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Abstract: Neutrophils are immune cells with reported phenotypic and functional plasticity. Tumor-
associated neutrophils display many roles during cancer progression. Several tumor microenvi-
ronment (TME)-derived factors orchestrate neutrophil release from the bone marrow, recruitment
and functional polarization, while simultaneously neutrophils are active stimulators of the TME by
secreting factors that affect immune interactions and subsequently tumor progression. Successful
immunotherapies for many cancer types and stages depend on the targeting of tumor-infiltrating lym-
phocytes. Neutrophils impact the success of immunotherapies, such as immune checkpoint blockade
therapies, by displaying lymphocyte suppressive properties. The identification and characterization
of distinct neutrophil subpopulations or polarization states with pro- and antitumor phenotypes and
the identification of the major TME-derived factors of neutrophil polarization would allow us to
harness the full potential of neutrophils as complementary targets in anticancer precision therapies.

Keywords: tumor microenvironment; immune cells; neutrophils

1. Cancer and the Tumor Microenvironment

Our knowledge of the relationship between the immune system and cancer dates
back to the 19th century when Rudolf Virchow reported the presence of leukocytes in
neoplastic tissues [1]. Currently, the study of tumor-associated immune cells constitutes a
central element within the research community and our understanding of cancer has been
(re)shaped by understanding the tumor microenvironment (TME). The TME comprises a
complex and unique network of proliferating tumor cells, blood vessels, extracellular matrix
components, and non-neoplastic cells, which includes stromal, endothelial and infiltrated
inflammatory cells [2]. Tumor cells secrete a broad range of cytokines and chemokines that
not only regulate the behavior of stromal and tumor cells themselves but also attract and
affect diverse immune cells. Once recruited into the tumor, infiltrated immune cells will
also influence the recruitment, activation and behavior of other leukocytes, as reviewed by
Binnewies et al. [3]. The integration of this sophisticated network has helped us understand
the diverse and sometimes conflicting roles of specific immune cell populations in the
setting of cancer. Furthermore, the development of more sophisticated techniques and the
emergence of new cellular markers have allowed the identification of new tumor-associated
immune cell subpopulations, highlighting the heterogeneity and complexity of the immune
landscape in cancer. The research efforts have been focused not only on understanding the
role of immune cells in tumor fate but also on their potential use as diagnostic tools and for
the improvement of immune-based cancer therapies.

One of the immune cell populations that have become increasingly interesting in the
setting of cancer are neutrophils. Current research has shown that neutrophils can oppose
or enhance cancer progression [4]. Such contrary roles may be caused by the influence
that the TME has on recruiting and promoting neutrophils with specific phenotypes and
functions. In this review, we provide an overview of the different neutrophil subsets
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and their roles in cancer. We highlight the TME-derived factors that drive neutrophil
polarization and infiltration as well as the neutrophil-derived factors and the feedback
loops that occur within the TME. Finally, we discuss the current strategies and limitations
of targeting neutrophils in the TME.

2. Neutrophil Development and Physiological Role

Neutrophils are short-lived cells representing the majority (50–70%) of all immune
cells in the peripheral blood; furthermore, increased neutrophil numbers have been shown
in various cancers [4]. Upon inflammation, neutrophils are the first cells that respond and
are rapidly recruited to the site of inflammation, where they act to eliminate infections [5].
The development of neutrophils starts from self-renewing hematopoietic stem cells in the
bone marrow, during a process called granulopoiesis. They differentiate into multipo-
tent hematopoietic progenitors, which are developed into common myeloid progenitors
and common lymphoid progenitors. On the way towards mature neutrophils, common
myeloid progenitors evolve to granulocyte or monocyte progenitors [6]. The differentiation
of progenitor cells is controlled by granulopoiesis stimulating factors, such as granulo-
cyte colony-stimulating factor (G-CSF), which regulates the formation of myeloblasts, and
their evolvement towards mature neutrophils through the stages of promyelocyte, myelo-
cyte, metamyelocyte, and band cell, respectively [7]. Furthermore, G-CSF downregulates
CXCL12 and its receptor CXCR4. Their interaction results in the retention of neutrophils in
the bone marrow [8].

To resolve inflammation, tissue-resident macrophages and mast cells secrete several
chemokines and cytokines, which activate endothelial cells to express adhesion molecules
such as P- and E-selectin [9]. This causes the rolling of neutrophils along the endothelium.
Furthermore, neutrophils are activated by chemokines, and they express β2 integrins,
resulting in firm binding of neutrophils to integrin ligands, such as intracellular adhesion
molecules 1 and 2. Upon firm adhesion, neutrophils transmigrate through the endothelial
cell layer to the site of inflammation and along the chemokine gradient, toward the center
of infection [10,11]. As Lehman and Segal recently reviewed [12], neutrophils can resolve
inflammation through different mechanisms: pathogen recognition and phagocytosis, de-
granulation, oxidative burst and formation of neutrophil extracellular traps (NETs). Finally,
neutrophils are removed from the tissue by macrophage phagocytosis [13]. Additional to
the role of neutrophils in resolving acute infections, neutrophils affect chronic inflamma-
tory conditions such as autoimmune diseases and cancers [14]. Furthermore, it has been
shown, that upon increased demand, emergency granulopoiesis can be induced by the
hematopoietic system [15]. It has been suggested that neutrophils do not just eliminate
microbes, but also localize in some organs, such as the spleen, liver, and lung, where they
interact with other immune cells and modulate their function [16].

3. The Opposing Roles of Neutrophils in Cancer

The recruitment of immune cells to the tumor site portrays the immune system’s battle
to resolve the persistent cancer-related inflammation, which promotes tumor initiation and
progression and supports the avoidance of immunosurveillance. The presence of myeloid
cells in the complex landscape of the TME holds pivotal roles. From all tumor-infiltrating
myeloid cells, macrophages are the most extensively studied and best characterized cells in
terms of diversity and functionality. However, knowledge on tumor-infiltrating neutrophils
lags behind, as they have only recently come to the spotlight. Neutrophils represent a
highly heterogeneous population, capable of both anti- and protumor functions, which is
most attributable to phenotypic plasticity.
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3.1. Protumorigenic Functions of Neutrophils

Inflammation holds a key role in initiating tumorigenesis, with neutrophils being a
distinct component of this process. The exact contribution of neutrophils to tumorigenesis
is not yet fully understood. Neutrophil-derived enzymes such as neutrophil elastase
(NE) [17,18], the production of reactive oxygen species (ROS) [19,20] and reactive nitrogen
species (RNS), as well as the immunosuppressive ability of a subset of neutrophils have all
been reported to be implicated in tumor initiation. A tumor promoting role has also been
attributed to neutrophils by in vivo studies. One main neutrophil-controlled mechanism
proposed to assist in the promotion of tumor growth is the induction of angiogenesis [21].
Neutrophil regulated immunosuppression is considered another major mechanism that
facilitates tumor progression [22]. Finally, the release of extracellular neutrophil-derived
networks of DNA, fibers and proteins (NETs) is yet another mechanism that facilitates
tumor progression [23]. Many studies indicate that neutrophils are important components
during the initiation of metastasis. Intravital imaging has revealed co-localization of cancer
cells with endothelial cell-associated neutrophils, suggesting that neutrophils guide cancer
cells into tissues and/or retain them there [24]. NETs can sequester circulating cancer cells
and promote their adhesion at distant organs [25]. A recent study by Aceto et al. showed
that neutrophils cluster with circulating tumor cells (CTCs) in the peripheral blood of
patients with breast cancer and in mouse models. The formation of CTC–neutrophil clusters
drives cell cycle progression within the bloodstream and expands the metastatic potential
of CTCs [26]. Finally, regarding the clinical implications, the neutrophil to lymphocyte ratio
(NLR) has been proposed as a biomarker for risk stratification of patients with cancer [27,28].
A rise in neutrophil counts and/or NLR indicates disease recurrence or progression, and a
drop in the NLR after initiation of therapy indicates a good response [29]. More recently, a
study showed that the ratio of CD8+ T cells to neutrophils within the tumor could separate
patients responsive to anti-PD-1 therapy from those with stable or progressive disease in
non-small cell lung cancer (NSCLC) [30].

3.2. Antitumorigenic Functions of Neutrophils

Neutrophils facilitate their phagocytic function through the production of various
antimicrobial molecules. Among them, superoxides H2O2 and HOCl [31] are directly
involved in antitumor cytotoxicity [32]. Although several studies have shown that physi-
cal contact is required for neutrophil cytotoxicity, stimulating cultured neutrophils with
phorbol myristate acetate (PMA) led to the generation and secretion of high levels of
H2O2, bypassing the necessity of physical contact [33]. Antibody-dependent cell-mediated
cytotoxicity (ADCC) is another cytotoxic mechanism used by neutrophils through the
expression of Fc receptors that mediate ADCC in several types of cancers, including Non-
Hodgkin lymphoma, breast cancer and B cell lymphoma [34–36]. Recently, PD-1-expressing
tumor cells inhibited neutrophil cytotoxicity via the PD-L1/PD-1 axis [37]. Neutrophils also
exert indirect antitumor effects since they can also stimulate adaptive antitumor immune
responses both by facilitating the recruitment of other immune cells [38] and by possessing
an antigen-presenting potential on their own [39,40]. Neutrophils can recruit and activate
T cells by secreting cytokines, such as tumor necrosis factor alpha (TNFα), and Cathepsin G
promotes T cell proliferation and cytokine production [41]. Eruslanov et al. proposed that
tumor-associated neutrophils (TANs) can stimulate T cell proliferation and IFN-γ secretion
in early-stage lung cancer patients [42]. NETs have also been reported to be used for T cell
priming and to present a supportive function to the antitumor immune responses [43]. A
recent study proposed that the outcome of neutrophil–T cell contact can depend on the
activation status of both cell types [44]. Finally, the ability of antigen presentation to T cells,
which was thought to be exclusively owned by macrophages and dendritic cells (DCs), has
also been attributed to antigen-presenting cell (APC)-like neutrophils according to studies
conducted over the past decade [45,46]. Although these studies propose an antitumorigenic
role of neutrophils, attributed to T cell stimulatory effects, most studies so far suggest that
neutrophils predominantly exert immunosuppressive functions [22].
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4. Neutrophil Secreted Factors That Shape Immune Cell Interactions within the TME

The function of many immune cell populations, including macrophages, DCs, T cells,
and NK cells, is modulated within and by the TME. For example, tumor-associated
macrophages (TAMs), which represent a cytotoxic inflammatory phenotype (M1) at the
early stages of tumor development, are polarized toward a protumor, proangiogenic and im-
munosuppressive phenotype (M2) during disease progression [47]. Tumor-infiltrating DCs
and NK cells are suppressed in the TME, displaying similar polarization patterns [48,49].
Suppression and exclusion of cytotoxic CD8+ T cells is another mechanism that inhibits
the antitumor immune responses [50]. Cytotoxic T lymphocyte (CTL) exclusion can be
provoked by several mechanisms, such as the blocking of CTL recruitment, inhibition of
T cell functions through the PD-L1 checkpoint and changes in the extracellular matrix that
block T cell infiltration. Moreover, T cell subsets with protumor properties such as CD4+

Tregs are attracted over time to the TME [51].
Neutrophils recruited into the TME (tumor-associated neutrophils, TANs) are a source

of cytokine and chemokine secretion that impacts innate and adaptive immunity as por-
trayed in Figure 1. TANs secrete cytokines and chemotactic cytokines (referred to as
chemokines), which can control their own recruitment as well as the recruitment and activa-
tion of other immune cells [52]. TANs are a heterogeneous population [53] that can support
anti or/and protumor functions. TANs possess an antitumor phenotype, and express high
levels of proinflammatory cytokines such as IL-12 and TNF-α. Additionally, proinflamma-
tory TANs secrete several chemokines (CXCL10, CCL7, CCL2 and CCL3) that serve as T
cell and macrophage chemo-attractants. However, TANs of a protumor phenotype express
chemokines such as CCL17 and CXCL14. Secretion of CCL17 by TANs was shown to be
followed by an active recruitment of Tregs to the TME, which was impaired after TAN
depletion, while CXCL14 attracts activated macrophages, immature DCs, and NK cells [54].
In contrast, in mouse studies, CCL17 was also shown to recruit antitumor leukocytes to
the tumor site [55]. Transcriptome analysis by Fridlender et al. also indicated that the ex-
pression of Transforming growth factor beta (TGF-β1), IL-6 and IL-23 by anti-inflammatory
TANs may promote Th17 priming [56]. An extensive network of cross-talks connects TANs
to other tumor-infiltrating immune cells. TANs can promote CD8+ T cell recruitment and
activation through the production of T cell chemo-attractants (e.g., CCL3, CXCL9, and
CXCL10) and proinflammatory cytokines (IL-12, TNF-α and GM-CSF). Additionally, TANs
can activate DCs via cell–cell contact and secretion of TNF-α [57] as well as facilitate metas-
tasis by inhibiting NK activation and IFN-γ secretion [58]. Finally, TANs attract and activate
macrophages by secreting IL-8, TNF-α, and myeloperoxidase (MPO) [59]. MPO, an enzyme
abundantly expressed in neutrophil granulocytes, is upregulated and secreted by TANs in
several cancer types [60]. MPO is involved in early stages of cancer development [61] and
has been proposed to influence the TAN–TAM axis [62,63].
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oxygen species (red arrows). 
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the bone marrow into the circulation and their recruitment at the tumor sites is a multistep 
process strictly guided by several factors. Two G-protein coupled receptors of the CXC 
chemokine receptor family and their corresponding ligands are mainly responsible for the 
release of neutrophils from the bone marrow. CXCR4 and CXCR2 are expressed on the 
surface of neutrophils [64]. CXCR4 serves for neutrophil homing in the bone marrow. 
High expression levels of CXCR4 and its ligands, such as CXCL12, result in restriction of 
neutrophil mobility. The disruption of the expression of CXCR4 and its ligands by factors 
such G-CSF results in the initiation of neutrophil mobilization. In contrast, CXCR2 and its 
ligands, in coordination with G-CSF, are mainly responsible for the release of neutrophils 
into the circulation. The maintenance of neutrophil homeostasis in circulation is based on 
the antagonistic interaction between CXCR2 and CXCR4 [65,66]. Upregulation of CXCR2 
expression determines the mobilization of mature neutrophils into the circulation, while 
the upregulation of CXCR4 on aged neutrophils leads to their regression into the bone 
marrow where they end up being digested by macrophages [67]. In the setting of cancer, 
the CXCR2 axis plays a dominate role in neutrophil recruitment into the TME. The occur-
rence of a solid tumor and the consequently required mobilization of neutrophils to the 
tumor site depends on an axis of interactions among CXCR2 and its ligands CXCL1-3 and 
CXCL5-8 [68,69]. Once there is a need for neutrophil mobilization, chemokines for CXCR2 
need to be released into the circulation. Among the cells that shape the TME, tumor cells, 
immune cells, and cancer-associated fibroblasts are the main producers of CXCR2 chem-
okines. Neutrophils respond to this chemokine release by moving through a chemotactic 

Figure 1. Neutrophils are recruited to the tumor site in response to TME-derived stimuli such as
chemokines and cytokines (green arrows). Polarized TANs exert immunosuppressive and protumor
functions with the aid of neutrophil-derived factors such as granule enzymes and reactive oxygen
species (red arrows).

5. Neutrophil Recruitment into the TME

The neutrophil life cycle starts in the bone marrow where premature neutrophils are
derived from hematopoietic stem cells. The mobilization and release of neutrophils from
the bone marrow into the circulation and their recruitment at the tumor sites is a multistep
process strictly guided by several factors. Two G-protein coupled receptors of the CXC
chemokine receptor family and their corresponding ligands are mainly responsible for
the release of neutrophils from the bone marrow. CXCR4 and CXCR2 are expressed on
the surface of neutrophils [64]. CXCR4 serves for neutrophil homing in the bone marrow.
High expression levels of CXCR4 and its ligands, such as CXCL12, result in restriction of
neutrophil mobility. The disruption of the expression of CXCR4 and its ligands by factors
such G-CSF results in the initiation of neutrophil mobilization. In contrast, CXCR2 and its
ligands, in coordination with G-CSF, are mainly responsible for the release of neutrophils
into the circulation. The maintenance of neutrophil homeostasis in circulation is based on
the antagonistic interaction between CXCR2 and CXCR4 [65,66]. Upregulation of CXCR2
expression determines the mobilization of mature neutrophils into the circulation, while the
upregulation of CXCR4 on aged neutrophils leads to their regression into the bone marrow
where they end up being digested by macrophages [67]. In the setting of cancer, the CXCR2
axis plays a dominate role in neutrophil recruitment into the TME. The occurrence of a solid
tumor and the consequently required mobilization of neutrophils to the tumor site depends
on an axis of interactions among CXCR2 and its ligands CXCL1-3 and CXCL5-8 [68,69].
Once there is a need for neutrophil mobilization, chemokines for CXCR2 need to be released
into the circulation. Among the cells that shape the TME, tumor cells, immune cells, and
cancer-associated fibroblasts are the main producers of CXCR2 chemokines. Neutrophils
respond to this chemokine release by moving through a chemotactic gradient, toward the
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higher concentration of CXCR2 ligands. For this chemotactic process to occur, both the
expression of CXCR2 on the neutrophil surface and the production of CXCR2 ligands are
essential [70].

As previously mentioned, G-CSF is a potent regulator of neutrophil recruitment, while
also being implicated in neutrophil proliferation, maturation and function. G-CSF is a
cytokine produced by several cells, including macrophages, endothelial cells and cancer
cells [71]. G-CSF positively regulates neutrophil migration by provoking a decrease in the
expression of CXCR4 and its ligand, CXCL12. Blocking of the G-CSF receptor in mice led
to inhibition of neutrophil mobilization [72]. However, G-CSF does not directly induce
neutrophil chemotaxis, but indirectly and mainly through interactions among CXCR4,
CXCR2 and ligands. Members of the CXCL chemokine family are potent chemotactic
factors for neutrophils. Human CXCL8 (IL-8) is produced by stromal and tumor cells and
is one of the best studied neutrophil chemo-attractants in cancer. IL-8 is overexpressed
in several carcinomas and tumor cell lines including breast, colon, cervical, lung, brain,
prostate, ovarian, renal cell carcinomas, acute myelogenous, B cell lymphocytic leukemia,
melanoma and Hodgkin’s disease [73]. Interleukin-17 (IL-17) is another key component of
neutrophil recruitment in the TME [74]. The IL-17 family consists of six members, named
IL-17A–F. IL-17A, simply known as IL-17, shows a positive correlation with neutrophil
counts in the TME and was found to upregulate the expression of G-CSF, IL6, CCL2
(MCP-1), and CXCR2 ligands [75]. IL-17 increased the secretion of CXCL1 and CXCL5
by carcinoma cells in breast cancer models, facilitating cancer progression. Consequently,
higher levels of IL-17 in breast cancer patients have been correlated with lower survival
rates [76]. Neutrophil recruitment can also be facilitated by additional factors; the hypoxia-
inducible factor 1-α (HIF1- α) and its downstream products, such as CXCL12, vascular
endothelial growth factor (VEGF), or matrix metallopeptidase 9 (MMP9) are involved
in the recruitment and retention of neutrophils during angiogenesis [77]. In particular,
VEGF, when highly expressed, can induce neutrophil adhesion and homing toward the
tumor or the premetastatic niche [78]. Sphingosine-1-phosphate (S1P), a bioactive lipid,
also promotes neutrophil activation and chemotaxis [79]. Finally, myeloid-related proteins
(MRPs) are also involved in neutrophil migration, although the exact mechanism is not clear
yet. The MRPs S100A8 and S100A9 are highly expressed in the TME and the premetastatic
niche, serving neutrophil recruitment [80].

6. Neutrophil Phenotypic Polarization Is Orchestrated by the TME
6.1. Pro- and Antitumor TAN Phenotypes

Heterogeneity and functional plasticity are common characteristics of leukocytes.
Macrophages, for example, used to be subcategorized based on their activation status,
in the classically activated, proinflammatory M1 type and alternatively activated, anti-
inflammatory or immunosuppressive M2 type [81], with additional subtypes more recently
defined. TAMs potentially become polarized from an antitumor (M1) to a protumor (M2)
activation mode by the highly active and complex secretome of the TME [82]. Similar to
TAMs, neutrophils have recently been proposed to exhibit degrees of phenotypic plasticity.
The existence of different neutrophil subsets concerning their maturation and activation
status as well as their pro- and antitumor functions comes in contrast to the previous knowl-
edge that mature neutrophils leave the bone marrow as terminally differentiated cells.
Thus far, neutrophil subsets with opposite functions have been identified in the circulation
and primary tumors of cancer patients [83]. Additionally, studies in mouse tumor models
identified the presence of tumor-associated neutrophils with different activation status.
Following the TAM paradigm, these TANs were proposed to be described as antitumor
N1 and protumor N2. TGF-β, which is overexpressed in many tumors, was proposed by
Fridlender et al. as a key stimulator of TAN polarization between the N1 and N2 pheno-
types in murine mesothelioma and lung cancer models. Inhibition of TGF-β enhanced the
proinflammatory potential of TANs (N1), including cytotoxic CD8+ T lymphocyte activa-
tion, reactive oxygen species-dependent direct killing of tumor cells, and high expression
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of proinflammatory cytokines such as TNF-α and CCL3 and the costimulatory molecule
ICAM-1. Simultaneously, low expression of arginase (ARG-1), an immunosuppressive
enzyme, was observed [46]. In another mouse study using tumor-bearing IFN-β −/− mice,
TANs displayed protumor behavior, such as reduced expression of ICAM-1 and TNF-α
and low cytotoxicity toward tumor cells, implying that IFN-β enhances the polarization of
TANs toward the antitumor phenotype [84].

The effect of TME-derived soluble factors on neutrophil polarization is not restricted to
the tumor site. Tumor-derived G-CSF was identified by Casbon et al. and plays a major role
in the reprogramming of myeloid differentiation in the bone marrow. This reprogramming
results in the expansion of T cell suppressive neutrophils in the peripheral tissues during tu-
morigenesis in an oncogene-driven murine breast cancer model [71]. The role of these T cell
suppressive neutrophils during tumor progression and metastasis needs to be addressed in
further studies. Thus far, there are no conclusive data regarding the extent of the influence
that the TME secretome has on TAN phenotype polarization. Whether these contradictory
phenotypes appear on distinct TAN subpopulations or whether these TANs stretch across
a reversible activation status scale remains to be investigated. For instance, Pfirschke et al.
recently showed in mice that tumor-infiltrating CD11b+Ly6G+SiglecFhigh cells are bona fide
mature neutrophils, different from other SiglecF-expressing myeloid cells [85]. In humans,
similar TAN phenotypes have yet to be characterized and functionally tested.

6.2. Immature Neutrophils and G-MDSCs

Fully mature neutrophils are morphologically typically characterized by segmented
nuclei. Oppositely, immature neutrophil subsets present a banded, ring-shaped or non-
segmented nuclear morphology. Immature neutrophils with a ring-like nuclear morphology
were detected in the blood of tumor-bearing IFN-β −/− mice [84]. Immature subsets also
coincided with a protumor TAN phenotype described in the study of Fridlender et al. [46].
Expansion of immature neutrophils was more recently observed in the circulation, pri-
mary tumors, and distant organs of mammary tumor-bearing mice. Those neutrophils
suppressed CD8+ T cell proliferation and activation, resulting in enhanced metastasis forma-
tion [86]. Myeloid-derived suppressor cells represent a non-lymphoid immune suppressor
cell population of myeloid origin, enriched in cancer patients [87]. MDSCs constitute
a population of myeloid cells with heterogeneous morphology, surface phenotype, and
function, but with common strong immunosuppressive properties. MDSCs play an im-
portant role in regulating immune responses, mostly by suppressing T cell responses [88].
MDSCs have also been described to regulate innate immune responses by modulating the
cytokine production of macrophages [89]. In terms of morphology, surface phenotype, and
function, MDSCs are not a defined subset, but rather a heterogeneous population. They
express a mixture of surface markers typical for myeloid cells, but lack lineage markers
for lymphocytes, natural killer cells, macrophages, and dendritic cells [90]. Two major
groups of MDSCs have been characterized so far: those with morphology and surface
phenotype typical of monocytes (M-MDSCs) and those with a surface phenotype typical
of granulocytes (G-MDSCs—also called polymorphonuclear (PMN)-MDSCs), but with
a heterogeneous morphology including granulocytes, blasts, or cells with ring-shaped
nuclei [91]. There is a debate supported by several studies that M-MDSCs and G-MDSCs
represent monocytes and neutrophils, respectively, that have been reprogrammed or ac-
tivated into immunosuppressive populations [92]. Myeloid-derived suppressor cells of
granulocytic origin (G-MDSCs) expand in the spleen of tumor-bearing mice and migrate to
the TME where they characteristically suppress cytotoxic T cell responses [93]. Seemingly,
immature neutrophil subsets possess protumor functions comparable to those of G-MDSCs
since both populations share common surface markers and morphologic features. The
possibility, however, that they represent the same functional subset of neutrophils remains
controversial. Transcriptomic profiling in tumor-bearing mice revealed that TANs represent
a distinct population from splenic G-MDSCs, without necessarily excluding the fact that
G-MDSCs may be converted into TANs under the influence of the TME [94]. The abun-
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dance of mature neutrophils in primary tumors of 4T1 breast tumor mouse models was
influenced by host CCL5, produced by myeloid cells in a CCR5-CCL5 autocrine manner,
rather than by tumor-derived CCL5, resulting in the generation of immunosuppressive
immature Ly6G+ myeloid cells. When host production of CCL5 was blocked, neutrophils
recruited into the TME represented an antitumor phenotype [95]. Most studies highlight
the fact that neutrophil phenotypic plasticity is present during tumorigenesis and tumor
progression, coexisting with changes on their maturation status, an effect primarily but
not exclusively orchestrated by the TME. Marini et al. identified CD10 as a cell surface
marker that distinguishes T cell suppressive from T cell stimulatory neutrophils in the
peripheral blood of cancer and systemic lupus erythematosus (SLE) patients [96]. In the
same study, immunosuppressive mature CD66b+CD10+ and immunostimulatory imma-
ture CD66b+CD10− neutrophils coexist in G-CSF-treated donors, a finding that has major
implications for our understanding of how neutrophils are modulated by factors derived
by the TME.

6.3. High- vs. Low-Density Neutrophils

The presence of neutrophils of heterogeneous maturation status in the circulation has
been documented in cancer patients. A mixed population of immature neutrophils with
ring- or band-shaped nuclei and mature neutrophils with segmented nuclei [97], addressed
as low-density neutrophils (LDNs), have been reported during disease progression in the pe-
ripheral blood of patients with head and neck, lung, and urologic cancers [98]. LDNs were
also identified by Sagiv et al. in the blood of patients with advanced-stage lung and breast
cancer, as well as in mouse models of breast, mesothelioma, and lung cancer [97]. LDNs
occur in the low-density mononuclear fraction during density gradient centrifugation of
blood, in contrast to normal granulocytes that have a high density. LDNs also represent dif-
ferent maturation stages of neutrophils, as portrayed by their distinct nuclear morphology
and differential expression of surface markers [99]. In human cancers, LDNs overexpress
CD66b, CD11b and CD15 compared to high-density mature neutrophils (HDNs) [97,100].
CyTOF analysis by Shaul et al. revealed significant differences in the expression of CD10,
CXCR4, CD94, and PD-L1 between LDNs and HDNs in advanced lung cancer patients [101].
Recently, a study by Valadez et al. reported overexpression of CD36, CD41, CD61 and
CD226 on the LDNs of NSCLC patients [102]. Regarding their functionality, HDNs are
represented by an antitumor phenotype while LDNs showed immunosuppressive effects
on T cell proliferation, activation, and function [97,98]. It is suggested that the immature
LDN subset represents G-MDSCs, known to be elevated in the blood of late-stage cancer
patients with a suppressive phenotype [103]. The lectin-type oxidized LDL receptor 1
(LOX-1) was identified as a surface marker exclusively expressed on LDNs/G-MDSCs, but
not on HDNs in both the peripheral blood and tumors of cancer patients; in contrast, in
tumor-bearing mice LOX-1 was not associated with LDNs/G-MDSC [104]. Another study
identified a mature CD10+ LDN subset with suppressive properties in healthy human
donors receiving G-CSF treatment, thus addressing a TME-derived factor that potentially
affects the generation and accumulation of LDN [96]. In the same study, CD10 was used
to discriminate mature CD10+ from immature CD10− neutrophils in the LDN fraction of
cancer patients’ blood, presenting a promising opportunity for selective functional analysis
of mature and immature LDN subsets. Defective expression of chemokine receptors CXCR1
and CXCR2 on the surface of LDNs was linked to a reduced in vitro migratory potential
toward tumor-conditioned media in migration assays with LDNs from cancer patients and
tumor-bearing mice [97,98]. In mouse models, TGF-β was reported to be the key driver of
the HDN to LDN transition [105]. The identification of similar TME-derived factors that
orchestrate the transition from regular neutrophils to LDNs in the circulation of cancer
patients is a challenge that future investigation needs to focus on.
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6.4. APC-Like Hybrid TANs

A study by Vono et al. suggested that freshly isolated human neutrophils can present
antigens to autologous antigen-specific CD4+ T cells in a major histocompatibility complex
class II (MHC-II; HLA-DR)-dependent manner [40]. More recently, a unique subpopulation
of HLA-DR+ TANs with antitumor properties was reported in early-stage human lung
cancer [106]. This population displayed characteristics of both granulocytes and APC-
like dendritic cells and macrophages, and successfully induced tumor antigen-specific
and nonspecific T cell responses. These so-called “hybrid TANs” decrease in numbers in
large tumors, seemingly due to the TME-associated hypoxia. In terms of morphological
characterization, hybrid TANs were found to have banded nuclei, indicating a possibility
that they might derive from immature neutrophils under the impact of TME-secreted
inflammatory factors such as GM-CSF and IFN-γ [42]. However, the presence of those
hybrid TANs remains to be confirmed in vivo by more studies. The role of the TME
secretome in both neutrophil polarization and unique subset generation during cancer
progression needs to be further explored.

7. Pharmacological Targeting of the TME in the Context of Precision Medicine
7.1. Effects of Tumor-Infiltrating Myeloid Cells on Established Anticancer Therapies

In an established TME, tumor-infiltrating myeloid cells present numerous responses.
More specifically, myeloid cells are responsible for clearing dead tumor cells and orches-
trating the immune response following treatment-induced cancer regression. Myeloid cell
populations interact with every type of anticancer therapy as shown in several experimen-
tal studies. These complex interactions between myeloid cells and cancer treatments can
largely impact treatment outcome.

7.1.1. Radio- and Chemotherapy

Cytotoxic therapies (radiation therapy and chemotherapy) remain the primary clinical
approaches for many cancer types despite their sometimes limited efficacy. There is a
dual interplay between cytotoxic therapies where myeloid cells can regulate treatment
efficacy, but cytotoxic therapies can also regulate myeloid cell infiltration. Depending
on the dose, its fractionation and the specific cancer type, radiotherapy (RT) can recruit
myeloid cells and polarize them toward immunosuppressive phenotypes as reviewed by
Vatner and Formenti [107]. Moreover, several experimental studies showed that depletion
of TAMs, MDSCs and neutrophils enhance RT efficacy [108,109]. However, local irradiation
with low-dose ionizing radiation in a transgenic mouse model of pancreatic cancer was
shown to stimulate iNOS+ TAM accumulation. iNOS+ TAMs can promote T cell influx and
thus improve tumor control and mouse survival [110]. TAMs and TANs can also play a
role during chemotherapy (CT). ROS production by TAMs and TANs that facilitates the
stimulation of tumor cell death has been observed upon treatment with oxaliplatin [111].
Moreover, interfering with CCR2+ TAMs and CXCR2+ TANs has shown significant effects
when used along with CT [112,113]. On the other hand, TAMs and MDSCs can induce
drug resistance through the production of cysteine cathepsins, which protect tumor cells
from chemotherapeutic agents such as Taxol and even support tumor growth by promoting
chronic inflammation [114,115].

7.1.2. Targeted Therapy

Targeted cancer therapy takes advantage of the progress made in molecular profiling
of tumors with known mechanisms of disease progression or treatment resistance, as well
as the heterogeneity between primary and metastatic tumors and the dynamic changes
of tumor profiles over time, as previously reviewed by others [116,117]. Targeted therapy
uses molecules targeting specific enzymes, growth factor receptors and signal transducers
to interfere with oncogenic mechanisms. Such drugs can drastically shrink tumors, but
usually show short-lasting effects. There is therefore a need to examine the underlying
tumor resistance mechanisms linked to the interactions between myeloid cells and targeted
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therapy. Small-molecule inhibitors have been clinically tested to target proteins with kinase
activity such as BRAF, MEK, and MET [118,119]. Mutations of BRAF and MEK have
been linked to oncogenesis. The development of resistance to BRAF inhibitors in a mouse
melanoma model was associated with the restoration of the MDSC compartment. Depleting
MDSCs by using antibodies (anti-Gr-1) or blocking their recruitment (CCR2 antagonist)
did not allow the growth of BRAF-resistant melanoma tumors [120]. MET (hepatocyte
growth factor receptor) is a target in several cancers, including non-small cell lung cancer,
gastrointestinal cancer, and hepatocellular carcinoma [119]. Inhibition of MET affects
neutrophils, since they depend on MET activity to infiltrate tumors and exert cytotoxic
activities such as iNOS-mediated release of NO [121]. More recently, Haas et al. showed that
in both melanoma patients and mice, tumors that acquired resistance to MAPK targeted
therapy were represented by an immune-evasive TME with reduced and functionally
impaired CD103+ DCs [122]. Alternatively, some targeted therapies also positively affect
myeloid cells. MEK and BRAF inhibitors reverted BRAF-mutated melanoma-induced DC
suppression in vitro [123].

7.1.3. Immunotherapy

The T cell-mediated adaptive immune response against cancer is a complex, multi-
step process. At each step of this process, regulatory signals are essential to contain the
destructive capacity of the adaptive immune system and prevent autoimmune toxicity.
Co-signals are required for the activation of dendritic cells at the tumor site and of T cells
in lymphoid organs. Tregs, MDSCs and metabolites in the TME can suppress the activity
of T cells [124,125]. Tumors can thus take advantage of innate regulatory signals to evade
or blunt the adaptive immune response. APCs migrate to the lymph node and present
tumor antigens to T cells by interacting with the T cell receptor (TCR) via the major his-
tocompatibility complex 1 (MHC-I), with the scope of stimulating tumor-specific T cell
activation. However, the TCR-MHC-I interaction alone is not sufficient for T cell activation.
The B7.1 (CD80) or B7.2 (CD86) molecules on the APC surface must bind CD28 on the
T cell surface to provide a costimulatory signal for T cell activation [126]. CTLA-4 is a T
cell surface receptor that competes with CD28 for B7, thus inhibiting this costimulatory
signal. It also downregulates helper T cell activity and enhances Treg immunosuppressive
activity [127]. The blockade of CTLA-4 was therefore considered a promising mechanism
for anticancer immune activity. While CTLA-4 functions primarily in the lymph node,
the other major checkpoint molecule that has been targeted operates in the TME. PD-1 is
a transmembrane protein expressed on the surface of activated T cells as well as B cells,
NK cells, T cells, and APCs [128]. It interacts with two main ligands: (i) PD-L2, primarily
present on immune cells, and (ii) PD-L1, which has broad tissue expression, including
on the surface of tumor cells [129,130]. The interaction of PD-1 with PD-L1 inhibits T cell
receptor-mediated lymphocyte proliferation, cytokine secretion, and overall effector T cell
function [131]. Antibodies blocking the PD-1/PD-L1 interaction led to increased effector
T cell function in melanoma models, forming the basis for PD-1 and PD-L1 antibodies
in cancer immunotherapy. Pivotal studies in melanoma led to the first FDA approval
of PD-1 blockade agents in 2014 [132,133]. During the last few years, there has been a
vast increase in clinical trials featuring PD-1 and PD-L1 blockade for cancer therapy. As
thoroughly reviewed by Thomey and Zhang [134], the FDA has so far approved three
anti-PD-1 antibodies: pembrolizumab (Keytruda), nivolumab (Opdivo), and cemiplimab
(Libtay), and three anti-PD-L1 antibodies: atezolizumab (Tecentriq), durvalumab (Imfinzi),
and avelumab (Bavencio). In addition, another anti-PD-1 antibody, dostarlimab (Jemperli),
received FDA approval in August 2021 for the treatment of adult patients with mismatch
repair-deficient (dMMR) recurrent or advanced solid tumors [135]. These immunothrapeu-
tics have become the standard of care for several cancer types, including primary and
metastatic lung, head and neck, gastric, colorectal and breast cancer, hepatocellular and
renal cell carcinoma, Hodgkin’s and B cell lymphoma, and melanoma.
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A high number of patients do not initially respond or become resistant along the course
of immunotherapy [136]. The density and diversity of tumor-infiltrating immune cells are
closely related to prognosis and prediction of treatment efficacy. Mapping the composition
of immune infiltrates and their functional state within the TME is important in terms of
both diagnosis and designing treatment strategies [137]. The TME can, in a simplified
manner, be characterized as cold (non T cell inflamed) or hot (T cell inflamed), which is
largely attributed to the levels of proinflammatory cytokine production and CD8+ T cell
infiltration [138]. The so-called hot tumors are characterized by T cell infiltration and molec-
ular signatures of immune activation, whereas cold tumors show striking features of T cell
absence or exclusion. Hot tumors present higher response rates to immunotherapy, such
as PD-L1/PD-1 therapy [139]. Therefore, various studies have focused on converting non-
inflamed cold tumors into hot ones to achieve a better response to immunotherapy [140].
Another leading hypothesis to explain treatment failure is that tumor-infiltrating myeloid
cells are responsible for resistance to immune checkpoint blockade. This hypothesis is
supported by the fact that tumors largely infiltrated by immunosuppressive myeloid cells
correlate with poor prognosis and immune checkpoint therapy resistance, with MDSCs and
TAMs being implicated in this process [141,142]. MDSC depletion in experimental models
was shown to enhance antitumor immune responses and help overcome resistance [143],
while functional modulation of MDSCs by epigenetic drugs sensitized resistant experimen-
tal cancer models to immune checkpoint therapy [144,145]. TAMs can inhibit PD-1:PD-L1
therapy by internalizing anti-PD-1 mAbs via the Fc domain of the antibody and FcγRs
expression by macrophages [146]. In addition, metabolic and inflammatory pathways
were found to stimulate the expression of PD-L1 on myeloid cells [147,148]. Apart from
the ability of immunosuppressive myeloid cells to inhibit immune checkpoint therapy,
immune-stimulatory myeloid cells have proven vital for treatment success. Binding of
monocytes and DCs by anti-PD-L1 mAbs was found to be partly responsible for control-
ling tumor growth [149,150]. Therefore, we can conclude that in the context of precision
medicine, the identification and characterization of myeloid cell subpopulations and the
factors that drive their polarization and recruitment in the TME are essential for providing
combinatorial targets that will support a successful anticancer therapy.

7.2. Tumor-Infiltrating Cells as Targets of Complementary Therapies

Over the last few years, an emerging number of experimental and clinical studies have
been published regarding approaches to target myeloid cell populations with protumor
properties such as M2-like TAMs, N2-like TANs and MDSCs as summarized in Table 1.
Immunosuppressive leukocytes can be targeted either by reducing their numbers through
direct depletion or by blocking their recruitment into the TME and redirecting their func-
tional polarization. Simultaneously, there have been attempts to enhance the recruitment
and function of antitumor leukocytes. Depletion of myeloid cells can be achieved by using
antibodies against myeloid cell-specific surface markers such as CD11b, Gr-1 or Ly6G in
mice. Moreover, transgenic mouse strains with permanent or conditional myeloid cell
ablation have been established. Experimental approaches such as these have proven that de-
pletion of immunosuppressive myeloid cells can delay tumor growth, while the depletion
of stimulatory myeloid cells has the opposite effect [86,151]. A major drawback for such ap-
proaches is the fact that myeloid cell depletion is not restricted to the TME, and a complete
depletion strategy is not applicable in a human setting. Thus, approaches that interfere with
the accumulation of suppressive myeloid cells in the TME appear to be more suitable for
clinical praxis. Recruitment of TAMs in the TME relies on the CCL2:CCR2 and M-CSF:M-
CSFR axis. Several mAbs, small-molecule inhibitors and RNA interference have been used
to block these signaling pathways [152–157]. MDSCs can also act on CCL2 through their
expression of CCR2 [158]. Another strategy of reducing protumor leukocyte accumulation
in the TME suggests interfering with VEGF:VEGFR signaling. VEGFR is highly expressed
by tumor-infiltrating leukocytes, especially immunosuppressive Tregs [159], and its interac-
tion with VEGF is needed for their migration and polarization. Therefore, it is proposed
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that interfering with the VEGF:VEGFR axis can reduce Treg numbers and at the same
time re-educate them toward stimulatory phenotypes [160]. Blockade of VEGF:VEGFR
signaling was shown to reduce the recruitment of MDSCs into the TME of non-small cell
lung carcinoma in a CCR2-dependent way [161]. Several anti-VEGF-based drugs, such
as bevacizumab, avastin and axitinib, targeting VEGFR, are now approved in various
cancer types [162–164]. Blockade of GM-CSF was shown to reduce monocytes and myeloid
precursor cells and to result in delayed tumor progression. Opposingly, administration
of GM-CSF to tumors was shown to induce tumor-specific T cells, probably as a result of
DC activation and in addition to reduce the number of MDSCs [165,166]. Overall, the data
so far support the idea that shifting the balance between the number of tumor-infiltrating
leukocytes with pro- and antitumor functions is a strong treatment strategy that needs
to be approached with caution with regard to interference with pathways involved in
myelopoiesis.

Table 1. Pharmacological compounds targeting TME-derived factors that affect neutrophil function,
currently in clinical trials. Data collected on ClinicalTrials.gov.

Target Type Name Effect on Neutrophils/MDSCs
Blocking mAb bevacizumab
Blocking mAb axitinibVEGFR

c-Met and VEGFR2 inhibitor cabozantinib
Reduces MDSC recruitment into TME

GM-CSF
Oncolytic virus OncoVEXGM-CSF Reduces monocyte and myeloid

precursor cell numbersRecombinant human GM-CSF sargramostim
TLR9 agonist CMP-001

TLR9 TLR9 agonist SD-101
Stimulates Th1-activating cytokine

production by MDSCs

IL-12
Recombinant human IL-12 rHuIL-12 Reprograms MDSCs into APCs

IL-12 gene therapy activator veledimex
IFN-α Pegylated IFN-a pegasys Stimulates MDSC polarization
IFN-β Oncolytic Virus VSV-IFNβ-NIS Stimulates MDSC polarization

IFN-β, TGF-β mRNA Fβ2 fusokine Reprograms MDSCs in favor of CD8+
T cell responses

STAT3
STAT3 inhibitor TTI-101 Reduces immunosuppressive

capacity of G-MDSCsSTAT3 inhibitor napabucasin
STAT3 inhibitor pyrimethamine
IDO inhibitor indoximod
IDO inhibitor epacadostatIDO1

IDO/TDO inhibitor linrodostat

Affects protumor granulocyte
infiltration in the TME

ARG-1
Recombinant human Arg1 pegzilarginase Expression by myeloid cells is linked

to protumor propertiesArg1 inhibitor INCB001158
HDAC inhibitor panobinostat

HDAC HDAC inhibitor belinostat
Reduces MDSCs and their expression

of ARG-1 and iNOS

Myeloid cells are characterized by high phenotypic plasticity that either promotes or
inhibits their protumor properties. Transcriptional networks control the phenotype and
function of myeloid cells, bringing the idea of reprogramming them into focus. Zoglmeier
et al. showed that treatment of tumor-bearing mice with TLR3 or TLR9 agonists limited
MDSC-mediated T cell suppression [167]. Additionally, in the same study, activation of the
TLR9 ligand CpG stimulated MDSCs to produce Th1-activating cytokines and be differ-
entiated into M1 TAMs in an IFN-α driven way. To functionally reprogram myeloid cells,
cytokines can also be used. Delivery of IL-12 to the TME was linked to antitumor effects,
correlating with the reprogramming of MDSCs, Tumor-associated dendritic cells (TADCs)
and TAMs into antigen-presenting cells with CD8+ T cell activating potential [168,169]. The
antitumor stimulating properties of IL-12 were confirmed by the clinical responses observed
in patients with renal cell carcinoma, melanoma and peritoneal metastasis from ovarian
cancer upon IL-12 treatment [170–173]. Treatment with human recombinant IL-12 was also
shown to trigger transient changes in neutrophils, platelets, reticulocytes, lymphocytes,
natural killer cells and CD34+ hematopoietic progenitor cells in healthy subjects [174]. Type



Int. J. Mol. Sci. 2022, 23, 3218 13 of 22

I IFNs, particularly IFN-α and IFN-β, strongly induce myeloid cell polarization, mostly
affecting MDSCs and TADCs [175,176]. Although IFN-α has shown promising results in
hematopoietic cancers, there has not been much success in solid tumors [177]. Preclinical
studies that combined IFN-β stimulation of myeloid cells with simultaneous blockade of
TGF-β signaling presented a solid approach of reprogramming MDSCs and DCs in support
of CD8+ T cell responses [178].

Several strategies to down- or upregulate myeloid cell transcription factors such as
STAT3 and NF-kB have also been attempted [179,180]. STAT3 is regarded as a leading
stimulator of the immunosuppressive activity of myeloid cells [181,182]. Upon selective
delivery of STAT3 inhibiting small interfering RNA (siRNA), TLR9-expressing myeloid cells
such as G-MDSCs displayed reduced immunosuppressive capacity [183–186]. Treatment
with a novel small-molecule STAT3 inhibitor blocked hepatocellular carcinoma tumor
growth in mouse studies [187] and is currently being tested in clinical trials. On an
epigenetic level, the use of histone deacetylase inhibitors (HDACi) that interfere with
chromatin remodeling affected MDSC numbers and function. Inhibition of HDAC reduced
the number of MDSCs as well as the expression of enzymes, including ARG-1 and iNOS,
sensitizing several experimental cancer models to immune checkpoint therapy [144,145].
HDACi are currently studied in combination with checkpoint blockers in patients with
metastatic and unresectable HER2/neu-negative breast and other cancers [148,188].

IDO, ARG-1, iNOS and COX2 are enzymes expressed by tumor-infiltrating myeloid
cells, which have been under investigation since they are considered to be strongly con-
nected to immunosuppressive functions. IDO is a tryptophan degrading enzyme induced
in MDSCs, TADCs, TAMs, and to some extent in TANs in response to proinflammatory
cytokines, TLR ligands, hormones, PGE2, and contact-dependent interactions such as the
B7:cytotoxic T lymphocyte antigen 4 (CTLA-4) axis [189–191]. IDO mediates the conver-
sion of tryptophan to kynurenine, which affects the induction of T cell anergy, apoptosis
and commitment of CD4+ T cells toward immunosuppressive Tregs [192]. These Tregs
can recruit and activate MDSCs, which in turn suppress T cells [193]. IDO expression
correlates with decreased survival and increased risk of metastasis in several cancers [194].
In animal studies, genetic inhibition of IDO led to protumor granulocyte infiltration and
activation in the TME [195]. Several IDO inhibitors are currently clinically validated either
as mono- or combinatorial therapy [196]. ARG-1 converts L-arginine into L-ornithine
and urea, and its expression is often upregulated in MDSCs, M2 TAMs and tolerogenic
dendritic cells (tolDCs) under the influence of factors such as PGE2, GM-CSF, TGF-β, IL-6
and IL-10 [197–200]. Expression of ARG-1 by myeloid cells has been linked to protumor
properties [201–203]. iNOS is also an L-arginine converting enzyme, with NO and citrulline
being the downstream products. iNOS is expressed by M1 TAMs, inflammatory DCs and
MDSCs as a response to IL-1β, IL-6, IFN-γ, TNF-α and TLR4 agonists. iNOS and NO
have been linked to both anti- and protumor activities influenced by the TME, the genetic
background and the cell type [204,205]. Inhibitors such as nor-N-hydroxy-L-arginine and
amino-guanidine successfully downregulate ARG-1 and iNOS expression in MDSCs, restor-
ing T cell function and delaying tumor progression [206]. More recent studies have also
shown promising results in a combination of ARG-1 inhibition with immune checkpoint
therapy or RT [193,207].

8. Outlook—Future Directions

With this review we aimed to document the complexity of the interactions between
myeloid cells and the TME, with a primary focus on neutrophils. Neutrophils are a highly
heterogeneous population with reported phenotypic and functional plasticity. Tumor-
associated neutrophils display opposing roles during cancer progression. Numerous TME-
derived factors take part in an interplay that orchestrates neutrophil release, recruitment,
and functional polarization. Simultaneously, neutrophils are active stimulators of the TME,
by secreting factors that shape immune interactions but also driving a feedback loop that
affects their own fate. Immunotherapies are of key importance in several cancer types
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and stages. As shown in this review, successful immunotherapies rely on a coordinated
targeting of leukocytes to harness their immune-stimulatory potential and limit their
suppressive properties. Thus far, in the context of precision medicine, efforts have been
invested in the development of pharmacological compounds that either alter cell numbers
or repolarize their functions. Such strategies have resulted in significant data in several
preclinical models. Many of these compounds are currently validated in preclinical and
clinical trials. What has been made evident in this review is that targeting neutrophils is still
under-represented in clinical studies, and that neutrophils are most of the time considered
part of the MDSC fraction. This fact derives from the lack of comprehensive neutrophil
subset characterization that would allow researchers to target them more precisely. The
need for neutrophil surface markers that would identify distinct TAN subpopulations or
indicate polarization states of both TAN and peripheral blood neutrophils are evident.
Simultaneously, a functional characterization of TANs with pro- and antitumor phenotypes
and the identification of the major TME-derived factors of neutrophil polarization would
be of vital significance to exploit the full potential of neutrophils as complementary targets
in anticancer precision therapies.
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