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Abstract We present a simplified two-dimensional model
of fluid flow, nutrient transport and cell distribution in a hol-
low fibre membrane bioreactor, with the aim of exploring
how fluid flow can be used to control the distribution and
yield of a cell population which is sensitive to both fluid
shear stress and nutrient concentration. The cells are seeded
in a scaffold in a layer on top of the hollow fibre, only par-
tially occupying the extracapillary space. Above this layer
is a region of free-flowing fluid which we refer to as the
upper fluid layer. The flow in the lumen and upper fluid
layer is described by the Stokes equations, whilst the flow
in the porous fibre membrane is assumed to follow Darcy’s
law. Porous mixture theory is used to model the dynamics
of and interactions between the cells, scaffold and fluid in
the cell–scaffold construct. The concentration of a limiting
nutrient (e.g. oxygen) is governed by an advection–reaction–
diffusion equation in each region. Through exploitation of the
small aspect ratio of each region and asymptotic analysis, we
derive a coupled system of partial differential equations for
the cell volume fraction and nutrient concentration. We use
this model to investigate the effect of mechanotransduction
on the distribution and yield of the cell population, by con-
sidering cases in which cell proliferation is either enhanced
or limited by fluid shear stress and by varying experimentally
controllable parameters such as flow rate and cell–scaffold
construct thickness.
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1 Introduction

The need for a reliable and sufficient source of replacement
tissue and organs is constantly increasing, due to our ageing
population and consistent lack of donors. The potential for
tissue engineering to meet this demand is great, but there are
still many barriers to be overcome before the field can pro-
vide alternative treatments on a clinical scale. For each tissue
type, a different experimental technique must be developed
to ensure that the engineered substitute is viable and can per-
form the same essential functions as the original tissue. This
often means being able to mimic the in vivo environment of a
particular tissue and has resulted in a vast array of protocols,
bioreactors, culture conditions, and scaffold materials (see
e.g. Martin et al. 2004; Martin and Vermette 2005; Pörtner
et al. 2005; Stock and Vacanti 2001). For each set-up and cell
type, optimal operating conditions must therefore be deter-
mined, a process which can be extremely time-consuming
and expensive to resolve purely experimentally.

Mathematical modelling of bioreactor systems can be of
great benefit for several reasons. It is reproducible and effi-
cient, allowing the large numbers of parameters to be inves-
tigated relatively quickly and cheaply. Moreover, it can give
insight into the combined effects of the physical processes
involved in a particular set-up, or even focus on one process
in isolation—this is hard to achieve in an experimental set-up.
An example of one such process, and the focus of this work,
is mechanotransduction: the mechanism by which forces are
converted into biochemical signals and integrated into a cel-
lular response. Below, we review a selection of mathematical
models that specifically incorporate the effects of mechan-
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otransduction. For more general detail on mathematical mod-
els in tissue engineering, we refer to the recent review by
O’Dea et al. (2013a).

Previous work on multiphase modelling of mechanotrans-
duction in tissue engineering includes a series of papers by
O’Dea et al. (2008, 2010, 2013b). In O’Dea et al. (2008),
the authors develop a two-phase model of tissue growth in a
perfusion bioreactor. They include dependence of cell prolif-
eration, extracellular matrix (ECM) deposition and cell death
on the local cell density and fluid pressure. Results indicate
that these effects can dramatically alter the composition of the
resulting cell construct. This model was extended to include
an additional porous scaffold phase in O’Dea et al. (2010),
in which the system was simplified analytically by taking the
long-wavelength limit appropriate for a small channel aspect
ratio. The effect of fluid shear stress, as well as cell den-
sity and fluid pressure, was considered. Findings supported
the earlier conclusion that mechanotransduction can signifi-
cantly affect cell distribution. The same set-up was modelled
and solved numerically by Osborne et al. (2010), highlighting
situations in which a numerical approach is necessary, and
when the analytical limits taken in O’Dea et al. (2010) are rel-
evant. A further extension of this work is given in O’Dea et al.
(2013b) in which the degradation of a scaffold is included,
and whose spatially non-constant porosity is informed by
experimental data.

As well as cell proliferation and death, mechanotransduc-
tion can affect cell differentiation. This is the focus of a paper
by Byrne et al. (2007), in which finite element analysis is
used to model a poroelastic tissue–scaffold construct for bone
regeneration, with the objective of determining optimal scaf-
fold porosity under different mechanical loading conditions.
The dependence of stem cell differentiation on fluid velocity
and shear strain is considered by employing the mechanoreg-
ulation algorithm developed by Prendergast et al. (1997).
Depending on the stimulus level, differentiation into fibrob-
lasts, chondrocytes or osteoblasts can occur. Aiming to iden-
tify possible treatment options in fracture healing, Lacroix
and Prendergast (2002) develop a three-dimensional model
of a human tibia fracture, again using the mechanoregula-
tion algorithm proposed in Prendergast et al. (1997). Two
different compressive loading magnitudes were simulated,
and it was shown that only the lower load led to successful
healing.

A finite element approach was also taken by Driessen et al.
(2003), who modelled the effect of the different mechan-
ical loading regimes resulting from closed and open con-
figurations on collagen fibre content and orientation in an
aortic valve. The mechanical properties of the tissue con-
struct were shown to depend on the type of loading, as
the fibres aligned with the principal strain directions, and
the results were validated against experimental data where
possible. Cardiac tissue was also the focus of the work in

Latimer et al. (2003), who determined the stress and strain
distribution in two- and three-dimensional tissues. Analyti-
cal solutions were found and used to demonstrate the strain
in and around an ischemic region, and have the potential
to be further used to predict mechanotransduction effects
on the tissue leading to arrhythmias, or following hypoxia.
Finally, the importance of scaffold design in bone tissue engi-
neering motivated the study by Sanz-Herrera et al. (2009).
The need for an implantable construct that has the required
macroscale properties, but which is affected by biophysi-
cal phenomena on the microscale, led to a multiscale model
which incorporated a realistic scaffold microstructure. Bone
regeneration was assumed to be dependent on mechani-
cal stimuli, and properties for the macroscale model such
as the scaffold stress and strain and cell diffusion were
obtained through the analysis of the underlying microstruc-
ture, which in turn evolved as a result of macroscale cell
migration.

In this paper, we consider various experimentally relevant
case studies, motivated by specific cell types, to investigate
the effect of fluid shear stress on the proliferation rate, and
thus distribution, of cells in a hollow fibre membrane bioreac-
tor (HFMB) (see Fig. 1). A HFMB consists of a cylindrical,
glass module with a port at each end of the extracapillary
space (ECS) and a porous hollow fibre inserted through the
centre. A number of different cell seeding and flow regimes
can be employed; for this work, we consider the set-up in
which the cells are seeded in a scaffold in the ECS between
the hollow fibre and the outer glass wall. Culture medium is
pumped in via the lumen inlet and upstream ECS port. The
pressure is set at the downstream lumen end via a clamp,
and the downstream ECS port is left open to the atmosphere.
Depending on the flow and pressure conditions, the fluid may
pass through the hollow fibre walls and then flow out of either
the lumen outlet or downstream ECS port.

We build on the model developed in Pearson et al. (2013)
which describes fluid flow, solute concentration and cell dis-
tribution in a HFMB. In Pearson et al. (2013), the entire
ECS was filled by the cell–scaffold construct, through which
media could flow. Fluid velocities in the membrane and ECS
were assumed to be an order of ε smaller than those in the
lumen as a result of the resistance to flow through these
porous regions, where ε � 1 is the lumen aspect ratio. Here,
we consider the alternative experimental set-up in which the
cell–scaffold construct only fills part of the ECS (that directly
above the porous membrane, defined as the cell layer), and
media can flow freely throughout the remainder. The width
of this cell layer can be controlled experimentally and will be
varied as part of our investigation. Fluid is pumped into the
system via both the lumen inlet and upstream ECS port; as a
result, we expect the fluid velocity in this upper fluid layer to
be of the same order of magnitude as the lumen. As well as
enabling the relevant solutes to be delivered to, or removed
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Fig. 1 Top Photograph of a
single HFMB module (ruler
scale in cm) as shown in Pearson
et al. (2013). Bottom cross
section of the boxed region (not
to scale), where the lower half
(not shown) has been excluded
based on symmetry. This depicts
the idealised two-dimensional
modelling region with the x axis
running along the lumen
centreline. The solid black
arrows show the direction and
location of the fluid fluxes into
the system, and the star denotes
the origin (x, y) = (0, 0)

from, the cells more quickly, we expect the cells to be exposed
to a higher and potentially significant level of fluid shear
stress as the flow through the cell layer will be enhanced by
the upper fluid flow above. The impact of this set-up remains
an open question experimentally: depending on the cell type,
fluid shear stress can either be beneficial or detrimental to
cell growth and survival. In this work, we therefore con-
sider mechanotransduction effects, which were not included
in Pearson et al. (2013). Specifically, we explore the effect of
fluid shear stress on cell yield and distribution, via changes
in the fluid flux into the upper fluid layer. In addition, the
fluid flux affects the concentration of a nutrient (taken to
be oxygen) which can limit the cell proliferation rate. We
determine the range of possible behaviours from this set-up
and find optimal flow rates for which the fluid shear stress
has an advantageous effect: that is, it enables a more spa-
tially uniform cell population and/or a higher cell yield to be
obtained.

1.1 Paper outline

We begin in Sect. 2 by describing the simplified mod-
elling domain before introducing the governing equations
and boundary conditions for each region in Sects. 2.1 and 2.2.
In Sect. 3.1, we introduce relevant parameter values, moti-
vating the non-dimensionalisation of the system (details of

which are given in “Appendix”). In Sects. 3.2–3.4, we exploit
the small aspect ratio of the lumen to reduce the system to
two coupled partial differential equations for the cell volume
fraction and solute concentration. Results for the cases in
which cell proliferation is either enhanced or limited by fluid
shear stress are presented in Sects. 4.1 and 4.2, and the sen-
sitivity of our results to the cell layer width is investigated in
Sect. 4.3. Finally, key findings and conclusions are discussed
in Sect. 5.

2 Model description

We describe the system using two-dimensional Cartesian
coordinates, for simplicity and to enable analytical progress.
Although results would be quantitatively different in an
axisymmetric or three-dimensional set-up, we would not
expect them to change qualitatively and hope to verify this
in future work. We define the axial dimension of the mod-
elling domain by 0 < x < L . The lumen and mem-
brane are then respectively given by 0 < y < h1 and
h1 < y < h1 + h2 in the transverse direction. The cell
layer is of comparable thickness to the membrane, occupy-
ing h1 + h2 < y < h1 + h2 + h3, and the upper fluid
occupies H − h4 < y < H , where H = h1 + h2 + h3 + h4

(see bottom half of Fig. 1). As in Pearson et al. (2013), we

123



390 N. C. Pearson et al.

consider the cell layer to be a multiphase region consisting
of the cells, culture medium (modelled as water) and a rigid,
inert scaffold, closely following the formulation from Lemon
et al. (2006). Water variables in the lumen, membrane, cell
layer and upper fluid layer are denoted by subscripts l, m, w
and f, respectively, and cell phase variables by subscript n,
with the velocities given by ui = (ui , vi ), the water pres-
sures by pi , and the solute concentrations per unit volume
of water by ci (i = l,m,w, f). In the cell layer, we track the
dynamics of the cell, water and scaffold phases through their
respective volume fractions θn, θw and θs, where θs is con-
stant in space and time due to the assumption of a rigid, inert
scaffold.

2.1 Governing equations

The dimensional governing equations in each region take the
form of conservation of mass and momentum for the water
and cell phases, and conservation of mass for the solute. In
the lumen, porous membrane and cell layer are the same as
for the three-region system in Pearson et al. (2013), and the
dynamics in the additional upper fluid layer are governed
by the same equations as the lumen. We take the membrane
porosity φ to be constant and work with reduced pressures
throughout since gravitational effects are not negligible at the
flow rates considered (see Pearson et al. 2013 for details).
In the lumen (0 < y < h1), the relevant water equations
are those of Stokes flow, along with an advection–diffusion
equation for the solute:

∇ · ul = 0, −∇ pl + μw∇2ul = 0,

∂cl

∂t
+ ∇ · (clul) = D∇2cl, (2.1)

where t represents time, μw the water viscosity (assumed
constant) and D the diffusion coefficient for the solute in
water (also assumed constant). In the porous membrane
(h1 < y < h1 + h2), we use Darcy’s law for flow in porous
media,

um = − k

μw
∇ pm, ∇ · um = 0,

∂(φcm)

∂t
+ ∇ · (φcmum) = Dφ∇2cm, (2.2)

where k is the (constant) membrane permeability. In the cell
layer (h1 + h2 < y < H − h4), the no-voids condition is
given by

θn + θw + θs = 1, (2.3)

while conservation of mass and momentum for the cell phase
is given by

∂θn

∂t
+ ∇ · (θnun) = Jn,−∇(θn pn)+ ∇ · (θnτ n)

+ ψnsθs∇θn − γnsθnθsun = 0. (2.4)

Here, Jn represents the net cell production rate, pn is the
(reduced) cell pressure, ψns is the interphase pressure due to
tractions between the cells and scaffold, γns is the (constant)
cell–scaffold drag coefficient, and τn is the deviatoric stress
tensor for the cell phase, given by

τ n = μn

(
∇un + (∇un)

T − 2

3
(∇ · un) I

)
, (2.5)

where superscript T denotes transpose, I is the identity tensor
andμn is the effective viscosity of the cell phase (assumed to
be much greater than μw). Here, we have neglected tractions
and drag between the cells and water, assuming that they
are much smaller than those between the cells and scaffold.
This simplifying assumption is motivated by the expectation
that the cells will strongly adhere to the scaffold. In the equa-
tions for the water phase, below we similarly neglect tractions
between the cells and water. The corresponding equations for
the water phase are

∂θw

∂t
+ ∇ · (θwuw) = −Jn,

− θw∇ pw − γwsθwθsuw = 0, (2.6)

where we have assumed that the net water production rate is
−Jn so that mass is conserved. Conservation of solute mass
in this region yields the following:

∂(θwcw)

∂t
+ ∇ · (θwcwuw) = D∇ · (θw∇cw)+ R, (2.7)

where R is a reaction term which accounts for solute uptake
by the cells. Finally, in the upper fluid layer (H − h4 < y <
H ), the governing equations are

∇ · uf = 0, −∇ pf + μw∇2uf = 0,

∂cf

∂t
+ ∇ · (cf uf) = D∇2cf . (2.8)

Constitutive forms need to be prescribed for a number of the
terms above, namely Jn,R (which we present and discuss
in Sect. 4) and pn and ψns. For now, we assume only that
Jn and R are functions of the cell volume fraction θn, cell
layer solute concentration cw and (in the case of Jn) the fluid
shear stress in the cell layer. As will be seen in Sect. 3.2,
the fluid flow in the cell layer is independent of y, and thus,
we take the fluid shear stress to be proportional to the fluid
pressure gradient ∂pw/∂x . The cell pressure is assumed to
be equal to the water pressure plus an extra component Π
which accounts for cell–cell interactions,
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pn = pw +Π(θn), (2.9)

where

Π(θn) = θn

(
−ν + δθn

1 − θs − θn

)
, (2.10)

for constants ν and δ. The form for the extra componentΠ is
motivated by O’Dea et al. (2010), and the first term models
aggregation of cells at low densities, whilst the second term
represents contact inhibition. As in Pearson et al. (2013),ψns

is assumed to be a negative constant representing the cells’
affinity for the scaffold:

ψns = −η. (2.11)

2.2 Boundary conditions

On y = 0 symmetry requires that

∂ul

∂y
= 0, vl = 0,

∂cl

∂y
= 0; (2.12)

on the lumen/membrane interface y = h1 we impose no
slip of fluid, and continuity of fluid flux, of normal stress, of
solute concentration and of solute flux, viz.

ul = 0, vl = φvm,

nl · σ l · nl = nl · σm · nl,

cl = cm,
∂cl

∂y
= φ

∂cm

∂y
;

(2.13)

and on the membrane/cell layer interface y = h1 + h2 we
impose no flux and no slip of cells, and continuity of fluid
flux, of normal stress, of solute concentration and of solute
flux, viz.

un = 0, φvm = θwvw,

nm · σm · nm = nm · σw · nm,

cm = cw, φ
∂cm

∂y
= θw

∂cw

∂y
.

(2.14)

On the cell layer/upper fluid interface y = H−h4, we impose
no flux and no shear stress on the cell phase, continuity of
flux and of normal stress on the water phase, no slip of fluid
and continuity of concentration and of flux of solute:

vn =0, ne · σ n · te = 0,

uf =0, θwvw = vf , ne · σw · ne = ne · σ f · ne,

cw =cf , θw
∂cw

∂y
= ∂cf

∂y
.

(2.15)

We note that, in the above, the most appropriate choice of
stress condition on the cell phase is unclear, and we have cho-
sen to apply no shear stress as an example first case. Equally,
a nonzero shear stress condition could be chosen, and the
analysis follows through in a similar manner. However, this
would require prescription of another constitutive term for
the partition of the shear stress, and hence, we have chosen
not to consider this here for simplicity. Finally, on the top of
the bioreactor y = H , we impose no slip and no flux of fluid,
and no flux of solute:

uf = 0,
∂cf

∂y
= 0. (2.16)

We impose boundary conditions at the up- and down-stream
ends of the bioreactor once the system has been reduced in
dimension, as we shall now describe.

3 Model reduction

In this section, we discuss relevant dimensional parameter
values, which motivate our choice of non-dimensionalisation
(details are given in “Appendix”). The resulting dimension-
less parameter values, and asymptotic expansion of the sys-
tem variables in powers of the lumen aspect ratio, allow the
system of governing equations and boundary conditions to
be reduced significantly to four coupled PDEs. Imposing up-
and down-stream boundary conditions closes the problem
and eliminates two of these equations, leaving a system of
two coupled PDEs for the cell volume fraction and solute
concentration at leading order in the lumen aspect ratio. The
remaining leading order unknowns can be determined via
analytical expressions.

3.1 Parameter values

Typical dimensional parameter values are taken from the lit-
erature or guided by our experimental collaborators where
possible. We present these in Table 1 along with correspond-
ing dimensionless parameters in Table 2. Dimensional para-
meter values for which data could not be found are omitted
from Table 1; instead, their dimensionless equivalents are
defined in Table 2 and values chosen so that our asymptotic
analysis retains as many features as possible at leading order.
A few choices are worth mentioning here: for a more in-
depth discussion see Pearson et al. (2013). Firstly, we note
that the aspect ratio of each region is small; in particular,
we define the lumen aspect ratio by ε = h1/L � 1 and
use this as the relevant parameter for our asymptotic expan-
sion in Sect. 3.2. In addition, the reduced Reynolds number
in the lumen and upper fluid layer is ε2Re = 2.05 × 10−6

which justifies neglecting inertial effects in these regions in
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Table 1 Dimensional parameters

Parameter Dimensional value
and units

Definition

h1 200 µma Lumen height

h2 200 µma Porous membrane height

h3 + h4 600 µma ECS height (cell
layer+upper fluid layer
height)

L 0.1 ma Length of bioreactor
modelling domain

ρw 1 g cm−3 a Water density

μw 10−3 Pa sa Water viscosity

k 6.73 × 10−16 m2 b Porous membrane
permeability

patm 14.69 psiaa Atmospheric pressure

Ql,in, Qf,in 1.02×10−11−1.02×
10−8 m2 s−1 c

Lumen/upper fluid layer
inlet flux

Γnw 5.79 × 10−6 s−1 c cell proliferation rate
coefficient

Γwn 4.13 × 10−7 s−1 Cell death rate coefficient

cin 0.22 mol m−3 a Inlet solute concentration

D 3 × 10−9 m2 s−1 a Solute diffusion coefficient
in water

U∗ 1.0239 ×
10−8 m s−1 c

Typical porous membrane
velocity

C∗ 0.22 mol m−3 a Typical solute concentration

a Values taken from Shipley et al. (2010)
b Experimentally obtained values
c Values based on estimations by our experimental collaborators

Sect. 2.1 and motivates our choice of non-dimensionalisation.
We set the viscosity ratio μw/μn = λε for some con-
stant λ = O(1). This is motivated by the fact that we
would expect the effective (macroscale) viscosity of the cell
phase to be much greater than that of water as a result
of the cytoskeletal network, the cell–scaffold affinity and
microscale cell–cell interactions. We choose the dimension-
less cell–scaffold drag ζns and water–scaffold drag ζws to be
of O(1), so that their effects are retained in the leading order
model, but assume that ζws < ζns (as would be expected
physically).

We define the velocity scale U∗ to be a typical hori-
zontal velocity of the water in the porous membrane. We
then take the corresponding horizontal velocity scale in the
cell layer to be U∗, and in both the lumen and upper fluid
layer to be μnU∗/μw, so that the same pressure scales
apply throughout the system in our non-dimensionalisation.
These choices are also motivated by the fact that we would
expect the porous structures to hinder the fluid flow in the
membrane and cell layer. In addition, this choice enables
substantial analytical progress to be made in the math-
ematical reduction in Sect. 3.2. We note that other lim-

its could be considered, for instance taking the cell and
water phases to be of comparable viscosity (as in O’Dea
et al. 2010, 2013a) or the cell phase to be inviscid (as
in Lemon et al. 2006).

We take the reduced Péclet number in the lumen and upper
fluid layer, ε2Pe, to be order ε2 so that diffusion dominates
advection throughout. The concentration scale C∗ and inlet
concentration cin are both set to be a typical oxygen concen-
tration used in cell culture (Shipley and Waters 2012), as oxy-
gen is the solute of interest in Sect. 4. The two-dimensional
lumen and upper fluid inlet fluxes Ql,in and Qf,in (which
come into the up- and down-stream boundary conditions in
Sect. 3.3) have been converted from three-dimensional exper-
imental values by first calculating the corresponding velocity
and then multiplying by the length scale in the y direction, εL .
The downstream lumen outlet pressure Pd and atmospheric
pressure patm are also introduced in Sect. 3.3. The cell pro-
liferation/death rates Γnw/Γwn and solute uptake rate ΓR1

are parameters in the constitutive laws for Jn and R, both
of which we define in Sect. 4. Based on estimations by our
experimental collaborators, we take the (dimensional) cell
proliferation rate coefficient Γnw to correspond to one cell
division every 48 h, and we assume that cells live, on aver-
age, for 28 days when fixing the (dimensional) cell death rate
coefficient Γwn.

3.2 Derivation of the reduced model

Having non-dimensionalised the governing equations and
boundary conditions (see “Appendix”), we asymptotically
expand each dependent variable in powers of ε, for instance
setting ul ∼ ul0 + εul1 + ε2ul2 + · · · and similarly for the
remaining velocities, reduced pressures, solute concentra-
tions and volume fractions. In the following, we omit the
subscript 0 from leading order variables except where needed
for clarity. Equating coefficients of ε0 in the lumen then yields

∂ul

∂x
+ ∂vl

∂y
= 0, (3.1a)

∂2ul

∂y2 = ∂pl

∂x
, (3.1b)

∂pl

∂y
= 0, (3.1c)

∂2cl

∂y2 = 0; (3.1d)

in the membrane

um ≡ 0, (3.2a)

vm = −κ ∂pm

∂y
, (3.2b)

∂2 pm

∂y2 = 0, (3.2c)
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Table 2 Dimensionless
parameters

Values taken from a Lemon et
al. (2006), b Meneghello et al.
(2009), and c O’Dea et al. (2010)

Parameter Definition Value Restriction (if any)

ĥ2 h2/(εL) 1 ĥ2 > 0

ĥ3 + ĥ4 (h3 + h4)/(εL) 3 ĥ3, ĥ4 > 0

θs Scaffold volume fraction 0.4a 0 < θs < 1

ε h1/L 2 × 10−3 0 < ε � 1

λ μw/(εμn) 1 ε � λ � 1/ε

ε2Pe εLU∗/(λD) 6.83 × 10−4 ε3 � ε2Pe � ε

ε2Re ερw LU∗/(λμw) 2.05 × 10−6 ε2Re � 1

φ Porous membrane porosity 0.77b 0 < φ < 1

κ k/(λε5 L2) 2.1 ε � κ � 1/ε

Q̂i,in, i = l, f λQi,in/(LU∗) 0.01–10 ε � ˆQi,in � 1/ε

ν̂ λε3 Lν/(μwU∗) 0.3c –

δ̂ λε3 Lδ/(μwU∗) 0.1c –

η̂ λε3 Lη/(μwU∗) 0.3c –

ζns γns L2λε3/μw 1 ε � ζns � 1/ε

ζws γws L2λε3/μw 0.1 ε � ζws � ζns

Γ̂nw LΓnw/U∗ 56.52 ε � Γ̂nw � 1/ε

Γ̂wn LΓwn/U∗ 4.04 ε � Γ̂wn � 1/ε

Γ̂R1 L2ΓR1/(C∗ D) 50 ε � Γ̂R1 � 1/ε

K̂ , K̂1 K/C∗, K1/C∗ 1 –

ĉin cin/C∗ 1 –

Pd – 2.5 –

∂2cm

∂y2 = 0; (3.2d)

in the cell layer

θn + θw + θs = 1, (3.3a)
∂θn

∂t
+ ∂

∂x
(θnun)+ ∂

∂y
(θnvn) = Jn, (3.3b)

∂θw

∂t
+ ∂

∂x
(θwuw)+ ∂

∂y
(θwvw) = −Jn, (3.3c)

− θn
∂pw

∂x
− ∂

∂x
(θnΠ)+ θsψns

∂θn

∂x

− ζnsθnθsun + ∂

∂y

(
θn
∂un

∂y

)
= 0, (3.3d)

− θn
∂pw

∂y
− ∂

∂y
(θnΠ)+ θsζns

∂θn

∂y
= 0, (3.3e)

θw
∂pw

∂x
+ ζwsθwθsuw = 0, (3.3f)

θw
∂pw

∂y
= 0, (3.3g)

∂

∂y

(
θw
∂cw

∂y

)
= 0; (3.3h)

and in the upper fluid layer

∂uf

∂x
+ ∂vf

∂y
= 0, (3.4a)

∂2uf

∂y2 = ∂pf

∂x
, (3.4b)

∂pf

∂y
= 0, (3.4c)

∂2cf

∂y2 = 0. (3.4d)

The leading order boundary conditions on the lumen centre-
line are

∂ul

∂y
= 0, (3.5a)

vl = 0, (3.5b)
∂cl

∂y
= 0 on y = 0; (3.5c)

on the lumen/membrane interface

ul = vl = 0, (3.6a)

pl = pm, (3.6b)
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cl = cm, (3.6c)
∂cl

∂y
= φ

∂cm

∂y
on y = 1; (3.6d)

on the membrane/cell layer interface

un = vn = 0, (3.7a)

vw = −κφ
θw

∂pm

∂y
, (3.7b)

pm = pw, (3.7c)

cm = cw, (3.7d)

φ
∂cm

∂y
= θw

∂cw

∂y
on y = 1 + h2; (3.7e)

on the cell layer/upper fluid interface

vn = 0, (3.8a)
∂un

∂y
= 0, (3.8b)

uf = vf = 0, (3.8c)

pw = pf , (3.8d)

cw = cf , (3.8e)

θw
∂cw

∂y
= ∂cf

∂y
on y = 1 + h2 + h3; (3.8f)

and finally on the bioreactor top

uf = 0, (3.9a)

vf = 0, (3.9b)
∂cf

∂y
= 0 on y = H. (3.9c)

Consideration of the above solute equations and boundary
conditions shows that at leading order, there is a global con-
centration that is independent of y: cl = cm = cw = cf =
c(x, t). To close the problem and find c(x, t), we must also
consider the solute equations at O(ε2). We note that the O(ε)
components of the solute equations and boundary conditions
in each layer indicate that ∂ci1/∂y = 0(i = l,m,w, f), and
so (in the lumen, membrane, cell layer and upper fluid layer,
respectively)

Pe

(
∂

∂x
(clul)+ ∂

∂y
(clvl)

)
= ∂2cl

∂x2 + ∂2cl,2

∂y2 , (3.10a)

∂2cm

∂x2 + ∂2cm,2

∂y2 = 0, (3.10b)

∂

∂x

(
θw
∂cw

∂x

)
+ ∂

∂y

(
θw
∂cw,2

∂y
+ θw2

∂cw

∂y

)

+R = 0, (3.10c)

Pe

(
∂

∂x
(cf uf)+ ∂

∂y
(cfvf)

)
= ∂2cf

∂x2 + ∂2cf,2

∂y2 , (3.10d)

together with boundary conditions

∂cl,2

∂y
= 0 on y = 0, (3.11)

∂cl,2

∂y
= φ

∂cm,2

∂y
, (3.12a)

cl,2 = cm,2 on y = 1, (3.12b)

φ
∂cm,2

∂y
= θw

∂cw,2

∂y
, (3.13a)

cm,2 = cw,2 on y = 1 + h2, (3.13b)

θw
∂cw,2

∂y
= ∂cf,2

∂y
, (3.14a)

cw,2 = cf,2 on y = 1 + h2 + h3, (3.14b)

∂cf,2

∂y
= 0 on y = H. (3.15)

A substantial amount of analytical progress can be made
in the distinguished limit considered above. Equations (3.1c),
(3.3g) and (3.4c) respectively tell us that the leading order
fluid pressures in the lumen, cell layer and upper fluid layer
are independent of y. From (3.3e), and given θs is con-
stant, we can thus conclude that the cell volume fraction
θn is also a function of x and t only, which allows substan-
tial simplifications to be made. We can obtain the follow-
ing expressions for the leading order variables in terms of
pl(x, t), pf (x, t), θn(x, t) and c(x, t):

ul = 1

2

∂pl

∂x
(y2 − 1), vl ≡ 0, cl = c(x, t), (3.16)

um ≡ 0, vm = − κ

h2
(pw − pl),

pm = 1

h2
(pw − pl)(y − 1)+ pl, cm = c(x, t), (3.17)

uw = − 1

θsζws

∂pw

∂x
, (3.18a)

pw = pf(x, t), (3.18b)

cw = c(x, t), (3.18c)

un = M(x, t)

ζnsθs

{
cosh

(√
ζnsθs (1 + h2 + h3 − y)

)
cosh

(√
ζnsθsh3

) − 1

}
,

(3.19)

uf = 1

2

∂pw

∂x

(
y2 + (h4 − 2H)(y − H)− H2

)
,

vf ≡ 0, cf = c(x, t), (3.20)

where M(x, t) is given by

M(x, t) = ∂pw

∂x
+ 1

θn
Φ(θn)

∂θn

∂x
, (3.21)
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�(θn) = Π + θnΠ
′
n − ψnsθs. (3.22)

Hence, at leading order, we have Poiseuille flow in the lumen
and upper fluid layer and transverse flow only in the porous
membrane. In the cell layer, the horizontal fluid flow is Darcy-
like. The variables vn and vw can be determined from the
leading order conservation of mass Eqs. (3.3b, c), respec-
tively.

In addition, we have the following equations for pl, θn,
the global leading order concentration c and pf :

∂2 pl

∂x2 = 0, (3.23a)

∂θn

∂t
+ ∂Qn

∂x
= Jn, (3.23b)

∂Qc

∂x
= −h3R, (3.23c)

∂2 pf

∂x2 = 0, (3.23d)

where the cell flux Qn is defined by

Qn = M(x, t)

ζnsθs

(
tanh(α3)

α3
− 1

)
θn, α3 = √

ζnsθsh3,

(3.24)

and the solute flux Qc by

Qc =
(

1

3
Pe
∂pl

∂x
+ h3

4

3
Pe
∂pf

∂x

)
c

+ (1 + φh2 + θwh3 + h4)
∂c

∂x
. (3.25)

The equations for pl, θn and pf come from integrating the
respective conservation of mass Eqs. (3.1a), (3.3b) and (3.4a)
across the lumen, cell layer and upper fluid layer. The remain-
ing equation (3.23c) has been obtained by adding together the
O(ε2) solute equations (3.10a–d) after averaging each across
the appropriate region. We now impose up- and down-stream
boundary conditions to close the problem.

3.3 Boundary conditions for the reduced model

We mimic the experimental set-up where fluid is pumped
into the bioreactor via both the lumen inlet and (upstream)
ECS port, and so impose

Ql,in =
∫ 1

0
ul dy at x = 0, (3.26)

Qf,in =
∫ H

H−h4

uf dy at x = 0, (3.27)

where Ql,in and Qf,in are prescribed (dimensionless) volume
fluxes per unit length in the z direction (perpendicular to x and
y) into the lumen and upper fluid layer, respectively, and are
assumed constant. We note that in this case, the dimensional
Qf,in is of the same order as the dimensional Ql,in given that
the velocity scales in the lumen and upper fluid layer are
the same. We also prescribe a down-stream lumen pressure
and mimic the atmospheric pressure conditions at the down-
stream ECS ports by setting

pl = Pd, pf = 0 at x = 1. (3.28)

For the cells, we impose no flux out of the modelling domain
(which would be achieved using filters in an experiment):

Qn = 0 at x = 0, 1. (3.29)

Finally, we prescribe an inlet solute concentration and
assume no diffusive flux at the downstream end of the biore-
actor:

c = 1 at x = 0, (3.30)

∂c

∂x
= 0 at x = 1. (3.31)

As there is no downstream constraint on the solute concen-
tration experimentally, condition (3.31) is motivated by the
fact that we would expect the concentration to be constant in
space as it leaves the bioreactor, due to the effects of diffu-
sion.

Applying boundary conditions (3.26)–(3.28) allows us to
solve (3.23a, d) explicitly for pl and pf , giving

pl = 3Ql,in(1 − x)+ Pd, pf = 12Qf,in

h3
4

(1 − x), (3.32)

and thereby specific expressions for ul, vm, pm, uw, pw and
uf from (3.16)–(3.19). In particular, we note the form for
the fluid pressure in the cell layer, which is equal to pf (see
3.18b),

pw = 12Qf,in

h3
4

(1 − x). (3.33)

3.4 Summary of reduced model

In summary, we have derived the following coupled system
to solve for θn and c:

∂θn

∂t
+ ∂Qn

∂x
= Jn, (3.34a)

∂Qc

∂x
= −h3R, (3.34b)
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where

Qn = M(x, t)

ζnsθs

(
tanh(α3)

α3
− 1

)
θn, (3.35)

Qc = −Pe
(
Ql,in + 4Qf,in

)
c + b(θn)

∂c

∂x
, (3.36)

b(θn) = (1 + φh2 + θwh3 + h4) , (3.37)

with the boundary conditions

Qn = 0 at x = 0, 1, (3.38)

c = 1 at x = 0, (3.39)

∂c

∂x
= 0 at x = 1. (3.40)

Here M and Φ are as in (3.21) and (3.22), and the appro-
priate initial condition is the prescription of θn at t = 0 for
0 < x < 1. We can compare this to the corresponding sys-
tem from Pearson et al. (2013): it is interesting to see that,
despite the apparently more complex set-up here (with four
modelling regions instead of three), we can reduce the gov-
erning equations to a system of two instead of three coupled
PDEs. This is due to the addition of the upper fluid layer
region which was not present in Pearson et al. (2013), and in
which we can explicitly solve for the reduced water pressure.
The reduced water pressure in the cell layer is the same as
that in the upper fluid layer, and hence only two unknowns
remain, θn and c.

4 Numerical results

The reduced system (3.34)–(3.40) was solved numerically
using the method of lines, first discretising in x and then per-
forming the time integration using the MATLAB function
ode15s. We are interested in steady states of the system,
as these arise on timescales comparable to the long culture
time of experiments (see Pearson et al. 2013 for a more thor-
ough discussion). These states were found to be independent
of the choice of initial condition in our simulations, but for
completeness, we note that in the simulations presented in
this paper, we set θn(x, 0) = 0.3, c(x, 0) = 1 for 0 < x < 1.

We consider the effect of the fluid shear stress on the cell
distribution and yield, in the case where the solute of interest
is a nutrient (e.g. oxygen), and with the aim of determin-
ing optimal experimental conditions which result in both a
spatially uniform cell population and high cell yield.

In each of the following sections, we consider the
Michaelis–Menten type reaction term used in Pearson et al.
(2013) for nutrient-limited proliferation:

R = −ΓR1θnθwc

K1 + c
. (4.1)

We take the cell mass transfer term Jn to have the form

Jn = F(S)Γnwθnθwc

K + c
− Γwnθn, (4.2)

where S is the (dimensionless) fluid shear stress in the cell
layer. If F(S) were equal to unity, then we would recover
the form used in the case of the nutrient-driven proliferation
discussed in Pearson et al. (2013). In the following analysis,
we take F(S) to have different forms depending on the cells’
response to shear. As we effectively have Darcy flow of water
through the cell layer, we use the following estimate for S
motivated by a similar expression in Whittaker et al. (2009):

S =
∣∣∣ ∂pw
∂x

∣∣∣
θw

, (4.3)

based upon the assumption that there is Poiseuille flow
through each of the ‘pores’ in the cell layer, where the pores
are approximated as circular ducts. Given the assumed form
for S, and the expression for ∂pw/∂x in (3.33), we can see that
the fluid shear stress is dependent on both the upper fluid layer
flux Qf,in and cell layer width h3 (via h4 = H−(1+h2+h3)),
both of which can be controlled experimentally. In what fol-
lows we investigate the sensitivity of our results to variations
in these two parameters. Moreover, for a given flow rate and
cell layer width, we note that variation in S arises purely
through variations in θw.

In each of the following case studies, we present results
for the steady-state cell volume fraction θ∗

n (x) and use the
mean μ and standard deviation σ of the cell volume fraction
θn to characterise the cell yield and distribution, where

μ =
∫ 1

0
θ∗

n (x) dx, (4.4)

σ =
√∫ 1

0

(
θ∗

n (x)− μ
)2 dx . (4.5)

4.1 Shear stress-enhanced proliferation

First of all, we consider the case when cell proliferation is
enhanced by increased levels of fluid shear stress. This has
been observed in cells such as osteoblasts (Kapur et al. 2003),
chondrocytes (Malaviya and Nerem 2002) and (more con-
troversially) endothelial progenitor cells (Yamamoto et al.
2003), and is thought to be an important factor in ensuring
the mechanical integrity of tissue such as bone and carti-
lage (Bancroft et al. 2002; Gemmiti and Guldberg 2006).
The exact nature of this dependence is not known and will
depend on the cell type in question. To capture the qualitative
aspects of this dependence, we set

F(S) = 0.3 + 0.5 tanh(2S − 4)− 0.8 tanh(2S − 15), (4.6)
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Fig. 2 Plot of F(S), showing the dependence of cell proliferation on
the fluid shear stress in the case where increasing shear stress first
enhances cell proliferation (solid line, Sect. 4.1), and where increas-
ing shear stress inhibits cell proliferation (dashed line, Sect. 4.2)

so that the cell proliferation rate increases with shear stress up
to a maximal level, but (as would be expected) high levels of
shear stress result in a reduced proliferation rate (see Fig. 2).
The coefficients in (4.6) have been chosen to capture the
possible behaviours of the cell population within the range
of computed shear stresses in our model.

Results from this case study can be seen in Fig. 3, where
the steady-state cell population distribution obtained with
F(S) as in Eq. (4.6) is compared to that when F(S) = 1
(denoted the shear-insensitive population, i.e. when the fluid
shear has no effect on the cells) for a range of upper fluid
layer flow rates Qf,in. From Fig. 3a, b, we see that for the
lowest flow rate of Qf,in = 0.1, the cell volume fraction of the
shear-sensitive (hereby called shear-enhanced) population is
less than that of the shear-insensitive population for 0 <

x < 1, but then increases above the shear-insensitive volume
fraction once Qf,in is increased to 0.5. This corresponds to the
shear stress exceeding the value at which F(S) is increased
above 1 (around 2.5) and is to be expected given our chosen
form of F(S). The increase in θn is observed across the whole
bioreactor domain, instead of at a specific point, as a result of
the relatively small variation in θn (and hence θw) for 0 < x <
1, which in turn means that there is little spatial variation in S.
At the intermediate flow rate (Qf,in = 0.5), we also see that
the shear-enhanced population becomes much more spatially
uniform than the shear-insensitive cells. For the highest flow
rate Qf,in = 1, the shear-enhanced θn decreases at each point
in x as the shear stress reaches levels which decrease the
cell proliferation rate. In addition, greater up- and down-
stream variation is seen in θn for both populations, but the
changes are less extreme for the shear-enhanced cells. Hence,
overall, the effect of the shear stress is to ‘smooth out’ the
cell population: an increase in θn corresponds to a decrease
in θw, and thus a higher value of S. Thus, regions where θn

is relatively high experience a fluid shear stress sufficient to
decrease F(S) and hence the proliferation rate, whilst regions

(a)

0.1

0.2

0.3

0.4

0.5

= 0.1
= 0.5
= 1

(b)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

= 0.1
= 0.5
= 1

Fig. 3 Plots of θn for a range of values of the upper fluid layer flux
Qf,in, in the a shear-insensitive and b shear-sensitive (enhanced prolif-
eration) cases. The lumen flux Ql,in = 0.1, the cell layer width h3 = 1
and other parameter values are as in Table 2

where θn is relatively low experience a lower shear stress and
therefore increased proliferation rate.

The effect of shear on the cell yield and population unifor-
mity can be seen in Fig. 4, and the plots support the findings
discussed above. The mean μ and standard deviation σ of
θn are plotted for a range of values of Qf,in, for the shear-
enhanced and shear-insensitive cases. This clearly shows that
the shear-enhanced population has a lower yield and greater
standard deviation than the shear-insensitive population for
low Qf,in values, but that this relationship is reversed when
Qf,in increases beyond a critical value just below 0.2. This
switch corresponds to the critical value of S being reached at
which F(S) > 1, and the cell proliferation rate is enhanced.
As can be seen in the graphs for both μ and σ , the change
occurs relatively abruptly; this is due to the fact that (as
mentioned above) there is relatively little variation in θn

at this value of Qf,in, and so the fluid shear stress is rela-
tively constant along the domain. The standard deviation of
the shear-enhanced population remains lower than the shear-
insensitive population for all subsequent values of Qf,in, but
the yield drops below that of the shear-insensitive popula-
tion once another critical value of Qf,in is reached, around
0.7, when the value of F(S) falls below 1. Thus, between
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Fig. 4 Plots of (a) the mean μ and (b) the standard deviation σ of
θn, for a range of Qf,in values in the shear-insensitive, shear-enhanced
proliferation and shear-limited proliferation cases. The vertical dashed
lines indicate the optimal flux range for the shear-enhanced case, within
which the cell yield is higher than the shear-insensitive population. The
vertical dash-dotted line indicates the critical flux value for the shear-
limited case, below which the shear-limited and shear-insensitive cases
are indistinguishable. The lumen flux Ql,in = 0.1, the cell layer width
h3 = 1 and other parameter values are as in Table 2

these critical values (given by vertical dashed lines in Fig. 4),
there is an optimum range of Qf,in within which shear stress
helps to promote cell yield and also population uniformity.
Within this range, the most uniform population is obtained
at the (optimal) flow rate of Qf,opt = 0.2048. We also note
that, for a flow rate above the first critical value, the shear-
enhanced population is always more spatially uniform than
the shear-insensitive population for a given yield.

4.2 Shear stress-limited proliferation

In the second case study, we take F(S) to be of the following
form

F(S) = 1

2
(1 − tanh(2S − 15)) , (4.7)

so that cell proliferation is inhibited for sufficiently high val-
ues of fluid shear stress (see Fig. 2). Cells that have been

Fig. 5 Plots of θn in the shear-sensitive (limited proliferation) and
shear-insensitive cases, for a range of values of the upper fluid layer
flux Qf,in. The lumen flux Ql,in = 0.1, the cell layer width h3 = 1 and
other parameter values are as in Table 2

shown to be sensitive to shear stress in this way include
smooth muscle cells (Papadaki et al. 1996) and certain
types of endothelial cells (e.g. human aortic endothelial cells
Imberti et al. 2002 and human umbilical vein endothelial cells
Akimoto et al. 2000). As in the previous section, the exact
form of the cells’ shear stress dependence is unknown, and
our choice of F(S) and corresponding parameter values have
been chosen so that our model captures the range of possi-
ble behaviours. Throughout this section, the cell population
with proliferation rate limited by shear stress will be known
as shear-limited.

Figure 5 shows the results obtained from this case study.
For low values of Qf,in, the shear stress has no effect on cell
proliferation (as F(S) is equal to 1) and thus the shear-limited
and shear-insensitive population distributions are the same.
As Qf,in is increased, however, the downstream region, where
θn is greater, experiences a higher level of shear stress, and
thus a decrease in proliferation rate of the shear-limited popu-
lation. This results in the shear-limited population becoming
more uniform than the shear-insensitive population. In con-
trast to the previous section, we note that regions of lower
cell volume fraction are unchanged by the shear sensitiv-
ity, since in this case, proliferation is never enhanced by
the fluid shear. Thus, the increased uniformity of the shear-
limited population is at a cost of a lower overall volume
fraction. The plots of μ and σ in Fig. 4 show that there is
just one critical value of Qf,in in this case (around 0.4, given
by the vertical dash-dotted line in Fig. 4), below which the
shear-limited and shear-insensitive cases are indistinguish-
able. Above this, the shear-limited population is more uni-
form than the shear-insensitive population, but also has a
lower yield. However, Table 3 demonstrates that the percent-
age decrease in σ is more significant than the percentage
decrease in μ for 0.4 � Qf,in � 0.8, and thus, this provides
a potentially optimal flow rate range when a uniform cell
population is more important than a high cell yield.
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Table 3 Comparison of cell yield μ and standard deviation σ for the
shear-limited and shear-insensitive cases, for a range of Qf,in values

Qf,in Stress–insensitive Stress–limited % Change

μ

0.4 0.4557 0.4557 −5 × 10−4

0.6 0.4548 0.4493 −1.209

0.8 0.4523 0.422 −6.695

1 0.4464 0.3827 −14.28

σ

0.4 0.0174 0.0174 −0.013

0.6 0.0279 0.0234 −16.06

0.8 0.0438 0.0343 −21.67

1 0.0671 0.053 −21.0

0 0.5 1 1.5 2 2.5
100

80
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40

20

0

Fig. 6 Plot of ∂pw/∂x versus the cell layer width h3, for fixed
Qf,in = 1

4.3 Sensitivity to cell layer height

Finally, we investigate the sensitivity of our results to the cell
layer height h3, which may be prescribed experimentally.
In each case, we compare the cell volume fraction θn and
note that larger values of h3 correspond to greater overall
cell numbers, and vice versa for smaller values of h3. The
cell layer height also affects the pressure gradient in the cell
and upper fluid layers, since ∂pw/∂x depends linearly on
h−1

4 = (H − (1 + h2 + h3))
−1 (see Fig. 6). Figure 7a, b

shows plots of the mean μ and standard deviation σ of θn

for a range of values of Qf,in for a thinner cell layer than
Fig. 4, whilst Fig. 7c, d shows the corresponding plots for a
thicker cell layer. In Fig. 7a, we see that the optimal ranges
for Qf,in are now higher. The corresponding optimal flow
rate is also higher than before, with Qf,opt = 1.048. This is a
result of the form for |∂pw/∂x |, which increases as h3 does
as stated above. The shear stress therefore also decreases as
h3 decreases, and we thus need higher flow rates in order
to obtain the same behaviour from the cell population. As
expected, this trend is reversed in Fig. 7c when h3 takes a
higher value, with an optimal flow rate in this case of Qf,opt =
0.085. In addition, for Qf,in greater than around 1, we see

the cell population decreases significantly, no matter what
the shear stress dependence. We therefore conclude that a
thinner cell layer makes the cell population less sensitive to
the upper fluid layer flow rate, as higher flow rates can be
used before compromising cell yield, and vice versa for a
thicker cell layer.

5 Discussion

We have developed a multiphase model of fluid flow, solute
transport and cell distribution in a simplified HFMB. This
extends the work presented by Pearson et al. (2013), by con-
sidering the alternative set-up in which the cell–scaffold con-
struct only partially occupies the ECS and there is an addi-
tional upper layer of free-flowing fluid. Fluid is pumped into
the upper fluid layer via the upstream ECS port, and hence,
this region experiences higher flow rates than when fluid is
only supplied at the lumen inlet. It is therefore hypothesised
that this could result in a greater fluid shear stress in the cell
layer which could have an important, and possibly beneficial,
effect on cell dynamics. This is confirmed from our model
results which imply that the fluid shear stress in the cell layer
is dependent on both the upper fluid inlet flux and cell layer
width, both of which are varied as part of our investigation.

We presented results from two different case studies. In
the first (relevant to osteoblasts, chondrocytes or endothe-
lial progenitor cells), cell proliferation rate was enhanced
by fluid shear stress, but only up to a certain critical level.
Results demonstrated that the mechanosensitive cell popu-
lation required a certain minimum ECS flow rate in order
to reach yields comparable to the shear-insensitive popula-
tion. For flow rates that resulted in fluid shear within the
‘enhancing’ range, however, the mechanosensitive popula-
tion had a higher yield and was more uniform than the shear-
insensitive cells. This uniformity persisted even once the
shear levels became detrimental to the proliferation rate and
the yield decreased. In the second case study, fluid shear had
no effect on cell proliferation until a critical value was sur-
passed, after which it decreased the proliferation rate. This
could be applicable to smooth muscle cells, or certain types of
endothelial cells. Results again showed that the mechanosen-
sitive cell population was more uniform than the shear-
insensitive cells, but always had a lower cell yield. However,
an ideal flow rate range could again be found, within which
the mechanosensitive population is more uniform than the
shear-insensitive population, and the yield has not yet been
significantly compromised. Finally, we considered the effect
of the cell layer width on these results and found that a thin-
ner cell layer experiences a lower level of shear stress than a
thicker layer, and hence can withstand higher flow rates.

The results presented here are qualitative in nature,
demonstrating the range of expected behaviours in each sit-
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Fig. 7 Plots of the mean μ and
standard deviation σ of θn, for a
range of Qf,in values in the
shear-insensitive,
shear-enhanced proliferation
and shear-limited proliferation
cases, for (a, b) h3 = 0.5 and (c,
d) h3 = 1.5. The vertical
dashed lines again indicate the
optimal flux range for the
shear-enhanced case, and the
vertical dash-dotted line the
critical flux value for the
shear-limited case. The lumen
flux Ql,in = 0.1 and other
parameter values are as in
Table 2

(a)

shear insensitive
shear−enhanced
shear−limited

10 2 10 1
0

0.1

0.2

0.3

0.4

0.5

0.6 (b)

shear insensitive
shear−enhanced
shear−limited

10 2 10 11 10 1 10
0

0.05

0.1

0.15

0.2

(c)

shear insensitive
shear−enhanced
shear−limited

10 2 10 1
0

0.1

0.2

0.3

0.4

0.5

0.6 (d)
shear insensitive
shear−enhanced
shear−limited

10 2 10 11 10 1 10
0

0.05

0.1

0.15

0.2

0.25

uation. In particular, the functional forms for F(S) are con-
stitutive and relatively simple, having been chosen to clearly
demonstrate the possible effects of mechanotransduction on
cell distribution in a HFMB. Any choice of F(S)would need
experimental validation to be applied to a specific experimen-
tal setup. There are currently no relevant experimental results
to which we can compare the results from our mathematical
model, as the modelling is ahead of the experiments. How-
ever, the model framework developed here is extremely flex-
ible and permits interrogation of different forms for any of
the parameter values and constitutive laws presented. Hence,
once relevant data become available, the model could be read-
ily adapted and applied to a particular cell population, and
proper validation would be possible. This could then be used
in a predictive way to stimulate future experimental work.
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6 Appendix: Non-dimensionalisation

Motivated by the discussion in Sect. 3.1, we non-dimension-
alise as follows:

x = Lx̂, y = εL ŷ, t = L

U∗ t̂,

hi = εLĥi (i = 2, 3, 4), H = εL Ĥ ,

ui = μn

μw
U∗ûi , vi = εμn

μw
U∗v̂i (i = l, f),

ui = U∗ûi , vi = εU∗v̂i (i = m,w, n),

pi = patm + μnU∗

ε2 L
p̂i (i = l,m,w, n, f),

Π = μnU∗

ε2 L
Π̂, ψns = μnU∗

ε2 L
ψ̂ns,

ci = C∗ĉi (i = l,m,w, f),

R = DC∗

L2 R̂, Jn = U∗

L
Ĵn, (6.1)

where C∗ is a typical concentration scale, and we have
employed a viscous pressure scaling throughout (motivated
by lubrication theory as stated above). In choosing the
timescale L/U∗ and mass transfer scale U∗/L for Jn, we
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have assumed that the timescales for advection in the porous
membrane/cell layer and proliferation are comparable.

The dimensionless governing equations in the lumen are
therefore (dropping hats on dimensionless variables)

∂ul

∂x
+ ∂vl

∂y
= 0, −∂pl

∂x
+ ε2 ∂

2ul

∂x2 + ∂2ul

∂y2 = 0,

− ∂pl

∂y
+ ε4 ∂

2vl

∂x2 + ε2 ∂
2vl

∂y2 = 0,

ε2Pe

(
λε
∂cl

∂t
+ ∇ · (clul)

)
= ε2 ∂

2cl

∂x2 + ∂2cl

∂y2 ; (6.2)

and in the porous membrane (dividing through by φ in the
nutrient transport equation)

um = −ε2κ
∂pm

∂x
, vm = −κ ∂pm

∂y
,

ε2 ∂
2 pm

∂x2 + ∂2 pm

∂y2 = 0,

λε3Pe

(
∂cm

∂t
+ ∇ · (cmum)

)
= ε2 ∂

2cm

∂x2 + ∂2cm

∂y2 , (6.3)

where κ = k/(λε5L2) is the O(1) dimensionless permeabil-
ity (see Table 2). In the cell layer the no-voids condition is

θn + θw + θs = 1; (6.4)

the cell equations are

∂θn

∂t
+ ∂

∂x
(θnun)+ ∂

∂y
(θnvn) = Jn,

− θn
∂pw

∂x
− ∂

∂x
(θnΠ)+ ψnsθs

∂θn

∂x

+ 2ε2

3

∂

∂x

(
θn

(
2
∂un

∂x
− ∂vn

∂y

))

+ ∂

∂y

(
θn

(
∂un

∂y
+ ε2 ∂vn

∂x

))
− ζnsθnθsun = 0,

− θn
∂pw

∂y
− ∂

∂y
(θnΠ)+ ψnsθs

∂θn

∂y

+ ε2 ∂

∂x

(
θn

(
∂un

∂y
+ ε2 ∂vn

∂x

))

+ 2ε2

3

∂

∂y

(
θn

(
2
∂vn

∂y
− ∂un

∂x

))
− ε2ζnsθnθsvn = 0;

(6.5)

the water equations are

∂θw

∂t
+ ∂

∂x
(θwuw)+ ∂

∂y
(θwvw) = −Jn,

− θw
∂pw

∂x
− ζwsθwθsuw = 0,

− θw
∂pw

∂y
− ε2ζwsθwθsvw = 0; (6.6)

and the solute equation is

λε3Pe

(
∂

∂t
(θwcw)+ ∇ · (θwcwuw)

)

= ε2 ∂

∂x

(
θw
∂cw

∂x

)
+ ∂

∂y

(
θw
∂cw

∂y

)
+ ε2R, (6.7)

where ζi j = γi j L2ε2/μn for i = n,w, j = s are dimension-
less. In the upper fluid layer

∂uf

∂x
+ ∂vf

∂y
= 0, −∂pf

∂x
+ ε2 ∂

2uf

∂x2 + ∂2uf

∂y2 = 0,

−∂pf

∂y
+ ε4 ∂

2vf

∂x2 + ε2 ∂
2vf

∂y2 = 0,

ε2Pe

(
λε
∂cf

∂t
+ ∇ · (cf uf)

)
= ε2 ∂

2cf

∂x2 + ∂2cf

∂y2 . (6.8)

The dimensionless boundary conditions on the lumen cen-
treline are

∂ul

∂y
= 0, vl = 0,

∂cl

∂y
= 0 on y = 0; (6.9)

on the lumen/membrane interface (substituting in for pm in
place of vm)

ul = 0, ε
∂pm

∂y
= − 1

λκφ
vl,

pl + 2ε2

3

(
∂ul

∂x
− 2

∂vl

∂y

)
= pm, (6.10)

cl = cm,
∂cl

∂y
= φ

∂cm

∂y
on y = 1;

on the membrane/cell layer interface (again substituting in
for pm in place of vm)

un = vn = 0, vw = −κφ
θw

∂pm

∂y
, pw = pm,

cm = cw, φ
∂cm

∂y
= θw

∂cw

∂y
on y = 1 + h2;

(6.11)

on the cell/upper fluid layer interface

vn = 0,
∂un

∂y
+ ε2 ∂vn

∂x
= 0, uf = 0,

λεθwvw = vf , −pw = −pf + 2ε2 ∂vf

∂y
, (6.12)

cw = cf , θw
∂cw

∂y
= ∂cf

∂y
on y = 1 + h2 + h3;

and finally on the bioreactor top

uf = vf = 0,
∂cf

∂y
= 0 on y = H. (6.13)
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