5R80 4f 0.00 -6.10 33.57 uM hydrogen bonding GLU166 (2), ASN142 

hydrophobic interaction GLN 189 , MET165, MET49, CYS145, 

GLU166, ASN142 

8 5R80 4g 1.64 -9.74 435.66 nM hydrogen bonding GLN 189 

hydrophobic interaction GLN 189 , PRO168, HIS41, CYS145, 

GLU166, ARG188, LEU167 
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s most favorable, with the most interesting interaction inside the 

ocket. In addition, most of the compounds developed hydropho- 

ic and electrostatic attraction forces and aromatic π–π stacking 

nteractions with GLN 189, MET165 and His 41. 

. Materials and methods 

.1. General Information 

All chemicals were purchased from Sigma-Aldrich and were of 

nalytical grade. The used instruments are mentioned in the Sup- 

lementary Material file. 

.2. X-ray diffraction data measurement 

Single crystals suitable for X-ray diffraction of the compound 4b 

ere grown by slow evaporation of its ethanolic solution at room 

emperature. Crystal data of compound 4b were deposited in the 

CDC Database Centre, with the deposition number 2151661 . The 

rystallographic data and refinement information are mentioned in 

upplementary Material Section 2. 
11 
.3. Antimicrobial activity 

The in vitro antibacterial and antifungal activities of all syn- 

hesized compounds were determined using the microdilution 

echnique, according to procedures described in the literature 

 64 , 65 ], and following the guidelines of the Clinical and Labo- 

atory Standards Institute (CLSI, approved standard M7-A8 and 

27-A3) [ 66 , 67 ]. The bacterial and fungal strains used in this 

tudy were obtained from the Microbiology Laboratory, Faculty of 

edicine and Pharmacy (FMP-Fez, Morocco). The products were 

ested against Gram-positive bacteria strains; Staphylococcus au- 

eus , Gram-negative bacteria; Escherichia coli (ATB:57) B6N, Pseu- 

omonas aeruginosa, Klebsiella pneumoniae and yeasts; Candida al- 

icans ATCC10231 and Saccharomyces cerevisiae ATCC9763. 

.4. Antioxidant activity 

The antioxidant activity of the target compounds was assessed 

sing the DPPH radical scavenging assay following the protocol de- 

cribed in our previous work [31] . The detailed protocol is given in 

upplementary Material Section 3. 
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Fig. 11. Binding site structure of SARS-CoV-2 main protease- 4f. 
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n silico studies 

The X-ray crystal structure of SARS-CoV-2 main protease (PDB 

D: 5R80 ) was obtained from the Protein Data Bank [68] . All the

elected molecules were drawn using 2D and 3D option of Chem. 

raw Ultra 16.0.and saved in mol2 format. The three-dimensional 

tructures of all compounds were performed using Maestro soft- 

are, and prepared with Ligprep using Optimized Potentials for 

iquid Simulation (OPLS3e) force field with a convergence of heavy 

toms of 0.30 Å [69] . molecular docking study was performed to 

xplore the binding mode of the prepared pyrazole-sulfonamide 

erivatives to the SARS-CoV-2 main protease, we have performed 

ur studies with AUTODOCK 4.2 [ 70 , 71 ] using the improved force

eld. Docked compounds along with SARS-CoV-2 main protease 

rotein were visualized on Discovery software. The structures of 

roteins Yersinia pestis Dihydropteroate Synthase DHPs ( PDB ID: 

JQ9 ) was selected as a receptor for docking study that were pre- 

ared and energetically minimized using the Protein Preparation 

izard protocol of the Schrodinger Suite [39] . 

. Conclusion 

In conclusion, in the present work, we report the synthe- 

is, crystallographic, biological, and computational studies of the 

ew pyrazolic compounds bearing sulfonamide moiety. The tar- 

et compounds were obtained via a multi-step reaction sequence 

ith an efficient and reliable strategy from 2-arylidene-indolin-3- 

nes (aza-aurones). The structures of the newly synthesized com- 

ounds were determined based on usual spectroscopic data (IR, 
 H-NMR, 13 C-NMR) and high-resolution mass spectrometry. In ad- 

ition, an X-ray diffraction analysis was performed on the single 

rystals of compound 4b further confirms the structure of the tar- 

et molecules. The target compounds of the two series 3a-h and 

a-g were evaluated for their antioxidant activity using DPPH as- 

ay, and antimicrobial activity in vitro through broth microdilu- 

ion method. Among the tested products, compounds 3a, 3f, 4e, 

f , and 4g showed promising antimicrobial activity against selected 

athogenic bacteria and yeasts. In addition, compounds 3a, 3c, 3e, 

a, 4d, 4f , and 4g exhibited good free radical scavenging ability. In 

ddition, a docking study was performed on targeted compounds 

o support the experimental results, and showed high docking 

core and good binding energy with the target enzyme. Analy- 

is of molecular docking results of pyrazole-sulfonamide deriva- 

ives 4a-g shows that most of these derivatives exhibit the same 

ydrophobic interaction of RZG ligand (referent) with the site 

f action SARS-CoV-2 main protease, this interaction similarity is 

ue to the sulfonamide moiety. The antiviral activity presented 
12 
y the good interaction of the pyrazole-sulfonamide derivatives 

ith SARS-CoV-2 main protease target can be explained by the 

resence of hydrophobic interactions identical to those of the co- 

rystallized ligand and the interesting stability inside the target 

avity with a binding energy varying between -6.10 and -10.10 

kcal/mol). Hence, the identified most active compound, by using 

ocking and POM Theory, may be considered as lead for further 

tudy in the search of novel pathogenic viruses’ inhibitory agent. 

he right formulation will be needed to improve the drug-like 

roperties of these compounds, especially their lipophilicity and 

olubility. 
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