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Small extracellular vesicles: from promoting 
pre‑metastatic niche formation to therapeutic 
strategies in breast cancer
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Abstract 

Breast cancer is the most common cancer in females, and to date, the mortality rate of breast cancer metastasis can-
not be ignored. The metastasis of breast cancer is a complex, staged process, and the pattern of metastatic spread 
is not random. The pre-metastatic niche, as an organ-specific home for metastasis, is a favourable environment for 
tumour cell colonization. As detection techniques improve, the role of the pre-metastatic niche in breast cancer 
metastasis is being uncovered. sEVs (small extracellular vesicles) can deliver cargo, which is vital for the formation of 
pre-metastatic niches. sEVs participate in multiple aspects of creating a distant microenvironment to promote tumour 
invasion, including the secretion of inflammatory molecules, immunosuppression, angiogenesis and enhancement 
of vascular permeability, as well as regulation of the stromal environment. Here, we discuss the multifaceted mecha-
nisms through which breast cancer-derived sEVs contribute to pre-metastatic niches. In addition, sEVs as biomarkers 
and antimetastatic therapies are also discussed, particularly their use in transporting exosomal microRNAs. The study 
of sEVs may provide insight into immunotherapy and targeted therapies for breast cancer, and we also provide an 
overview of their potential role in antitumour metastasis.
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Background
As of 2020, breast cancer has surpassed lung cancer 
as the most common type of cancer among women 
worldwide [1], accounting for approximately 30% of 
female cancers with a mortality rate of 15% [2]. Metas-
tasis remains the biggest cause of death for breast can-
cer patients (approximately 90%) [3]. The 5-year survival 
rate of metastatic breast cancer is significantly reduced 
compared with that of nonmetastatic breast cancer, and 
the median overall survival of metastatic triple-nega-
tive breast cancer (TNBC) is only 1  year [4, 5]. Surgery 
and adjuvant therapy can cure well-confined primary 

tumours, but metastatic disease is largely incurable due 
to drug resistance [6]. Therefore, there is an urgent need 
to characterize the mechanisms of breast cancer metas-
tasis and associated biomarkers to diagnose and treat 
patients with breast cancer earlier.

Metastasis of breast cancer is characterized by het-
erogeneity, a feature that is largely determined by the 
metastatic microenvironment [7]. There are pre-meta-
static niches (PMNs), which are predetermined micro-
environments prior to widespread metastasis in distant 
organs [8, 9]. PMNs are favourable for tumour growth 
prior to the arrival of circulating tumour cells but are 
devoid of tumour cells, unlike the tumour microenvi-
ronment [9]. PMNs are initiated and established by the 
interaction of primary tumour-derived factors, tumour-
mobilized bone marrow-derived cells and local stro-
mal components [10]. The above three key components 
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affect and regulate PMNs through six aspects, including 
immunosuppression, inflammation, angiogenesis/vas-
cular permeability, lymphangiogenesis, organotropism, 
and reprogramming [11]. According to the formation 
of the PMN, it can be mainly divided into three stages 
[11] (Fig.  1). Recent findings suggest that breast can-
cer metastasis is likely to be mediated by the PMN [12, 
13]. Breast cancer cells establish an osteogenic niche 
prior to osteolytic metastasis, and the growth ability 
of breast cancer bone metastases is regulated by pre-
metastatic stromal cells [14]. Furthermore, extracellu-
lar matrix proteins, as components of the PMN, play 
a role in the colonization of early metastatic organs in 
breast cancer [15]. As important regulators of the pre-
metastatic microenvironment, immune cells, including 

myeloid-derived suppressor cells (MDSCs), tumour-
associated macrophages (TAMs), and neutrophils, pro-
vide fertile soil for breast cancer metastasis through 
immunosuppression, cancer cell adhesion, and angio-
genesis [16, 17]. The mechanism of sEVs in PMNs has 
gradually come to light with in-depth research on sEVs 
in recent years [18, 19]. sEVs are extracellular vesicles 
30–150  nm in diameter carrying nucleic acids, pro-
teins, lipids, and metabolites, and these signatures 
make them diagnostic biomarkers and largely involved 
in tumour progression [20–22]. They act as intercellu-
lar shuttles, which are crucial both for primary tumour 
growth and metastatic spread [23–25]. Recent studies 
have confirmed that sEVs induce the establishment of 
PMNs in the lung and bone of breast cancer [26, 27].

Fig. 1  Formation of PMNs. The PMNs in cancer can be divided into three major temporal phases following a sequential order. First, the metastatic 
microenvironment is deternmined by the primary tumour. Second, the secondary sites recruit immunosuppressive cells. Finally, circulating tumour 
cells invade and colonize distant organs or tissues
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In this review, we summarize the functions of sEVs in 
breast cancer metastasis with respect to PMN forma-
tion, aiming to identify new antimetastatic treatment 
targets and evaluate sEVs as predictive biomarkers of 
metastases.

sEVs interact with inflammatory molecules 
in the PMN
Chronic inflammation affects breast cancer in a num-
ber of ways, including proliferation, survival, and migra-
tion [28]. By releasing proinflammatory cytokines, 
tumour cells and stromal cells can provide a secondary 
organ microenvironment for metastatic cells to colonize 
[29–31]. Thus, proinflammatory molecules are actively 
involved in niche formation.

Extracellular vesicles (EVs) have previously been 
observed to activate endothelial cells, resulting in angi-
ogenesis that facilitates cancer metastasis [32]. Sara P 
Y Che reported that tissue factor (TF)-expressing EVs 
activate quiescent endothelial cells by activating fac-
tor X (FXa) and cleavage of protease-activated receptor 
1 (PAR-1), inducing secretion of the proinflammatory 
factor IL-8 in breast cancer cells. Activation of endothe-
lial cells induces a proinflammatory phenotype that 
promotes PMN formation and metastasis in primary 
tumours [33]. Another study demonstrated that tumour-
derived EVs stimulated by taxanes and anthracyclines are 
prometastatic in breast cancer. Chemotherapy-induced 
tumour EVs promote proinflammatory endothelial cell 
activation, and chemokine (C–C motif ) ligand 2 (CCL2) 
upregulation via a mechanism involving EV-associated 
annexin-A6 (ANXA6) translocation to the lung endothe-
lium [34]. Furthermore, sEVs are also capable of increas-
ing cytokine secretion of interleukin (IL)-6 and IL-17 
by transfecting highly metastatic breast cancer cell lines 
with poorly metastatic ones and potentially promoting 
metastasis [35]. Moreover, exosomal glycoprotein 130 
(gp130) is capable of being transferred to bone marrow-
derived macrophages (BMDMs) via cancer cell-derived 
sEVs, activating the gp130-signal transducer and acti-
vator of transcription 3 (STAT3) signalling pathway 
to promote IL-6 production [36]. Additionally, other 
researchers have found that sEV-bound cytokines are 
key determinants of sEV-cell interactions. Upon binding 
to CCL-2, breast cancer cell-derived sEVs preferentially 
accumulate in lung tissue and are taken up by chemokine 
(C–C motif ) receptor 2 (CCR2+) immune cells, contrib-
uting to the formation of PMN [37]. Consequently, sEVs 
and inflammatory molecules interact to form PMNs in 
breast cancer. Inflammatory factors are released and 
endothelial cells are activated by sEVs, which results in a 
proinflammatory response.

sEVs drive immunosuppression or immune 
surveillance in the PMN
sEV‑derived PD‑L1 causes immune escape
Programmed death ligand 1 (PD-L1) is a type I trans-
membrane protein that binds to its receptor, pro-
grammed-cell death protein 1 (PD-1), inactivating T 
cells and resulting in immune escape [38]. In recent 
years, PD-1, as an immune checkpoint, has attracted 
much attention in breast cancer treatment. Adminis-
tration of anti-PD-L1 immunotherapy has become the 
standard treatment for breast cancer [39]. EVs from 
human breast cancer cells also carry immunosuppres-
sive PD-L1, which is mostly carried by sEVs and whose 
level is regulated by interferon (IFN)-γ [40] (Fig. 2).

Studies suggest that in the tumour microenviron-
ment (TME), sEVs may act as vehicles to transport 
PD-L1 to different cell types, thereby regulating 
immune surveillance [41, 42]. Morrissey demonstrated 
that circulating sEVs from primary breast tumours are 
able to be transported into the lung, increase PD-L1 
expression on tissue-resident interstitial macrophages 
(IMs), induce an increase in PD-1+ T cells, and recruit 
MDSCs to pre-metastatic sites [43]. Therefore, exo-
somal PD-L1 can induce immune escape to promote 
tumour progression.

There has been a recent increase in studies show-
ing that in addition to tumour cell derived sEVs, sEVs 
derived from other types of cells also have similar func-
tions. A higher level of PD-L1 expression was observed 
after exposure to cancer-associated fibroblast (CAF)-
derived sEVs in breast cancer cells, as well as miRNA-
92. Apoptosis and impaired proliferation of T cells 
are significantly induced by increased PD-L1 expres-
sion derived from CAF-derived sEVs. Large tumour 
suppressor homologue 2 (LATS2) was confirmed as a 
target gene of miRNA-92, and in subsequent immu-
noprecipitation experiments, it was found that LATS2 
could interact with yes-associated protein 1 (YAP1), 
which could bind to the enhancer region of PD-L1 after 
nuclear translocation, promoting transcriptional activ-
ity [44]. Researchers have demonstrated that exosomal 
miRNA-27A-3p is induced by endoplasmic reticulum 
stress to promote breast cancer immune escape by 
upregulating macrophage PD-L1 expression, and this 
effect is mediated via the MAGI2/PTEN/PI3K axis 
[45]. Additionally, sEVs derived from bone marrow-
derived cells (BMDCs) also carry PD-L1, and effectively 
inhibit the response of CD8+ T cells [46]. In summary, 
the delivery of PD-L1 by sEVs could influence tumour 
metastasis by suppressing immune function in the pre-
metastatic microenvironment, thereby contributing to 
PMNs.



Page 4 of 13Chen et al. Cell Communication and Signaling          (2022) 20:141 

Inhibition of immune cell response
In pre-metastatic organs, breast cancer sEVs may sup-
press anticancer immune responses by inhibiting T-cell 
proliferation and natural killer (NK) cell cytotoxic-
ity. In addition, sEVs derived from highly metastatic 
breast cancer cells are more effective at recruiting 
MDSCs than those from poorly metastatic cancer cells 
[47]. MDSCs are a group of immature myeloid cells 
that accumulate in cancer patients and appear in the 
early PMN, and immunosuppression is a key property 
of MDSCs [48, 49]. A study demonstrated that breast 
tumour-derived exosomal miRNA-200b-3p may be 
involved in the regulation of AKT/NF-κB/CCL2 cas-
cades, which recruit MDSCs and lead to the construc-
tion of a metastatic microenvironment in the lung [50]. 
In addition, immunosuppressive cell populations can 
be recruited by sEVs derived from cells subjected to 
mechanical strain, such as macrophages [51].

Functional injury of immune cells
sEVs can promote immune evasion of cancer cells by 
modulating the activity of immune cells, thus forming 
an immunosuppressive premetastatic microenviron-
ment [52, 53]. 4T1 breast cancer cells secrete sEVs that 
block myeloid precursor cells from dividing into CD11c+ 
dendritic cells (DCs) and induce apoptosis. According to 
these findings, sEVs from breast cancer cells inhibit the 
maturation of DCs, thus facilitating immune evasion [54, 
55].

Molecular regulation
Moreover, the immune system is regulated by sEVs 
through their molecular functions in the PMN. MiRNA-9 
and miRNA-181a found in breast cancer sEVs promote 
the expansion of MDSCs through their targets suppressor 
of cytokine signalling 3 (SOCS3) and protein inhibitor of 
activated STAT protein 3 (PIAS3) [56]. Breast tumour 
cells can regulate the production of proinflammatory 
cytokines by macrophages by means of sEV-mediated 
transfer. It has been shown that breast cancer cell-derived 

Fig. 2  Role of exosomal PD-L1 in breast cancer. On the one hand, tumour cell surface-specific antigens are recognized by antigen-presenting cells 
(APCs), and apoptosis occurs; on the other hand, the combination of PD-1 on the surface of T cells and PD-L1 on the surface of tumour cells inhibits 
T-cell proliferation, and breast cancer cells secret sEVs that carry PD-L1 to bind to PD-1 on T cells, inhibiting T-cell activation and cell-killing activities
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sEVs enhance TAM expression of IL-1β, IL-6, and TNF-
αand that TANs inhibit 4T1-cell sEV secretion, resulting 
in a marked decrease in IL-1β, IL-6, and TNF-α.

The heterogeneity of sEVs
Emerging evidence shows that sEVs, like tumour cells, 
are also heterogeneous [40, 57]. sEVs produced by highly 
metastatic breast cancer cells and nonmetastatic breast 
cancer cells are heterogeneous. On the one hand, highly 
metastatic breast cancer cells produce sEVs that are bet-
ter at recruiting MDSCs, and on the other hand, a PMN 
capable of promoting metastasis is initiated in part by 
sEVs released by highly metastatic breast cancer cells 
[47].

In summary, the role of immune cells in tumourigenesis 
is a double-edged sword, and interestingly, the crosstalk 
between immune cells and cancer cells is primarily medi-
ated by sEVs. sEVs further promote the establishment 
of the PMN by building an immunosuppressive micro-
environment. It is not only possible for sEVs to mediate 
immune escape via PD-L1, but they can also cause nega-
tive effects by interfering with or damaging immune cells, 
and by triggering related molecules. Additionally, sEVs 
derived from different types of breast tumour cells show 
heterogeneity.

The promoting effects of sEVs on angiogenesis 
and vascular permeability in the PMN
Vascular endothelial growth factor (VEGF) is a major reg-
ulator of angiogenesis, a complex process in which ves-
sels develop from a preexisting vascular network [58]. In 
cancer progression, sEVs carry numerous proangiogenic 
biomolecules, such as VEGF, matrix metalloproteinsases 
(MMPs), and miRNAs, favouring metastasis to sentinel 
lymph nodes and distal organs [59, 60]. Sayantan found 
that exosomal annexinA2 (AnxA2) promotes angiogen-
esis and activates the p38, nuclear factor kappa-B (NF-
ĸB) and STAT3 pathways to create a PMN that induces 
breast cancer lung and brain metastasis [61]. Proteomic 
analysis showed that AnxA2 was abundant in sEVs [62]. 
Additionally, the amount of secreted AnxA2 was posi-
tively related to the aggressiveness of breast cancer cells 
[63]. The level of serum exosomal AnxA2 was signifi-
cantly higher in TNBCs than in ER + and HER2 + breast 
cancer subtypes as well as in females without breast can-
cer [64]. The results indicate that serum exosomal AnxA2 
plays a role in angiogenesis and is linked to the aggres-
siveness of TNBC in aplastic anaemia (AA) women [64]. 
In another study, an experiment was carried out by com-
paring sEVs from the claudin-low TNBC cell line Hs578T 
and its more invasive Hs578Ts(i)8 variant. The results 
showed that Hs578Ts(i)8-derived sEVs stimulate greater 
vasculogenesis and angiogenesis [65]. Furthermore, 

MMP facilitates the assembly of new tumour blood ves-
sels, causing the release of breast tumour cells into the 
circulation [66]. The aspartate β-hydroxylase (ASPH)-
Notch axis regulates a range of specific sEVs to potentiate 
multifaceted metastasis. In breast cancer, ASPH acti-
vates Notch signalling, and Notch signalling eventually 
leads to sEV release, which promotes cancer spread and 
metastatic growth. As part of the in  vitro angiogenesis 
procedure, tube formation was performed to determine 
whether sEVs participate in lymphogenesis and/or angio-
genesis. MMPs are involved in maintaining breast can-
cer aggressiveness as downstream target genes of sEVs 
secreted by breast tumour cells [67].

What’s more, sEV-secreted miRNAs play a role in pro-
moting angiogenesis. Exosomal miRNA-22-3p targeting 
transgelin (TAGln) promotes tumour progression and 
angiogenesis in  vivo [68]. In addition, neutral sphyngo-
myeli-nase 2 (nSMase2) can activate exosomal miRNA 
secretion which contributes to angiogenesis in the TME 
[69, 70]. A study reported that when miRNA-105 is over-
expressed in nonmetastatic breast tumour cells, it can 
induce metastasis and vascular permeability in distant 
organs, although miRNA-105 is also detected in the cir-
culation at the pre-metastatic stage in early-stage breast 
cancer [71]. Another study confirmed that breast cancer-
secreted miRNA-939 can downregulate VE-cadherin, 
increasing vascular permeability [72]. In MDA-MB-231 
breast cancer cells, stromal interaction molecule 1 
(STIM1) downregulates exosomal miRNA-145 to pro-
mote angiogenesis [73].

Before the formation of the PMN, vascular disruption 
is a hallmark of the initial step [9]. sEVs have been dem-
onstrated in all these studies to promote angiogenesis 
and increase vascular permeability, resulting in PMN for-
mation in breast cancer.

sEVs are involved in stromal remodelling 
in the PMN
The local stromal microenvironment is one of the most 
important elements for the creation of a PMN in the host, 
and it mainly includes fibroblasts, endothelial cells, extra-
cellular matrix (ECM) and vasculature [11]. A metastatic 
niche is formed through the deposition of new ECM as 
well as its remodeling [74, 75]. Several mechanisms are 
involved in sEV-mediated tumour stromal remodelling. 
They can promote angiogenesis by interfering with the 
function of endothelial barriers, and triggering the differ-
entiation of cells in the TME into CAFs [71, 76, 77]. Exo-
somal miRNA-9 promotes the phenotypic transition of 
normal breast cancer fibroblasts to CAFs. Based on these 
results, transcripts involved in regulating cell motility 
and ECM remodelling are regulated by the exosomal vec-
tor miRNA-9 released from transfected fibroblasts [78]. 
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CAFs play a prominent role in the invasion and metasta-
sis of breast cancer because they account for the majority 
of the microenvironment [79]. Research has revealed that 
sEVs from breast cancer samples increase superoxide dis-
mutase 1 (SOD1) expression in fibroblasts, which are then 
converted into myofibroblasts (CAF-like) [80]. Moreover, 
MDA-MB-231-derived sEVs promote the transformation 
of fibroblasts into prometastatic CAFs and increase cell 
contractility, one of the main hallmarks of activated CAFs 
in the TME promoting cancer cell invasion [81].

sEV‑mediated metastatic organotropism
In 1889, Stephen Paget proposed the famous “seed and 
soil” hypothesis. Cancer cells were compared to "seeds" 
and the site of cancer metastasis to "soil" in his hypothesis 
[82]. The destination of cancer metastasis is not random; 
that is, like "seeds", cancer cells are able to spread through-
out the body but will only grow in fertile "soil" [82]. Cells 
from breast cancer metastasize to specific organs, known 
as organotropism metastasis, and are regulated by several 
factors, including the host–organ microenvironment, the 
breast cancer subtype itself and cancer cell–organ interac-
tions [83]. However, in this process sEVs act as “fertiliz-
ers” in preparing a favourable microenvironment at future 
specific metastatic sites [84–86].

Hoshino found that breast cancer-derived sEVs can be 
used not only to predict metastatic propensity but also 
to identify organ sites for future metastases [30]. First, 
sEVs were isolated from organotropic human breast can-
cer cell lines, and their observations indicated that the 
organotropic distribution of sEVs matched the organot-
ropy of the origin cell line. Then, the researchers discov-
ered that organotropic tumour sEVs are potent enough 
to prepare premetastatic niches to facilitate metastasis. 
Further in-depth research showed that integrin expres-
sion patterns in sEVs determine organotropism in the 
lungs, liver, and brain and mediate sEV uptake into these 
organs. Overall, the results show that exosomal integ-
rins can serve as a marker of organ-specific metastasis 
in breast cancer [30]. The presence of exosomal miRNAs 
in breast cancer contributes to organ-specific metastatic 
disease. sEV-mediated miRNA-19a promotes breast can-
cer brain metastasis through targeted downregulation 
of phosphatase and tensin homologue (PTEN) [87]. The 
ability of metastatic breast cancer cells to colonize the 
lung of poorly metastatic breast cancer cells is depend-
ent on exosomal miRNA-200 [88]. As the above studies 
demonstrate, breast cancer metastasis is not random, 
and breast cancer-derived sEVs allow tumour cells to 
colonize and translocate to specific organs.

Exosomal coding RNAs and non‑coding RNAs 
in the PMN
In recent years, exosomal DNAs have been reported to 
be associated with breast cancer progression to metas-
tases [89, 90]. Mutant DNA and mRNA are secreted by 
breast tumour cells via sEVs and can be integrated into 
heterologous cells by sEVs; for example, phosphoinositide 
3-kinase alpha (PIK3CA) mutation has been demon-
strated [91]. Non-coding RNAs were considered to be 
only intermediate molecules and not functional. In recent 
years, non-coding RNAs have been increasingly recog-
nized as important regulators of cancer, including breast 
cancer [92, 93]. MiRNAs are small RNA molecules with a 
length of 18–25 nucleotides that regulate gene expression 
via posttranscriptional regulation, normally by inhibit-
ing translation or by promoting the degradation of spe-
cific mRNAs [94, 95]. The various mechanisms by which 
exosomal miRNAs affect the PMN in breast cancer have 
come to light. The roles of exsomal miRNAs are listed 
in Table  1. Long non-coding RNAs (lncRNAs) contain 
more than 200 nucleotides and have attracted increas-
ing attention [96]. Growing evidence suggests that lncR-
NAs have the potential to serve as diagnostic, prognostic 
biomarkers and therapeutic targets for breast cancer and 
have vital functions for the formation of PMNs [97–100]. 
Even so, there are no studies on the relationship between 
exosomal lncRNAs and the breast cancer PMN. Circular 
RNAs (circRNAs) have a closed ring structure and exert 
important biological functions as miRNA sponges [101]. 
There is increasing evidence linking exosomal circRNAs 
to TNBC. sEVs from TNBC that contain large amounts 
of circPSMA1 can be used to stimulate the migration and 
proliferation of recipient cells. Tumour-derived exosomal 
circPSMA1 is upregulated and favour the tumourigen-
esis, metastasis and immunosuppression of TNBC via 
the circPSMA1/miRNA-637/Akt1-β-catenin (cyclin D1) 
regulatory axis [102]. Another study found that circH-
IF1A also plays an important role in the progression and 
metastasis of TNBC [103]. Invadopodia of circSKA3 are 
involved in sEV formation, which increases tumour inva-
dopodia and promotes breast cancer invasion [104].

Collectively, the formation of PMNs in breast can-
cer involves both coding and non-coding RNA origi-
nating from sEVs. At present, exosomal miRNAs have 
attached great attention in inducing PMNs. Further-
more, the roles of exosomal lincRNAs and circRNAs in 
PMNs of breast cancer are gradually being revealed.

Clinical applications mediated by sEVs
Biomarkers for the pre‑metastatic niche
Treatment of breast cancer aims to detect and stop 
tumour progression before metastasis or in the pre-met-
astatic niche. Hence, it is imperative to seek prognostic 



Page 7 of 13Chen et al. Cell Communication and Signaling          (2022) 20:141 	

biomarkers of metastasis. Liquid biopsies are an emerg-
ing technique in the field of cancer diagnosis that analy-
ses blood, urine, and other bodily fluids to derive a cancer 
diagnosis and prognosis [109]. For prognostic biomarkers 
of PMNs, sEVs are particularly advantageous, since they 
are stable, exist in body fluids, are less invasive, and are 
tumour-specific [110]. The use of sEVs as biomarkers 
could revolutionize the way breast cancer is diagnosed 
and treated. Additionally, they can be isolated from vari-
ous body fluids, including serum, and their miRNA con-
tent reflects that of parental breast cancer cells [111]. 
Studies have demonstrated that miRNA-105 can be used 
as a prognostic blood marker for or for the early diagno-
sis of breast cancer metastasis [71]. Using animal mod-
els, researchers found that circulating miRNA-105 was 
significantly elevated at both the premetastasis and post-
metastasis stages in tumour-bearing mice. Their clini-
cal data revealed that the patient had breast cancer with 
distant metastasis whose concentration of miRNA-105 
in their blood was also elevated significantly. This result 
was also confirmed in another study [112]. In addition, 
poor prognosis is associated with stemness- and metas-
tasis-associated mRNAs in plasma exosomes from breast 
cancer patients [113]. Exosomal proteins can also serve 
as biomarkers for breast cancer [114, 115]. Using semi-
quantitative mass spectrometry to compare plasma sEVs 
enriched from advanced breast cancer patients with 
those enriched from age-matched controls, researchers 
found that sEV-related proteins can indicate breast can-
cer metastasis [116]. Some researchers have even estab-
lished a breast cancer sEV database based on robust 
analysis of high-throughput expression data and a thor-
ough literature review [117].

sEVs as a novel therapeutic option
Currently, an increasing number of studies have applied 
sEVs as a drug delivery medium for anti-breast can-
cer and anti-metastasis treatment [118, 119]. With low 
immunogenicity, strong penetration abilities, and excel-
lent specificity in homing the target, sEVs considerably 
outperform other nanoparticles in nanotherapy; there-
fore sEVs have been extensively used as a nanodrug car-
rier in the targeted drug delivery of breast cancer [120]. 
Different cell-derived sEVs can act as antitumour agents 
by transporting miRNA. Antitumour miRNAs can be 
targeted to breast cancer cells expressing the epidermal 
growth factor receptor (EGFR) by intravenous injections 
of sEVs [121]. Similarly, mesenchymal stem cell (MSC)-
derived sEVs can deliver inhibitors of miRNA-142-3p, 
significantly reducing the levels of miRNA-142-3p and 
miRNA-150, and enhancing the transcription of target 
genes.

Vaccination can promote antitumour immunity, but 
many obstacles still stand in the way of its successful 
application. Moreover, applications of sEVs by research-
ers are making them popular in the development of anti-
cancer vaccines. To date, most cancer vaccines based on 
sEVs derived from dendritic cells or tumour cells focus 
on the therapeutic aspects of the disease [122]. As early 
as 1998, researchers found that DC cell-derived sEVs 
activate specific cytotoxic T cells to exert an antitumour 
effect [123]. The above study was the first to support the 
use of sEVs to develop novel cell-free vaccines. Another 
pioneering study showed that tumour cell-derived sEVs 
act as a novel source of T-cell cross-priming tumour 
rejection antigens, activating CD8+ T cells and lead-
ing to tumour rejection in mice [124]. DC cell-derived 
sEVs are significant targets in tumour vaccines [125]. 
sEVs derived from DCs can stimulate T-cell responses 

Table 1  The role of exosomal miRNAs in breast cancer in the PMN

Donor cell Exosomal miRNA Function Refs.

Breast cancer cell miRNA-9
miRNA-181a

Upregulate in MDSCs, target SOCS3 and PIAS3 [56]

Astrocyte miRNA-19a Induce CCL2 upregulation, increase brain metastasis [87]

Breast cancer cell miRNA-105 Induce vascular permeability [71]

Breast cancer cell miRNA-122 Modifying glucose utilization by recipient PMN cells [105]

Breast cancer cell miRNA-200 Suppresses EMT, which enhances lung metastasis and colonization [88]

nSMase2 miRNA-210 Enhanced angiogenesis [69]

XISTlow breast cancer cell miRNA-503 Trigger M1-M2 polarization of microglia (enhancing their PD-L1 expression 
to suppress local immunity)

[106]

Breast cancer cell miRNA-21 Promote formation of PMN [27]

CAF miRNA-18b Promote nuclear Snail ectopic activation inducing EMT [107]

Breast cancer cell miRNA-200b-3p Regulate CCL2 expression in the lung [50]

MSC miRNA-100 Affect the vascular behaviour of endothelial cells [108]
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directly by catalysing peptide-MHC complexes or indi-
rectly by taking up and processing sEVs. Moreover, DC 
cell-derived sEVs can activate and promote the prolif-
eration of NK cells when they interact with NKG2D 
ligands on the membranes of NK cells [122]. Compared 
to DC vaccines, DC-derived sEVs have a high level of 
stability and strong immunogenicity. Furthermore, DC-
derived sEVs also contain more peptide-MHC I and 
-MHC II complexes than DCs [126]. In addition to pro-
viding a significant amount of tumour-associated anti-
gens for antigen presentation, tumour cell-derived sEVs 
also carry mRNAs and non-coding RNAs that are criti-
cal for antitumour immunity [127, 128]. For instance, 

pioneer-translated peptides (PTPs) derived from intronic 
or exonic pre-mRNA act as tumour-associated antigens, 
which are delivered from the producing tumour cells to 
professional antigen presenting cells via sEVs. Thereby, 
PTPs further activate CD8+ T cells and inhibit tumour 
growth in mice [129]. Clinical trials conducted on DC-
derived sEV vaccines suggest the potential for sEV-based 
vaccines [130]. In  situ DC vaccines with tumour cell-
derived sEVs as carriers activate type 1 conventional 
DCs (cDC1s) and cross-prime tumour-reactive CD8+ 
T-cell responses. A potent tumour-suppressive effect has 
been observed in mouse xenograft models of TNBC and 
patient-derived tumour organoids [131].

Fig. 3  Effect of sEVs on the pre-metastatic niche in breast cancer. An overview of the effects of sEVs on the PMN of breast cancer can be 
summarized as follows: inflammation, immunosuppression, angiogenesis and vascular permeability, stromal remodelling and organotropism. a The 
sEVs secrete inflammatory factors, such as IL-6 and IL-8, promoting angiogenesis and recruiting immunosuppressive cells to promote the formation 
of breast cancer PMNs. In turn, inflammatory molecules can affect the distribution of sEVs and thus influence the PMN. b The sEVs not only inhibit 
T cells and induce immune escape by transporting PD-L1, but also exert immunosuppressive effects by recruiting MDSCs, altering DC cell activity, 
and transforming macrophages. sEVs also stimulate immune cells such as TANs to secrete cytokines, which suppress the antitumour immunity. 
c Through proangiogenic factors, including MMPs, and VE-cadherin, as well as miRNAs, sEVs are believed to act on angiogenesis and vascular 
permeability in the PMN of breast cancer. d In breast cancer, sEVs facilitate the turnover of CAFs to remodel the ECM and create the PMN. e The sEVs 
of breast cancer can provide a measure of organtropism, such as specific exosomal integrin combinations (there is a link between exosomal α6β4 
and α6β1 integrins and lung metastasis/exosomal αvβ5 integrin with liver metastasis/exosomal αvβ3 integrin with brain metastasis). In addition, 
exosomal IBSP and miRNAs are involved in breast cancer brain metastasis
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Furthermore, engineered sEVs have demonstrated 
highly potent and specific antitumour effects by acti-
vating cytotoxic T cells to destroy breast cancer cells 
expressing HER2 [132]. Unlike other cancers, TNBC does 
not express progesterone receptor (PR), ER or HER2, and 
delivering effective targeted therapy for TNBC remains 
a challenge. However, progress has been made in the 
application of sEV-targeted therapy for TNBC. Engi-
neered sEVs not only enhance the antitumour effect of 
doxorubicin but also exhibit significant tumour targeting 
efficacy in TNBC [133]. sEV-based erastin preparations 
exert antitumour effects through ferroptosis in TNBC 
[134]. Additionally, sEVs have shown promise as a tar-
geted therapy for breast cancer metastasis [135, 136].

It is thought that sEVs may become potential thera-
peutic targets for treating breast cancer metastasis in the 
future, as they function in cell-to-cell communication 
and influence metastatic niche formation.

Conclusions
In summary, sEVs, by participating in cell-to-cell com-
munication, play a momentous role in breast can-
cer metastasis through PMNs. sEVs can interact with 
inflammatory molecules to promote the formation of 
the PMN. In addition, sEVs can influence the estab-
lishment of the PMN from multiple aspects, including 
driving immunosuppression and immune surveillance, 
promoting angiogenesis and vascular permeability, 
activating stromal cells and remodelling of the ECM, 
and determining organotropism metastasis (Fig.  3). 
Non-coding RNAs in sEVs, especially miRNAs, are 
constantly being recognized and are closely related to 
the metastatic niche [137]. It may be possible to her-
ald (or prognosticate) metastases by detecting miRNAs, 
thereby inhibiting the occurrence of metastases. Likely 
in the next, sEVs will increasingly be used in the treat-
ment of breast cancer metastasis.
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