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Abstract

Background: Epigenome-wide association studies using peripheral blood have identified specific sites of DNA methylation
associated with risk of various cancers and may hold promise to identify novel biomarkers of risk; however, few studies have
been performed for pancreatic cancer and none using a prospective study design. Methods: Using a nested case-control study
design, incident pancreatic cancer cases and matched controls were identified from participants who provided blood at base-
line in 3 prospective cohort studies. DNA methylation levels were measured in DNA extracted from leukocytes using the
Illumina MethylationEPIC array. Average follow-up period for this analysis was 13 years. Results: Several new genomic
regions were identified as being differentially methylated in cases and controls; the 5 strongest associations were observed
for CpGs located in genes TMEM204/IFT140, MFSD6L, FAM134B/RETREG1, KCNQ1D, and C6orf227. For some CpGs located in
chromosome 16p13.3 (near genes TMEM204 and IFT140), associations were stronger with shorter time to diagnosis (eg, odds
ratio [OR] ¼ 5.95, 95% confidence interval [CI] ¼ 1.52 to 23.12, for top vs bottom quartile, for <5 years between blood draw and
cancer diagnosis), but associations remained statistically significantly higher even when cases were diagnosed over 10 years
after blood collection. Statistically significant differences in DNA methylation levels were also observed in the gastric
secretion pathway using Gene Set Enrichment Analysis (GSEA) analysis. Conclusions: Changes in DNA methylation in
peripheral blood may mark alterations in metabolic or immune pathways that play a role in pancreatic cancer. Identifying
new biological pathways in carcinogenesis of pancreatic cancer using epigenome-wide association studies approach could
provide new opportunities for improving treatment and prevention.

Pancreatic cancer accounts for the third highest number of
cancer-related deaths in the United States, after lung and colo-
rectal cancers, and is expected to surpass colorectal cancer in
the next decade (1). Pancreatic cancer is highly lethal, with 93%
of pancreatic cancer patients succumbing to their disease
within 5 years of diagnosis, largely because of most cases being
diagnosed at late stages. Screening for pancreatic cancer is not
currently recommended for asymptomatic adults because exist-
ing screening methods have not been shown to reduce mortal-
ity (2). Improving sensitivity of tests is important, but for

screening to be effective, patients need to be identified at early
stages of the disease.

Some studies aimed at identifying early detection bio-
markers have focused on measuring DNA methylation of pro-
moter regions in known cancer genes using peripheral cell-free
DNA in bloods of patients (3, 4). These methods are promising,
but it is unclear whether they would identify cancers at early
stages of the disease, when treatment would be most effective.
Alternatively, high-dimensional arrays now provide the oppor-
tunity to agnostically interrogate hundreds of thousands of
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biomarkers, including quantification of DNA methylation
throughout the genome. Using these technologies, studies have
begun to examine how DNA methylation levels in peripheral
leukocytes vary by cancer status (5–7).

Several case-control studies on pancreatic cancer have com-
pared DNA methylation in blood leukocytes of pancreatic can-
cer patients with healthy controls (8–10). However, these
studies were retrospective case-control studies, and they can-
not differentiate between recent changes to those that occurred
months or years prior to diagnosis. Conducting prospective
nested case-control studies using blood samples that were
obtained from healthy individuals many years prior to diagno-
sis provides a unique opportunity to identify biomarkers that
may be linked to disease progression. As DNA methylation lev-
els can change over time to impact gene expression, identifying
changes decades prior to disease could assist in uncovering
pathways that contribute to the development of cancer, and
novel genomic regions identified using these methods could po-
tentially be targeted for prevention or drug intervention. To our
knowledge, this study presents results from the first
epigenome-wide association study (EWAS) on pancreatic cancer
risk using prediagnostic peripheral blood leukocytes.

Methods

Study Populations

The primary EWAS was conducted using prediagnostic bloods
of pancreatic cancer cases and matched controls selected from
the Nurses’ Health Study (NHS), the Physicians’ Health Study
(PHS), and the Health Professionals Follow-up Study (HPFS).

For this analysis, 403 incident cases were confirmed to have
pancreatic cancer among the participants who provided blood
samples prior to cancer diagnosis. A control subject was
matched to each case on cohort (which also matches on sex),
age (þ/� 1 year), date of blood draw (month 3þ/� and year),
smoking (never, former, current), and race (white or other).
Because of low DNA concentrations in some of the samples and
samples removed after data processing of the arrays (see
Supplementary Methods, available online), the initial 1:1 match-
ing was not always conserved and resulted in some cases and
controls with no matched pair. The final dataset consisted of
393 cases and 431 controls.

DNA Methylation Measurements

DNA extracted from buffy coats was bisulfite-treated, and DNA
methylation was measured with the Illumina Infinium
MethylationEPIC BeadChip array (Illumina, Inc, CA, USA).
Details on DNA methylation measurements and data process-
ing are provided in the Supplementary Methods (available
online).

Statistical Analyses

All statistical analyses were performed in R (version 3.5.1). The
dataset of cases and controls from this nested case-control
study was randomly divided into a training set (n¼ 577) and
testing set (n¼ 247) to replicate findings and reduce chance
findings; however, to maximize power, analyses were also con-
ducted using all data combined. We initially conducted the
EWAS analysis using a series of unconditional multivariable lo-
gistic regression models to estimate odds ratios (ORs) and 95%

confidence intervals (CIs) for the CpG-specific DNA methylation
levels and pancreatic cancer risk. Unconditional logistic regres-
sion models were used to estimate odds ratios and 95% confi-
dence intervals to maximize power by including cases and
controls without matched pairs (Ptrend based on continuous var-
iable of median value for each quartile). All models were ad-
justed for age at blood draw, cohort, race (white or nonwhite),
smoking status (never, former, current), date of blood draw
(continuous), body mass index (BMI), and cell composition (ex-
cept in the cell-specific models) (11, 12), given the potential for
confounding by cell composition (13). Models were fit to the
training and testing sets separately, with the intent to compare
statistically significant results; models were also fit on the
whole dataset. All P values were adjusted for multiple compari-
sons using the false discovery rate (FDR) method. The statistical
method section for the risk prediction score analysis is provided
in the Supplementary Methods (available online).

We used the DMRcate Bioconductor R package (14) to iden-
tify differentially methylated regions (DMRs) associated with
pancreatic cancer risk. DMRcate was applied independently to
the training and testing sets using the following settings: region
length 2000 bp; min of 2 statistically significant CpGs; FDR P val-
ue< .05 (adjusting for the same covariates as in the single CpG
analyses). Statistically significant regions (after correction for
multiple comparisons) were compared between the training
and testing sets; CpGs in regions identified in both datasets
were further evaluated by using the combined dataset to test
associations with pancreatic cancer using CpG quartiles (based
on methylation levels in the controls). Associations were also
examined by cohort (using cohort-specific cut points for the
quartiles) and by time from blood draw to diagnosis. Finally, to
increase power, we also conducted the DMRcate analysis on the
combined (training and testing) dataset, and the top 5 most sta-
tistically significant regions were evaluated for patterns by co-
hort study and by time to diagnosis.

Because different cell types might exhibit differing associa-
tions between CpG-specific DNA methylation and pancreatic
case-control status, an additional analysis was conducted to
identify CpGs that might be unique to different cell types in
blood (Supplementary Methods, available online).

To identify biological pathways and gene ontologies associ-
ated with pancreatic cancer, we used the methylGSA
Bioconductor package (15) to perform gene set analyses.
Analyses were performed separately on the training and testing
sets, and the top genesets (rank-ordered based on P value) were
compared between the training and testing sets to look for con-
sistent pathways and/or ontologies.

All P values are based on 2-sided tests, and statistical signifi-
cance was based on a P value of less than .05.

Results

Population Characteristics

The population characteristics for the cases and controls over-
all, and by the training and testing sets, are presented in
Table 1. Participants in the nested case-control study were diag-
nosed with pancreatic cancer an average of 13 years (range
6 months to 26 years) after providing a blood sample; 44.8%
cases and 45.0% of controls were women (selected from the
NHS cohort), and the remaining cases and controls were men
from the PHS (18.1% and 20.0%, respectively) and HPFS (37.2%
and 35.0%, respectively) cohorts. Baseline characteristics were
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evenly distributed between the training and testing datasets
(Table 1).

Single CpG EWAS Analysis

The single CpG EWAS analyses performed in the training and
testing sets (conducted separately) identified no statistically sig-
nificant CpGs after a Bonferroni correction. We reduced our
number of comparisons by including only CpGs with intraclass
correlation coefficient (ICC) greater than 0.5 (over a 1-year pe-
riod) from our pilot study (n¼ 199 719 CpGs) (16), but still no
CpGs were statistically significant using this restrictive number
of tests. Combining the 2 datasets to conduct an overall EWAS
did not result in the identification of any single CpG that was
statistically significant after multiple comparison correction
(top 1000 most statistically significant CpGs prior to adjustment
are provided in Supplementary Table 1, available online).

Polymethylomic Risk Score

Using the training dataset, we identified 99 CpGs using our cut
points for mean difference and statistical significance using a
volcano plot analysis (Supplementary Figure 1, available online).
The lasso regression model reduced that number of CpGs to 92.
Before developing a polymethylomic risk score, we evaluated
whether the mean difference in methylation in these CpGs was
consistent in the training and testing datasets. Unfortunately,
the mean difference was in different directions for 42 out of 92
CpGs, leading us to conclude that the polymethylomic risk score
would not be able to discriminate between cases and controls in
the testing set. Using only cases who had given blood within
5 years of diagnosis did not improve our ability to develop a risk
prediction score.

DMR Analysis

To explore alternative approaches, we applied a method
(DMRcate) designed to identify DMRs by case and control status
(14). The DMRcate methodology was developed to identify
regions of chromosomes that are differentially methylated
based on some phenotype or exposure, rather than focusing on
the identification of single CpGs. By focusing on regions and
combining information from multiple nearby methylation sites,
this approach provides a more powerful statistical tool to iden-
tify changes in methylation that are associated with disease
outcomes. Statistically significant regions were identified in
each of the training and testing sets, but 1 of the regions was
statistically significant (and in the same direction) in both data-
sets; this region, located on chromosome 16 (1583391–1584516;
overlapping promoters for IFT140 and TMEM204), consisted of 13
CpGs that differed coordinately between the cases and controls
in the 2 datasets (all were P< .05 FDR adjusted) and 3 additional
CpGs in the testing dataset (Supplementary Table 2, available
online). Of the 16 CpGs identified, only 12 remained statistically
significant after combining the 2 datasets to examine overall
associations with pancreatic cancer risk (Supplementary
Table 3, available online).

When we examined how these CpGs were associated by
time between blood draw and cancer diagnosis, there was a
striking pattern of higher risk associated with time more proxi-
mal to diagnosis evident in many of the CpGs; results are pre-
sented in Table 2 (top 12 statistically significant CpGs are
included) and Figure 1 (the top 8 CpGs with visible time trends
from Table 2 were included in the figure). The strongest associa-
tion was noted for cg09757087 (Table 3); a greater than twofold
increase in risk was identified for individuals in the highest
quartile of methylation level, compared with the lowest quar-
tile, and a close to sixfold increase was observed in subjects

Table 1. Baseline characteristicsa for subjects in 3 prospective cohort studies (NHS, HPFS, PHS) included in the nested case-control analysis

Baseline characteristics

Total (n¼ 824) Training (n¼ 577) Testing (n¼ 247)

Cases Controls Cases Controls Cases Controls

Total No. 393 431 276 301 117 130
Cohort, No. (%)

NHS 176 (44.8) 194 (45.0) 126 (45.7) 137 (45.5) 50 (42.7) 57 (43.8)
HPFS 146 (37.2) 151 (35.0) 103 (37.3) 105 (34.9) 43 (36.8) 46 (35.4)
PHS 71 (18.1) 86 (20.0) 47 (17.0) 59 (19.6) 24 (20.5) 27 (20.8)

Mean age at blood draw (SD), y 60.6 (7.9) 60.2 (7.7) 61.0 (8.1) 60.4 (7.8) 59.8 (7.5) 59.8 (7.5)
Mean time before diagnosis (SD), yb 13.0 (6.2) 13.2 (6.2) 12.4 (6.2)
Female, No. (%) 176 (44.8) 194 (45.0) 126 (45.7) 137 (45.5) 50 (42.7) 57 (43.8)
White, No. (%)c 346 (94.0) 406 (94.9) 244 (93.8) 284 (95.3) 102 (94.4) 122 (93.8)
Smoking, No. (%)d

Never 159 (40.9) 173 (40.3) 111 (40.5) 118 (39.5) 48 (41.4) 55 (42.6)
Former 174 (44.7) 190 (44.3) 120 (43.8) 134 (44.8) 54 (46.6) 56 (43.4)
Current 57 (14.6) 65 (15.2) 43 (15.7) 47 (15.7) 14 (12.1) 18 (14.0)

BMI, kg/m2, No. (%)e 26.0 (4.3) 25.6 (3.9) 26.1 (4.3) 25.5 (3.9) 25.9 (4.1) 25.9 (4.0)
Underweight and normal 183 (47.3) 215 (50.8) 132 (48.7) 155 (52.7) 51 (44.0) 60 (46.5)
Overweight 144 (37.2) 151 (35.7) 91 (33.6) 100 (34.0) 53 (45.7) 51 (39.5)
Obese 60 (15.5) 57 (13.5) 48 (17.7) 39 (13.3) 12 (10.3) 18 (14.0)

Diabetes, No. (%)f 19 (4.8) 11 (2.6) 14 (5.1) 10 (3.3) 5 (4.3) 1 (0.8)

a

Covariates based on questionnaires closest to time of blood draw. BMI ¼ body mass index; HPFS ¼ Health Professionals Follow-up Study; NHS ¼ Nurses’ Health Study;

PHS ¼ Physicians’ Health Study.
b

11 missing values.
c

28 missing values.
d

6 missing values.
e

14 missing values.
f

1 missing value.
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who provided blood no more than 5 years prior to cancer diag-
nosis (OR ¼ 5.95, 95% CI ¼ 1.52 to 23.12). This CpG was also iden-
tified in the top 1000 most statistically significant CpGs in the
single CpG EWAS (P < .001; Supplementary Table 1, available on-
line). For cg09757087, trends were statistically significant across
quartiles in all strata of time to diagnosis and in all but the PHS
cohort study (Table 3). Of note, ICCs for the CpGs in this region
calculated at 2 time points 1 year apart in a previous pilot study
(16) were between 0.88 and 0.98.

To examine whether we missed important regions by splitting
our dataset into 2 independent sets (reducing overall power), we
combined the dataset to conduct an overall DMRcate analysis.
We identified 3 regions that were more statistically significant
(overall) than the chromosome 16 region (TMEM204/IFT140—
ranking fourth overall) and several more regions that were also
statistically significant (Supplementary Table 4, available online).

The top 3 regions were located in genes MFSD6L, FAM134B, and
KCNQ1DN. For each of these regions, as well as for the fifth stron-
gest region, we selected the CpGs with the strongest associations
with pancreatic cancer risk for comparison by cohort and time to
diagnosis (Table 4). For each of these CpGs, direction of associa-
tions was robust across each of the cohorts and was statistically
significant for almost all CpGs. However, in contrast to the
TMEM204/IFT140 region, associations with pancreatic cancer in
these regions were similar by time to diagnosis.

We conducted stratified analyses to examine whether our
results were modified by BMI or smoking status. Associations
for some of the CpGs were stronger in overweight and obese
subjects in regions 3 and 4 and among current smokers in
regions 1, 3, and 4 (Supplementary Table 5, available online).
Results were similar among whites only and those who did not
report having diabetes at baseline (data not shown).

Figure 1. Odds ratio (95% confidence interval) by time to diagnosis for top 8 CpGs in differentially methylated region (DMR) on chromosome 16. Diamonds represent the

odds ratio (OR); bars through diamonds represent 95% confidence interval (CI).

Table 2. Top 12 CpGs in differentially methylated region (DMR) on chromosome 16 identified in training and testing datasets and combined for
overall analysis

CpG

Annotation Methylation beta value OR (95% CI)b

Position
Relation
to island Cases Controls SD Difference/SD Overall

Time to diagnosis

�5 years 5–10 years >10 years

cg09757087a 1585644 S_Shore 0.718 0.698 0.089 0.220 2.31 (1.46 to 3.66) 5.92 (1.52 to 23.12) 2.78 (1.25 to 6.19) 2.21 (1.30 to 3.76)
cg11375102 1583810 Island 0.242 0.230 0.063 0.187 2.12 (1.37 to 3.26) 3.90 (1.34 to 11.36) 2.87 (1.28 to 6.42) 1.76 (1.07 to 2.91)
cg27594616 1583620 N_Shore 0.218 0.205 0.081 0.160 1.89 (1.25 to 2.88) 1.71 (0.69 to 4.28) 2.11 (0.99 to 4.49) 1.90 (1.17 to 3.09)
cg06565913 1584452 Island 0.368 0.352 0.086 0.184 1.86 (1.22 to 2.84) 4.64 (1.47 to 14.64) 3.19 (1.45 to 7.04) 1.37 (0.84 to 2.24)
cg00977403a 1585720 N_Shore 0.367 0.348 0.090 0.207 1.89 (1.21 to 2.94) 2.45 (0.96 to 6.24) 2.12 (0.93 to 4.80) 1.82 (1.08 to 3.07)
cg16336651 1583391 N_Shore 0.542 0.531 0.056 0.197 1.75 (1.16 to 2.64) 3.60 (1.24 to 10.50) 2.76 (1.31 to 5.83) 1.38 (0.86 to 2.21)
cg08296037 1584118 Island 0.393 0.372 0.095 0.215 1.75 (1.15 to 2.66) 2.66 (1.00 to 7.07) 2.43 (1.10 to 5.37) 1.55 (0.96 to 2.51)
cg06602086 1583883 Island 0.297 0.278 0.111 0.173 1.74 (1.14 to 2.67) 3.39 (1.15 to 9.99) 2.53 (1.15 to 5.56) 1.44 (0.88 to 2.34)
cg07341220 1583899 Island 0.204 0.192 0.075 0.163 1.72 (1.13 to 2.62) 3.33 (1.10 to 10.06) 2.47 (1.13 to 5.38) 1.38 (0.86 to 2.21)
cg10465839 1584050 Island 0.259 0.246 0.079 0.165 1.70 (1.12 to 2.60) 2.06 (0.77 to 5.49) 2.58 (1.18 to 5.62) 1.45 (0.89 to 2.36)
cg02193187 1583630 N_Shore 0.176 0.164 0.069 0.167 1.65 (1.09 to 2.51) 1.85 (0.75 to 4.59) 2.28 (1.02 to 5.06) 1.53 (0.94 to 2.47)
cg07639376 1584516 Island 0.416 0.396 0.113 0.173 1.51 (1.00 to 2.28) 1.85 (0.75 to 4.59) 2.16 (1.02 to 4.57) 1.33 (0.83 to 2.15)

a

Only identified in testing dataset. CI ¼ confidence interval; OR ¼ odds ratio.
b

Q4 vs Q1. Model adjusted for age at blood draw, race, date of blood draw, cohort study, smoking status, body mass index, and cell proportions.
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Cell-Specific Analyses of CpGs in Top 5 DMRs

We conducted additional analyses to identify CpGs within the
identified DMRs that might be unique to different immune cell
types in blood (17). Our results suggest that the methylation dif-
ferences between cases and controls varied by cell type for
regions 4 and 5; we observed stronger associations for most of
the CpGs in regions 4 and 5 in CD4 T cells, CD8 T cells, and natu-
ral killer cells than in neutrophils or monocytes (Table 5; not all
CpGs are shown). For CpGs in regions 1, 2, and 3, the differences
by cell types were not as marked (Table 5).

GSEA Analysis

Using a gene set enrichment analysis (GSEA) (15), we identified
225 pathways that overlapped in the 2 datasets (training and
testing). After multiple comparisons adjustments, 4 pathways
were borderline statistically significant in the training dataset (P
¼ .056), and 14 pathways were statistically significant in the
testing dataset (P < .05) (Supplementary Table 6, available on-
line). The 2 overlapping pathways between the top findings in 2
datasets were gastric acid secretion and melanogenesis. The
gastric acid secretion pathway includes 72 genes; the

Table 3. Associations between cg09757087 (TMEM204/IFT140) and risk of pancreatic cancer across each quartile, overall, by time to diagnosis,
and by cohort study

Cg09757087 quartiles

Model 1a Model 2b

No. cases/controls OR (95% CI) No. cases/controls OR (95% CI)

Overall (n ¼ 824)c

Q1 63/108 1.00 (referent) 63/107 1.00 (referent)
Q2 96/107 1.60 (1.05 to 2.44) 93/103 1.61 (1.05 to 2.46)
Q3 104/108 1.81 (1.17 to 2.79) 99/104 1.76 (1.13 to 2.74)
Q4 130/108 2.34 (1.49 to 3.68) 129/107 2.31 (1.46 to 3.66)
Ptrend <.001 <.001
�5 years to diagnosisc

Q1 3/108 1.00 (referent) 3/107 1.00 (referent)
Q2 10/107 3.35 (0.88 to 12.71) 10/103 3.39 (0.89 to 12.94)
Q3 20/108 7.47 (2.07 to 26.97) 19/104 7.47 (2.04 to 27.30)
Q4 17/108 6.01 (1.55 to 23.24) 17/107 5.92 (1.52 to 23.12)
Ptrend .004 .006

5–10 years to diagnosisc

Q1 15/108 1.00 (referent) 15/107 1.00 (referent)
Q2 20/107 1.58 (0.74 to 3.38) 20/103 1.54 (0.71 to 3.31)
Q3 14/108 1.07 (0.47 to 2.45) 13/104 0.95 (0.40 to 2.22)
Q4 34/108 2.96 (1.35 to 6.48) 33/107 2.78 (1.25 to 6.19)
Ptrend .01 .03

>10 years to diagnosisc

Q1 41/108 1.00 (referent) 41/107 1.00 (referent)
Q2 62/107 1.60 (0.98 to 2.60) 59/103 1.60 (0.97 to 2.62)
Q3 69/108 1.93 (1.17 to 3.18) 66/104 1.91 (1.15 to 3.19)
Q4 77/108 2.16 (1.28 to 3.65) 77/107 2.21 (1.30 to 3.76)
Ptrend .004 .004

NHS (n ¼ 370) d

Q1 27/49 1.00 (referent) 27/49 1.00 (referent)
Q2 47/48 1.90 (1.01 to 3.60) 47/48 1.94 (1.02 to 3.68)
Q3 35/48 1.41 (0.72 to 2.77) 33/47 1.37 (0.69 to 2.72)
Q4 67/49 2.44 (1.22 to 4.90) 67/49 2.49 (1.24 to 5.00)
Ptrend .04 .04

HPFS (n ¼ 297)d

Q1 21/38 1.00 (referent) 20/37 1.00 (referent)
Q2 39/37 2.02 (0.99 to 4.14) 38/34 2.23 (1.06 to 4.66)
Q3 44/38 2.41 (1.16 to 5.00) 40/34 2.63 (1.22 to 5.65)
Q4 42/38 2.43 (1.13 to 5.23) 41/37 2.67 (1.20 to 5.95)
Ptrend .03 .02

PHS (n ¼ 157)d

Q1 16/22 1.00 (referent) 16/22 1.00 (referent)
Q2 13/21 0.98 (0.36 to 2.70) 13/21 0.90 (0.32 to 2.53)
Q3 25/21 1.71 (0.68 to 4.33) 25/21 1.51 (0.59 to 3.89)
Q4 17/22 1.47 (0.49 to 4.40) 17/22 1.36 (0.44 to 4.16)
Ptrend .28 .38

a

Model 1: Adjusted for age at blood draw, race, date of blood draw, cohort study, and cell proportions. CI ¼ confidence interval; HPFS ¼ Health Professionals Follow-up

Study; NHS ¼ Nurses’ Health Study; OR ¼ odds ratio; PHS ¼ Physicians’ Health Study.
b

Model 2: Additional adjusted for smoking status and body mass index.
c

Cut offs (overall): Q1: �0.624; Q2: 0.625–0.703; Q3: 0.704–0.764; Q4: �0.765.
d

Cut offs (study specific): Q1: �0.624 for NHS, �0.625 for HPFS and �0.622 for PHS; Q2: 0.625–0.703 for NHS, 0.626–0.703 for HPFS and 0.626–0.701 for PHS; Q3: 0.704–0.764

for NHS, 0.704–0.765 for HPFS and 0.705–0.764 for PHS; Q4: �0.765 for NHS, �0.766 for HPFS and �0.766 for PHS.
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normalized enrichment score was 1.258 (testing) and 1.127
(training). The melanogenesis pathway includes 100 genes; the
normalized enrichment score was 1.175 (testing) and 1.100
(training).

Using cell-specific analyses, we examined pathways using
GSEA in all cases and controls; none of the cell-specific path-
ways were statistically significant after correction for multiple
comparisons, with the exception of neutrophils (Supplementary
Table 7, available online). For neutrophils, 5 pathways were sta-
tistically significant (P < .05) after a Bonferroni adjustment; type
I diabetes, acute myeloid leukemia, and endometrial cancer
pathways were among those. Of note, pancreatic cancer

pathways were identified in natural killer cells (P ¼ .007 prior to
multiple comparison correction).

Discussion

In this large study, pooling pancreatic cancer cases from 3 co-
hort studies, we report associations between several new geno-
mic regions and pancreatic cancer risk; genes in these regions
included TMEM204/IFT140, MFSD6L, FAM134b/RETREG1,
KCNQ1D, and C6orf227. Associations between DNA methylation
and pancreatic cancer risk in CpGs located in the TMEM204/

Table 4. Associations between the strongest CpGsa in each of the top regions identified using DMRcate on combined datasets (excluding region
4 TMEM204/IFT140 presented in Tables 2 and 3) and risk of pancreatic cancer across each quartile, overall, by time to diagnosis, and by cohort
study

Quartiles for CpGs

Region 1 (MFSDL6) Region 2 (FAM134b) Region 3 (KCNQ1DN) Region 5 (C6orf227)

cg24203800 cg04851848 cg04457979 cg05602975
OR (95% CI)b OR (95% CI)b OR (95% CI)b OR (95% CI)b

Overall (n ¼ 824)
Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 0.99 (0.67 to 1.45) 1.32 (0.86 to 2.04) 1.64 (1.06 to 2.52) 1.49 (0.99 to 2.26)
Q3 0.87 (0.59 to 1.28) 1.73 (1.13 to 2.67) 2.15 (1.40 to 3.29) 1.23 (0.81 to 1.88)
Q4 0.41 (0.26 to 0.63) 2.25 (1.43 to 3.55) 2.16 (1.40 to 3.33) 1.95 (1.30 to 2.93)
Ptrend <.001 <.001 <.001 .004
�5 years to diagnosis

Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 0.91 (0.43 to 1.95) 1.08 (0.42 to 2.78) 1.22 (0.48 to 3.11) 1.83 (0.79 to 4.22)
Q3 0.40 (0.16 to 1.02) 0.96 (0.35 to 2.59) 2.17 (0.89 to 5.30) 0.93 (0.37 to 2.39)
Q4 0.42 (0.16 to 1.06) 1.39 (0.52 to 3.70) 1.38 (0.54 to 3.57) 1.04 (0.41 to 2.68)
Ptrend .02 .55 .30 .69

5–10 years to diagnosis
Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 0.76 (0.38 to 1.54) 1.82 (0.76 to 4.34) 1.69 (0.69 to 4.16) 1.24 (0.55 to 2.79)
Q3 1.06 (0.55 to 2.03) 2.83 (1.20 to 6.69) 2.86 (1.23 to 6.66) 1.00 (0.45 to 2.21)
Q4 0.47 (0.22 to 1.02) 2.74 (1.11 to 6.77) 3.41 (1.46 to 7.96) 2.28 (1.10 to 4.72)
Ptrend .15 .02 .002 .03

>10 years to diagnosis
Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 1.08 (0.70 to 1.67) 1.32 (0.80 to 2.18) 1.70 (1.04 to 2.79) 1.59 (0.98 to 2.60)
Q3 0.83 (0.53 to 1.30) 1.71 (1.04 to 2.81) 1.94 (1.18 to 3.17) 1.48 (0.90 to 2.44)
Q4 0.37 (0.22 to 0.62) 2.36 (1.41 to 3.97) 2.00 (1.21 to 3.29) 2.26 (1.41 to 3.63)
Ptrend <.001 <.001 .009 .002

NHS (n ¼ 370)
Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 0.96 (0.54 to 1.73) 1.77 (0.91 to 3.43) 1.90 (0.98 to 3.68) 1.10 (0.59 to 2.06)
Q3 1.00 (0.56 to 1.82) 2.10 (1.07 to 4.10) 2.23 (1.15 to 4.33) 1.30 (0.69 to 2.43)
Q4 0.47 (0.24 to 0.91) 2.73 (1.38 to 5.41) 2.76 (1.43 to 5.33) 1.91 (1.05 to 3.50)
Ptrend .05 .005 .003 .03

HPFS (n ¼ 297)
Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 0.55 (0.28 to 1.08) 1.16 (0.57 to 2.36) 1.97 (0.92 to 4.22) 1.83 (0.91 to 3.66)
Q3 0.77 (0.40 to 1.46) 1.09 (0.52 to 2.30) 2.59 (1.22 to 5.47) 0.86 (0.41 to 1.79)
Q4 0.30 (0.14 to 0.63) 2.11 (0.98 to 4.55) 2.82 (1.31 to 6.06) 1.73 (0.88 to 3.40)
Ptrend .008 .07 .009 .36

PHS (n ¼ 157)
Q1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
Q2 1.29 (0.53 to 3.13) 1.16 (0.35 to 3.82) 0.61 (0.21 to 1.77) 2.66 (0.90 to 7.83)
Q3 0.68 (0.26 to 1.77) 3.09 (1.08 to 8.79) 1.79 (0.69 to 4.64) 2.26 (0.77 to 6.57)
Q4 0.26 (0.08 to 0.81) 3.46 (1.12 to 10.69) 0.66 (0.24 to 1.82) 2.96 (1.02 to 8.60)
Ptrend .01 .007 .98 .10

a

Based on P values and consistency across cohort studies. CI ¼ confidence interval; HPFS ¼ Health Professionals Follow-up Study; NHS ¼ Nurses’ Health Study; OR ¼
odds ratio; PHS ¼ Physicians’ Health Study.
b

Adjusted for age at blood draw, race, date of blood draw, cohort study, smoking status, body mass index, and cell proportion.
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IFT140 region were stronger in lymphocyte subtypes, specifi-
cally CD4 and CD8T cells, than in myeloid cells, suggesting that
this could result from shifts in the percentages of smaller acti-
vated subtypes of lymphocytes. We also identified 2 pathways
where methylation levels were related to risk of pancreatic can-
cer, namely, gastric acid secretion and melanogenesis.

For the TMEM204/IFT140 region, we observed, on average,
higher DNA methylation levels in subjects who had blood
drawn closer to time of cancer diagnosis, suggesting that meth-
ylation, as assessed in the whole blood array platform,
increases as disease progresses. In contrast, this was not ob-
served for the other top regions identified, possibly because
methylation levels in those regions are more stable over time
and less influenced by factors that impact progression or reflect
disease onset. These results may have different implications re-
garding the role of the genes on etiology vs disease onset.

Several of the probes in the DMR region on chromosome 16
(TMEM204/IFT140 region) that we identified have been previ-
ously identified as biologically significant in carcinogenesis, in-
cluding in pancreatic cancer. In The Cancer Genome Atlas data,
DNA methylation levels of probe cg08296037 were strongly in-
versely correlated with expression of TMEM204 in peripheral
blood of acute myeloid leukemia patients [r ¼ �0.79; P ¼ 2.3 �
10–39 (18)]. TMEM204 is expressed in all cancers with low specif-
icity, but mean levels are higher in pancreatic cancer tissue
than any other cancer tissue (RNAseq The Cancer Genome Atlas
data); low TMEM204 expression has been associated with poor
liver cancer outcome but improved survival in melanoma (19).

The DMRcate analysis conducted on all subjects combined
identified potential regions of interest that will need to be repli-
cated in other populations. Two of the top regions identified in
this analysis included genes that have been linked to cancer in
other studies. One region includes gene FAM134B, a tumor sup-
pressor gene previously associated with colorectal and esopha-
geal squamous cell cancers (20). Promoter hypermethylation of
FAM134B (in tumor tissue) has been associated with poor

prognosis in colorectal cancer (21). Another region includes long
noncoding RNA KCNQ1DN, which has been associated with
Wilms tumors (22) and gastric cancer (23). DNA methylation lev-
els in these regions did not change with shorter time to diagno-
sis, suggesting they may represent genes that impact
susceptibility to cancer risk.

The findings from the GSEA analysis suggest that methylation
changes in the gastric secretion pathway may play a role in pancre-
atic cancer. Ulcers have been linked to pancreatic cancer in several
studies (24–26), especially for gastric ulcers, and although these
associations increase as the time to diagnosis is shorter, they are
present up to 10 years prior to cancer diagnosis (25). It has also been
suggested that stomach acid secretion may alter bacterial landscape
in the stomach and influence nitrosamine levels that, jointly, may
contribute to pancreatic carcinogenesis (27). Identification of
changes in DNA methylation in the gastric acid secretion pathways
may provide new insights into biological mechanisms; other studies
will have to confirm and further examine these findings.

Positive results from this study should be interpreted with
caution given that some findings may have been due to chance;
however, we tried to minimize chance findings by splitting our
data into a training set and a testing set and emphasizing the
results that were consistent in both sets. On the other hand, dif-
ferences in methylation levels between cases and controls in sin-
gle CpGs might have been missed because of the large number of
corrections for multiple comparisons (>800 000). Our multivariate
models were adjusted for age, sex, race, smoking, and BMI to con-
trol for potential confounding, but we did not adjust for medical
conditions that are known to increase the risk of pancreatic can-
cer, such as chronic pancreatitis, because we did not have those
data available in our dataset. Finally, because we had a limited
number of non-Caucasian participants in this study, our findings
may not be generalizable to other populations.

To our knowledge, this is the first study to conduct an EWAS
on pancreatic cancer risk using peripheral blood collected prior to
cancer diagnosis. We identified several regions that were

Table 5. Top CpGs (3 per region based on P values) for each immune cell type in the top 5 differentially methylated regions (DMR)a

Region and CpG

CD4T CD8T NK Neutrophil Monocytes

OR (95% CI)b P OR (95% CI)b P OR (95% CI)b P OR (95% CI)b P OR (95% CI)b P

1
cg04259560 0.39 (0.20 to 0.74) .004 0.44 (0.25 to 0.76) .003 0.30 (0.17 to 0.53) <.001 0.49 (0.32 to 0.75) .001 0.42 (0.26 to 0.70) <.001
cg24203800 0.47 (0.27 to 0.81) .006 0.51 (0.31 to 0.84) .008 0.43 (0.27 to 0.70) <.001 0.47 (0.31 to 0.73) <.001 0.37 (0.23 to 0.60) <.001
cg11685316 0.33 (0.15 to 0.73) .006 0.46 (0.16 to 1.30) .143 0.29 (0.13 to 0.63) .002 0.63 (0.42 to 0.94) .02 0.52 (0.34 to 0.79) .002

2
cg04851848 2.77 (1.52 to 5.04) <.001 2.78 (1.44 to 5.37) .002 2.08 (0.77 to 5.64) .15 2.04 (1.32 to 3.14) .001 2.74 (1.52 to 4.93) <.001
cg22728178 1.72 (1.12 to 2.64) .01 2.03 (1.28 to 3.20) .002 2.06 (0.60 to 7.11) .25 1.72 (1.13 to 2.60) .01 2.06 (1.22 to 3.48) .007
cg20376277 1.53 (1.00 to 2.34) .05 1.96 (1.03 to 3.73) .039 2.07 (0.85 to 5.06) .11 1.94 (1.27 to 2.97) .002 1.82 (1.16 to 2.86) .009

3
cg14582642 1.70 (1.08 to 2.68) .02 1.98 (0.99 to 3.95) .05 2.64 (0.86 to 8.14) .09 1.41 (0.94 to 2.11) .09 1.77 (1.13 to 2.78) .01
cg05290058 2.19 (0.99 to 4.84) .05 2.14 (1.13 to 4.03) .02 2.06 (0.80 to 5.33) .14 1.70 (1.12 to 2.60) .01 1.66 (1.10 to 2.50) .02
cg17239974 4.83 (1.51 to 15.5) .008 1.88 (0.94 to 3.75) .07 1.81 (0.78 to 4.18) .17 1.17 (0.77 to 1.77) .47 1.56 (0.84 to 2.91) .16

4
cg11375102 1.94 (1.07 to 3.52) .03 3.00 (1.15 to 7.80) .02 1.56 (0.35 to 6.84) .56 1.44 (0.94 to 2.19) .09 1.54 (0.94 to 2.50) .08
cg00463982 2.22 (1.11 to 4.34) .02 2.06 (0.97 to 4.36) .06 1.56 (0.95 to 2.58) .08 1.47 (0.97 to 2.24) .07 1.19 (0.71. 2.01) .51
cg09757087 2.72 (0.78 to 9.41) .12 1.24 (0.38 to 4.00) .72 1.84 (1.17 to 2.88) .008 1.95 (1.28 to 2.97) .002 2.42 (1.47 to 3.97) <.001

5
cg08301503 2.53 (1.40 to 4.57) .002 3.00 (1.15 to 7.80) .02 3.41 (1.44 to 8.07) .005 1.69 (1.09 to 2.60) .02 1.34 (0.81 to 2.24) .26
cg06289138 2.21 (1.17 to 4.16) .03 3.17 (1.09 to 9.18) .03 1.96 (1.18 to 3.26) .01 1.26 (0.85 to 1.88) .27 1.39 (0.81 to 2.40) .24
cg00536532 1.89 (0.85 to 4.21) .12 2.06 (0.97 to 4.36) .06 2.07 (1.02 to 4.21) .04 1.27 (0.85 to 1.88) .25 1.68 (1.09 to 2.59) .02

a

Results for B cells were similar (not shown). CI ¼ confidence interval; NK ¼ natural killer; OR ¼ odds ratio.
b

Adjusted for age at blood draw, race, date of blood draw, cohort study, smoking status, and body mass index.
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differentially methylated in participants who later developed pan-
creatic cancer. We also observed that genes involved in gastric se-
cretion were differentially methylated in cases compared with
controls. Findings from this study suggest that changes in methyl-
ation levels that occur more than 10 years prior to cancer diagnosis
can influence risk and may be markers of altered pathways in-
volved in carcinogenesis. For some CpGs in the region including
genes TMEM204/IFT140, methylation differences increased in mag-
nitude closer to the time of diagnosis, perhaps reflecting changes
in metabolic systems, a pattern similar to those observed between
diabetes and pancreatic cancer. Although differences in methyla-
tion levels are modest, it is important to remember the progress
made and insights gained from genome-wide association studies,
even with small effects sizes (28, 29). Additional studies will un-
questionably provide critical insights into biological pathways that
could lead to major breakthroughs in clinical settings.
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