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Abstract: Due to global warming and population growth, plants need to rescue themselves, especially
in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress
signal sensing is a crucial step that determines the appropriate response which, ultimately, deter-
mines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated
protein kinase (MAPK) cascades play a key role in regulating responses to the following four ma-
jor environmental stresses: high salinity, drought, extreme temperature and insect and pathogen
infections. MAPK cascades are involved in responses to these environmental stresses by regulating
the expression of related genes, plant hormone production and crosstalk with other environmental
stresses. In this review, we describe recent major studies investigating MAPK-mediated environ-
mental stress responses. We also highlight the diverse function of MAPK cascades in environmental
stress. These findings help us understand the regulatory network of MAPKs under environmental
stress and provide another strategy to improve stress resistance in crops to ensure food security.

Keywords: MAPK cascade; abiotic stress; biotic stress; signal transduction

1. Introduction

Plants are confronted with multiple stresses during their lifetime. Environmental
stresses are the most common stimuli affecting plant growth and development and eventu-
ally endanger crop production worldwide and threaten food security [1,2]. To date, almost
50% of crop yield reductions have been caused by environmental stresses [3,4]. In contrast
to animals, when plants face stressful conditions, they become very passive. The only
way to survive is to adapt to adverse conditions. Due to climate change exacerbation, the
effect of environmental stresses is becoming increasingly adverse. How to improve stress
tolerance in plants has become a hot topic for ensuring agricultural productivity [5]. During
long-term cell–environment communication, plants have already evolved sophisticated
and precise systems to adjust to changeable conditions [6,7]. Stimulus perception and
reaction are closely related to the plant survival rate. Stimulus perception requires cell
surface-located sensors/receptors to perceive diverse stresses and transduce these signals
through several signaling pathways. As a key signaling module downstream of receptor-
like protein kinases (RLKs), mitogen-activated protein kinase (MAPK) cascades act as a
molecular switch in sensing upstream signaling and respond to environmental stresses,
eventually determining the fate of plants under adverse conditions [6,8–12]. Therefore,
understanding the function of plant MAPK cascades in environmental stresses will be
beneficial for molecular breeding of novel stress-resistant crops.

In plants, the typical MAPK cascade comprises the following three family members:
mitogen-activated protein kinase kinase kinases (MKKKs or MEKKs), mitogen-activated
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protein kinase kinases (MKKs or MEKs) and mitogen-activated protein kinases (MAPKs),
which link extracellular stresses with the intercellular responses. In Arabidopsis, there are
nearly 80 putative MKKKs, 10 MKKs and 20 MAPKs that form MAPK cascade compo-
nents [13,14]. The MAPK cascade transduces and amplifies signals through sequential
phosphorylation [12]. Activated MKKKs phosphorylate downstream MKKs, which, in turn,
phosphorylate and activate MAPKs [15,16]. Activated MAPKs target specific downstream
substrates, such as other kinases, enzymes and transcription factors [17–19]. Moreover,
some research also investigated that the other protein kinases can involve in activating of
MAPKs [20,21]. To date, most previous studies investigated the function of MPK3, MPK4
and MPK6 and discovered their upstream kinases and downstream targets. In this review,
we aim to summarize current major developments in MAPK-mediated abiotic stress and
biotic stress responses in plants and discuss the complex regulation networks of the MAPK
cascade under diverse signaling pathways. Furthermore, we aim to provide some strategies
to address MAPK-related environmental stress responses.

2. MAPK in Salt Stress

Due to incorrect irrigation, soil pollution and improper fertilizer application, at least
7% of the world’s area is affected by saline soil [22,23]. Salt stress has adverse effects on
plant development and productivity and constrains crop production by 20% on irrigated
land worldwide [24–26]. Hence, understanding how plants perceive high concentrations
of salt and eventually adapt to salt stress is critical for breeding salt-tolerant crops [27,28].
Salt stress is complex and induces osmotic stress and oxidative stress [29,30]. MAPK
cascade involvement in salt stress has been reported in Arabidopsis, rice, maize, cotton, etc.
(Table 1). The MAPK cascade regulates plant tolerance to salt stress mainly by regulating
the expression of salt-related genes, maintaining oxidative homeostasis and relieving
osmotic stress [31].

Table 1. Summary of mitogen-activated protein kinase (MAPK) genes involved in salt and drought stress responses in
Arabidopsis, rice, maize, cotton, etc.

Plant Gene Name Stresses Function in Stresses References

Arabidopsis AtMEKK1 Salt Positively regulates salt stress [32]

AtMAP3Kδ4 Salt Positively regulates salt stress [33]

AtMAPKKK18 Drought Positively regulates drought stress [34]

AtMKK2 Salt Positively regulates salt stress [32]

AtMKK3 Drought Positively regulates drought stress [34]

AtMKK4 Salt Positively regulates salt stress [35]

AtMKK5 Salt Positively regulates salt stress [36]

AtMPK3 Salt Positively regulates salt stress [35]

AtMPK4, AtMPK6 Salt Positively regulate salt stress [32]

Rice OsDSM1 Drought Positively regulates drought stress [37]

OsMKK10.2, OsMPK3 Drought Positively regulate drought stress [11]

Maize
ZmMAPKKK56,
ZmMAPKKK19,
ZmMAPKKK18

Drought Induced by drought stress [38]

ZmMKK4 Salt Positively regulates salt stress [39]

ZmMKK10-2 Drought Positively regulates drought stress [38]

ZmSIMK1 Salt Positively regulates salt stress [40]

ZmMPK3 Drought Positively regulates drought stress [41]

ZmMPK5 Salt Positively regulates salt stress [42]
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Table 1. Cont.

Plant Gene Name Stresses Function in Stresses References

ZmMPK15 Drought Positively regulates drought stress [38]

ZmMPK17 Salt Positively regulates salt stress [43]

Cotton GhMAP3K14 Drought Positively regulates drought stress [44]

GhMAP3K15 Drought Positively regulates drought stress [45]

GhMAP3K6, GhMAP3K49,
GhMAP3K71, GhMAP3K92,

GhMAP3K164, GhMAP3K168
Drought Induced by drought stress [44]

GhRaf19 Salt Negatively regulates salt stress [46]

GhMKK1 Drought Positively regulates drought stress [47]

GhMKK3 Drought Positively regulates drought stress [48]

GhMKK4 Drought Positively regulates drought stress [49]

GhMKK5 Salt Negatively regulates salt stress [50]

GhMKK11 Drought t Positively regulates drought stress [51]

GhMPK2 Salt Positively regulates salt stress [52]

GbMPK3 Drought Positively regulates drought stress [53]

GhMPK4 Salt Negatively regulates salt stress [54]

GhMPK6 Drought Positively regulates drought stress [45]

GhMPK7 Drought Positively regulates drought stress [48]

GhMPK17 Salt Positively regulates salt stress [55]

GhMPK31 Drought Positively regulates drought stress [44]

Wheat TaRaf87, TaRaf105, TaRaf44,
TaRaf72, TaRaf80, TaMKKK16, Drought Induced by drought stress [56]

TaMKK1 Drought Induced by drought stress [56]

TaMPK8 Drought Induced by drought stress [57]

Brachypodium
distachyon BdMKK6.2 Drought Negatively regulates drought stress [58]

Upon salt stress, activated MAPK cascades trigger the altered transcription of salt-
responsive genes [59]. The MAPK cascade becomes a link between salt stress sensors and
target genes. However, evidence suggesting that the MAPK cascade directly regulates
target genes is lacking. AtMEKK1-AtMKK2-AtMPK4/6 is the first complete MAPK sig-
naling module identified in Arabidopsis that confers tolerance to salt stress [32] (Figure 1a).
AtMKK2-overexpressing plants show an increased ratio of seed germination following
NaCl treatment compared to atmkk2 null mutant plants. AtMKK2 phosphorylates AtMPK4
and AtMPK6 in vivo and in vitro. A transcriptome analysis showed that 152 genes had
changed expression in AtMKK2-overexpressing plants. These genes can be clustered into
several types. Some genes are abiotic stress marker genes, and the other genes are involved
in jasmonic acid (JA), ethylene (ET) and auxin signaling. However, to date, the target genes
or transcriptional factors of AtMPK4/6 under salt stress are still unknown, and whether JA,
ET and auxin signaling engages in crosstalk in AtMEKK1-AtMKK2-AtMPK4/6 module-
mediated salt stress is even less clear. Recently, an ortholog of AtMKK1 and AtMPK4
in rice, OsMKK1-OsMPK4, also enhanced resistance to salt stress [60]. The expression
levels of OsDREB2A, OsDREB2B, OsNAC6 and OsMYBS3 were decreased after NaCl
treatment in osmkk1 mutants, suggesting that OsMKK1-mediated salt tolerance relied on
salt-responsive gene expression. However, the relationship between the OsMKK1-OsMPK4
cascade and these transcription factors is still unknown [60]. In addition, the function
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of MAPK in salt stress in maize and cotton has been elucidated. ZmSIMK1, ZmMKK4,
ZmMPK17, GhMPK2 and GhMPK17 conferred tolerance to salt stress by regulating salt
marker genes [39,40,43,52,55]. Overexpressing ZmSIMK1 in Arabidopsis upregulated the
expression levels of AtRD29A and AtP5CS1 after NaCl treatment [40]. Overexpressing
ZmMKK4 in Arabidopsis increased the transcript levels of AtP5CS2, AtRD29A, AtSTZ and
AtDREB2A after NaCl treatment [39]. Overexpressing GhMPK17 in Arabidopsis increased
the mRNA levels of AtSOS2 after NaCl treatment [55]. Overexpressing GhMPK2 in tobacco
increased the expression levels of NtDIN1, NtOsmotin and NtLEA5 after NaCl treatment [52].
Overexpressing ZmMPK17 in tobacco resulted in higher transcript levels of NtEDR10B
and NtEDR10C compared with those in the control plants after NaCl treatment [43]. In
summary, these studies prove that the MAPK cascade responding to salt stress is closely
related to the regulation of salt-responsive genes, but whether the MAPK cascade directly
regulates salt-responsive genes needs to be further investigated.

Figure 1. MAPK cascade in salt and drought stress. (a) The following three MAPK cascades can regulate salt stress in
Arabidopsis: the AtMEKK1-AtMKK2-AtMPK4 cascade, the AtMEKK1-AtMKK5-AtMPK6 cascade and the AtMKK4-AtMPK3
cascade. The substrate of the AtMEKK1-AtMKK2-AtMPK4 and AtMKK4-AtMPK3 cascades is still unknown (marked as ?).
The AtMEKK1-AtMKK5-AtMPK6 cascade confers tolerance to salt stress by regulating AtFSD2/3 expression. AtFSD2/3 are
two major FSD-encoding genes in Arabidopsis. (b) The AtMAPKKK18-AtMKK3-AtMPK1/2/7/14 cascade can be activated
by ABA after drought stress. The AtMAPKKK18-AtMKK3-AtMPK1/2/7/14 cascade positively regulates drought stress in
an ABA-dependent manner. The substrate of AtMPK1/2/7/14 is unknown (marked as ?). (c) Two MAPK cascades are
involved in drought stress in cotton. The GhMKK3-GhMPK7 cascade enhances drought tolerance in an ABA-dependent
manner. Whether GhPIP1 is the substrate of GhMPK7 requires more experimental evidence (marked as ?). GhMAP3K15-
GhMKK4-GhMPK6 positively regulates drought stress in an ABA-independent manner. The substrate of this cascade is
GhWRKY59. GhWRKY59 can regulate GhDREB2 expression by directly binding the W-box of GhDREB2 promoters. This
figure was created using BioRender (http://biorender.com/; accessed on 14 December 2020).

Plants achieve tolerance to salinity by alleviating osmotic stress, which is known to
induce cellular endogenous ABA concentrations [61]. It has been reported that MAPK
signaling regulates salt stress in an ABA-dependent manner [62]. AtMAP3Kδ4 is an ABA-

http://biorender.com/
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induced Raf-like MAP3K. Overexpressing AtMAP3Kδ4 in Arabidopsis results in tolerance to
NaCl treatment during germination, and overexpression plants exhibit lower sensitivity to
ABA than control plants, suggesting that the mediation of salt tolerance by AtMAP3Kδ4 is
correlated with ABA [33]. It has also been reported that GhMPK2 mediates resistance to salt
stress by ABA-triggered osmotic stress [52]. Overexpressing GhMPK2 in tobacco conferred
tolerance to NaCl treatment during germination and growth. The mRNA of GhMPK2
accumulated after ABA treatment; additionally, the overexpression plants showed higher
germination and survival rates after ABA treatment, indicating that GhMPK2 positively
regulates salt stress in an ABA-dependent manner [52]. Other studies have also shown that
the MAPK cascade regulates ABA-dependent gene expression in response to salt stress. An
MAPK cascade composed of AtMKK4-AtMPK3 plays a crucial role in salt stress in Arabidop-
sis [35]. AtMKK4-overexpressing and atmkk4 mutant plants displayed opposite phenotypes
under high salinity, and atmkk4 mutant plants are more sensitive to salinity, whereas
AtMKK4-overexpressing plants display salt tolerance. The transcription of AtRD29A and
AtNCED3 is decreased in atmkk4 mutant plants but increased in AtMKK4-overexpressing
plants. An in-gel kinase assay further indicated that AtMPK3 is downstream of AtMKK4
upon salinity stress [35]. Consistent with AtMPK3, GhMPK4 also regulates salt stress by
altering ABA-dependent gene expression in Arabidopsis. However, the expression levels of
AtSOS2 and AtRD29A were remarkably reduced in GhMPK4-overexpressing transgenic
plants under NaCl treatment. Therefore, GhMPK4 is a negative regulator in salt stress [54].
Cumulatively, ABA plays a crucial role in salt stress, but whether MAPK can phosphorylate
ABA-dependent salt-related genes remains unclear.

As the second main source of stress in salt stress, oxidative stress can trigger the
accumulation of reactive oxygen species (ROS), which have toxic effects on plants [26].
The MAPK cascade can regulate antioxidative response gene expression and increase
antioxidative enzyme activities to detoxify ROS and sustain ROS homeostasis [25]. A
complete MAPK cascade consisting of AtMEKK1-AtMKK5-AtMPK6 plays an essential
role in the iron superoxide dismutase (FSD) signaling-mediated salt stress response in
Arabidopsis [36,63] (Figure 1a). AtMKK5 can be activated after NaCl treatment, and overex-
pressing AtMKK5 in Arabidopsis confers tolerance to salt stress [64]. AtFSD2 and AtFSD3
are two FSD-encoding genes that can be induced after NaCl treatment. However, the
expression of AtFSD2/3 was dramatically abolished in AtMKK5-RNAi plants but not in
AtMKK4-RNAi plants or atmkk2 mutants. The promoters of AtFSD2 and AtFSD3 are not
activated in mkk5 protoplasts, but the activation levels of the FSD2 and FSD3 promoters
do not differ among wild-type (WT) plants, AtMKK4-RNAi plants and atmkk2 mutant
plants, suggesting that AtMKK5 is specifically involved in salt-induced FSD signaling
in Arabidopsis. Yeast two-hybrid, in-gel kinase and transient assays in protoplasts prove
that AtMEKK1 and AtMPK6 are involved in AtMKK5-mediated FSD signaling upon salt
stress [36,64]. Although AtMEKK1-AtMKK5-AtMPK6 has been shown to participate in
FSD signaling-induced salt stress, whether this MAPK cascade can directly regulate FSD2
and FSD3 requires additional molecular and genetic evidence. Other studies have also
shown that the MAPK cascade regulates salt stress by changing antioxidative enzyme
activities and cellular H2O2 contents. Overexpressing ZmMKK4 in Arabidopsis conferred
tolerance to salt stress by increasing POD (peroxidase) and CAT (catalase) activities [39].
Overexpressing ZmMPK5 in tobacco increases the enzyme activities of CAT, POD, SOD
(superoxide dismutase) and APX (ascorbate peroxidase) to confer salt stress resistance
to transgenic plants [42]. Overexpressing GhMPK17 in Arabidopsis resulted in less H2O2
accumulation than that observed in the control plants after NaCl treatment; thus, overex-
pression plants displayed resistance to salt stress [55]. However, overexpressing GhRaf19
and GhMKK5 in tobacco enhanced H2O2 production upon NaCl treatment. Thus, GhRaf19
and GhMKK5 negatively regulate salt stress by aggravating oxidative stress [46,50]. Accu-
mulating data demonstrate that the relationship between oxidative stress and salt stress
is antagonistic. However, numerous studies show that MAPK enhances salt tolerance by
relieving oxidative stress based on DAB and NBT staining and SOD, POD, CAT and APX
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activity measurements. The mechanism by which MAPKs regulate these antioxidative
enzymes is still unclear.

3. MAPK in Drought

Drought stress affecting food productivity has become a troublesome problem world-
wide. Drought stress is a complex stress that causes multidimensional changes, such as
physiological processes, molecular mechanisms and morphological adjustments [65–68].
Moreover, the effect caused by drought stress differs across developmental stages and plant
species [69]. As a major signal transducer, the MAPK cascade plays a vital role in drought
stress, generally by responding to ABA and regulating ROS production [20,21,70] (Table 1).
Moreover, several WRKY transcription factors have been identified as substrates of the
MAPK cascade in drought stress.

According to RNA-Seq analyses, numerous components of MAPK cascades have been
reported to respond to drought in crops. In rice, the transcripts of OsMKK4, OsMKK1,
OsMPK8, OsMPK7, OsMPK5 and OsMPK4 accumulate under drought stress [71–76]. In
wheat, the expression levels of TaRaf87, TaRaf105, TaRaf44, TaRaf72, TaRaf80, TaMKKK16,
TaMKK1 and TaMPK8 changed after drought stress [56,57]. In cotton, GhRAF4, GhMEKK12,
GhMEKK10, GhMEKK24 and GhMEKK36 were induced after 8 days of drought [77], while
the transcription levels of GhMPK6, GhMPK9, GhMPK10, GhMPK12, GhMPK13, GhMPK19
and GhMPK24 were strongly decreased after PEG6000 treatment [78]. In maize, ZmMAP-
KKK56, ZmMAPKKK19, ZmMAPKKK18, ZmMKK10-2, ZmMPK3 and ZmMPK15 were in-
duced under drought conditions [38,41]. These findings highlight the importance of
MAPKs in drought, but knowledge regarding their biological functions under drought
stress is limited. Further studies should expand efforts to uncover their biological functions
in drought stress.

Drought stress is often co-related with ABA and ROS accumulation. Thus, the mech-
anisms regulating drought stress can be classified as follows: ABA-mediated stomatal
closure and ROS scavenging. Some studies have already proved the MAPK cascade to be
involved in ABA signaling under drought conditions [11,34,48,52,79]. In Arabidopsis, the
AtMAPKKK18-AtMAPKK3 pathway positively regulates drought stress via ABA-mediated
stomatal closure (Figure 1b). Atmapkkk18 mutant plants are more sensitive than WT plants
to drought conditions, whereas AtMAPKKK18 overexpression plants display tolerance to
drought. Moreover, stomatal closure is faster in AtMAPKKK18 overexpression plants but
slower in atmapkkk18 mutants, suggesting that a difference in stomatal closure is the reason
for AtMAPKKK18-mediated drought tolerance. The atmkk3 mutant also displays drought
sensitivity, whereas AtMKK3 overexpression plants display drought tolerance. When
AtMAPKKK18 is overexpressed in an atmkk3 background, the plants exhibit suppressed
drought tolerance, suggesting that AtMAPKKK18-AtMKK3-mediated drought tolerance
is related to ABA [34]. Previous studies have already proven that AtMPK1/2/7/14 can
interact with AtMKK3 [79], but the substrate of AtMKK3 in drought stress needs more
experimental evidence. Furthermore, GhMKK3, which is an ortholog of AtMKK3, confers
tolerance to drought in tobacco [48]. The substrate of GhMKK3 under drought stress
is GhMPK7. GhMKK3 overexpression plants displayed larger stomatal apertures but
lower stomatal densities upon ABA treatment-induced stomatal closure, suggesting that
GhMKK3-GhMPK7 increases tolerance to drought stress (Figure 1c), which is also related
to ABA-mediated stomatal closure. In addition, GhMPK7 interacts with GhPIP1 [48],
which is a plasma membrane intrinsic protein involved in water stress [80] (Figure 1c). Gh-
PIP1 is likely the substrate of GhMPK7. Additional experimental studies should elucidate
whether GhPIP1 is the substrate of GhMPK7 under drought stress. It has also been reported
that GhMPK2 regulates drought stress via ABA-mediated stomatal closure [52]. In rice,
OsMKK10.2-OsMPK3 has been implicated in conferring tolerance to drought stress via
ABA signaling [11]. After drought treatment, OsMKK10.2 overexpression plants showed
a higher survival rate than WT plants, whereas OsMKK10.2-RNAi plants displayed a
lower survival rate, suggesting that OsMKK10.2 positively regulates drought stress. When
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OsMKK10.2 was overexpressed in OsMPK3-RNAi mutant plants, the phenotype of drought
tolerance disappeared, suggesting that OsMPK3 acts downstream of OsMKK10.2 under
drought conditions. Moreover, the phosphorylation of OsMPK3 was decreased in an osphs3
mutant (ABA-deficient mutant), suggesting that OsMKK10.2-OsMPK3 increases tolerance
to drought stress via ABA signaling [11]. However, the direct evidence linking the MAPK
cascade with ABA signaling is unclear. Recently, some research proved MAPKKK can
directly interact with ABA signaling modules. ABI (PP2C ABA Insensitive2) dephospho-
rylates AtMAPKKK18 without ABA treatment and induces AtMAPKKK18 degradation.
When plants perceive ABA, ABI1 interacts with PYR (PYRABACTIN Resisitance1)/PYL
(PYR-Like) receptors and AtMAPKKK18 becomes stabilized [81]. It was proved that
ABA signaling modules directly regulate MAPKKK. However, there is no idea about how
AtMAPKKK18 is activated under drought stress. Up to 2020, three studies have proved
RAFs (Raf like kinases) can directly phosphorylate SnRK2s under drought/mimic drought
conditions [47,82,83]. AtM3Kδ1 phosphorylates OST1/ SnRK2.6 via ABA-induced stomatal
closure [82]. AtRAF18, AtRAF20 and AtRAF24 phosphorylate and activate the subclass I
SnRK2 kinases SRK2A/SnRK2.4 and SRK2G/SnRK2.1 under drought stress [47]. B4 sub-
family RAFs activate SnRK2.1/4/5/9/10 and B2/3 subfamily RAFs activate SnRK2.2/3/6
under ABA-mediated PEG treatment [83]. Upon these findings, it is likely that RAFs
activate SnRK2s and, in turn, MAPKKK18, eventually conferring tolerance to drought.
This speculation needs more experimental evidence to be proven. Furthermore, RAFs and
SnRK2s localize at the cytoplasm and nucleus, respectively. The upstream sensors that
activate RAFs need to be verified.

ROS scavenging is another major mechanism regulating drought stress. Upregulating
the expression of antioxidative genes and increasing enzyme activities are major ways to
scavenge ROS. OsDSM1 is a Raf-like MAPKKK that enhances tolerance to drought stress in
rice by increasing POX activity [37]. PtMKK4 enhanced tolerance to drought stress in poplar
by stimulating SOD and POD activities [49]. The overexpression of GhMKK1 in tobacco
increased tolerance to drought stress by increasing POD, CAT, SOD and APX activities,
especially POD activity [51]. Overexpressing GbMPK3 in tobacco induced the transcription
levels of NbAPX, NbCAT and NbGST in transgenic plants [53]. Overexpressing BdMKK6.2
in tobacco upregulated the expression of NtRbohD and NtRbohf, which produced ROS
in tobacco cells, eventually reducing tolerance to drought [58]. Based on these studies,
maintaining ROS homeostasis is a key biological process by which plants balance drought
stress and survival. The molecular mechanisms by which MAPK regulates antioxidative
enzyme activities to control ROS production under drought stress need to be clarified.

As common substrates of MAPK, WRKY transcription factors can bind the promot-
ers of drought stress response genes to regulate their expression, eventually controlling
drought stress. An integrated MAPK cascade comprising the GhMAP3K15, GhMKK4 and
GhMPK6 modules plays a key role in regulating drought stress in cotton [45] (Figure 1c).
Virus-induced gene silencing (VIGS) of GhMAP3K15, GhMKK4 and GhMPK6 decreased
tolerance to drought in cotton. Protein interaction and phosphorylation assays further
proved that GhMAP3K15 can phosphorylate GhMKK4, which, in turn, phosphorylates
GhMPK6. Moreover, GhWRKY59 was identified as a substrate of GhMPK6 under drought
treatment. GhWRKY59 has two major biofunctions in regulating drought stress. On the one
hand, GhWRKY59 can bind the promoter of GhDREB2 and activate the expression of Gh-
DREB2, which positively regulates drought stress. On the other hand, GhWRKY59 controls
GhMAP3K15 expression; hence, a positive feedback loop exists between GhWRKY59 and
GhMAP3K15 [45] (Figure 1c). Another complete MAPK cascade comprising GhMAP3K14,
GhMKK11 and GhMPK31 is also involved in drought stress, but its function under drought
stress requires additional genetic and molecular evidence [44]. OsWRKY30 is a positive
regulator of drought stress. OsMPK3, OsMPK7 and OsMPK14 phosphorylate OsWRKY30
in vitro, suggesting that OsMPK3/7/14 may be upstream of OsWRKY30 under drought
stress [84]. Additional genetic evidence is needed to determine whether OsMPK3, OsMPK7
and OsMPK14 are upstream of OsWRKY30 under drought stress, requiring additional
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phosphorylation analyses. Moreover, whether OsMPK3, OsMPK7 and OsMPK14 perform
redundant functions in drought stress is unclear. To date, the substrate of the MAPK
cascade under drought stress has been identified, but the upstream MAPK cascade in
drought stress remains unknown. Further studies should exert efforts to identify the RLKs
and receptor-like proteins (RLPs) upstream of MAP3K and their function in drought stress.

4. MAPK in Temperature Stress

Due to global warming, the frequency of extreme weather has already increased,
especially during the winter and summer [5]. Temperature stress induces a broad spec-
trum of physiological processes and molecular mechanisms. [85,86]. To survive, plants
need to adjust at the cellular, metabolic and molecular levels to increase tolerance to tem-
perature stress [87]. As a major signal transducer, the MAPK cascade regulates plant
resistance to temperature stress by phosphorylating downstream substrates to directly
modify temperature-related gene expression and changing cellular metabolism (increasing
compatible solutes and antioxidative enzyme activities).

An MAPK cascade consisting of AtMEKK1-AtMKK1/2-AtMPK4/6 has been impli-
cated in the positive regulation of cold stress in Arabidopsis [32,88]. It has been reported that
atmkk2 single-mutant plants displayed reduced tolerance to cold stress [32]. Recently, it has
been shown that compared to WT plants, atmkk2 single mutants did not show any sensi-
tivity to freezing. The expression of AtCBF genes did not differ in atmkk1 or atmkk2 single
mutants, but the AtCBF genes were slightly upregulated in the atmkk1 atmkk2 double mu-
tants, suggesting that AtMKK1 and AtMKK2 perform redundant functions in controlling
cold stress [88]. A previous study indicated that cold stress can induce Ca2+ accumulation
in cells [89,90]. However, Ca2+-mediated MAPK signal transduction is still unclear. Ca2+

accumulation can be sensed by RLKs which localize in the membrane. It has been reported
that AtCLRK1, which is a Ca2+/CaM-associated RLK, can regulate cold stress by inter-
acting with and phosphorylating AtMEKK1 [91,92]. AtCLRK1 is possibly a sensor that
senses Ca2+ accumulation after cold treatment and induces AtMEKK1 activation. Recently,
it has been shown that AtCLRK1 and AtCLRK2 perform redundant functions in cold
stress which positively regulate cold stress [88] (Figure 2a), although AtCLRK1/2 act as
a sensor of Ca2+/CaM in cold stress and trigger MAPK cascade activation. Additional
reverse genetic analyses are needed to verify the relationship between AtCLRK1/2 and
the AtMEKK1-AtMKK1/2-AtMPK4/6 cascade. In contrast, another MAPK cascade com-
prising AtMKK4/5 and AtMPK3/6 negatively regulates cold stress in Arabidopsis [88].
Although AtMPK6 may increase tolerance to cold stress [32], direct evidence of how
AtMPK6 regulates cold stress is lacking. It has been shown that AtMPK3 and AtMPK6
play a strong antagonistic role with AtMPK4 in cold stress in Arabidopsis [88]. Freezing
tolerances are observed in atmpk3 and atmpk6 single mutants and MPK6SR (atmpk3/atmpk6
double mutant), whereas AtMKK5DD-induced plants exhibit decreased cold tolerance. The
kinase activities of AtMPK3 and AtMPK6 are activated in AtMKK5DD-induced plants but
not in the atmkk1/2 mutant, suggesting that AtMKK4/5 are upstream of AtMPK3/6 but
not AtMKK1/2. Freezing sensitivity mediated by the AtMKK4/5-AtMPK3/6 cascade is
related to the changeable expression of AtCBF genes; AtCBF1, AtCBF2 and AtCBF3 are
significantly upregulated in atmpk6 and MPK6SR mutants but significantly downregulated
in AtMKK5DD-induced plants [8,88]. A previous study showed that AtYDA is upstream
of AtMKK4/5-AtMPK3/6 in stomatal development [93], but AtYDA is not the upstream
AtMAP3K of AtMKK4/5-AtMPK3/6 in the cold response [88] (Figure 2a). Further studies
should be performed to identify which AtMAP3K is involved in AtMPK3/6-mediated
cold sensitivity and verify the relationship between this AtMAP3K and AtYDA because
the transcripts of three AtCBF genes accumulate in the atyda mutant after cold treatment,
and they also need to verify the mechanisms of MPK4 when suppressing the activity
of AtMPK3/6.



Int. J. Mol. Sci. 2021, 22, 1543 9 of 22

Figure 2. MAPK cascade regulates cold stress in Arabidopsis and rice. (a,b) In Arabidopsis, two pathways can regulate cold
stress. AtMEKK1-AtMKK2-AtMPK4 positively regulates cold stress, whereas AtMKK4/5-AtMPK3/6 negatively regulates
cold stress. (a) When cold stress occurs, AtMPK3/6 can phosphorylate AtICE1 and AtMYB15, which induces AtICE1 fast
degradation and represses AtMYB15’s binding affinity, which, in turn, attenuates AtCBF3 transcription. The upstream
targets of AtMKK4/5 are unknown (marked as ?). AtMEKK1-AtMKK2-AtMPK4 suppresses AtMPK3/6 activity. The
substrate of AtMPK4 is still unknown (named TFs). (b) In the absence of cold stress, AtMPK3/6 cannot phosphorylate
AtICE1 and AtMYB15. AtICE1 can be degraded by 26S proteasome, and AtMYB15 can bind the promoter of AtCBF3 to
suppress AtCBF3 expression. (c,d) The OsMPK3-OsICE1 cascade regulates cold stress in rice. (c) Upon cold stress treatment,
OsMPK3 phosphorylates OsICE1, which represses the interaction between OsICE1 and OsHOS1 and eventually induces
OsTPP1 expression and trehalose production. OsMKK6 and other MAPKKs (Mitogen-activated protein kinase kinase)
(marked as ?) are shown as upstream positive or negative regulators of this MAPK cascade. OsPP2C72 can dephosphorylate
OsMPK3 and OsICE1 which represses the function of OsMPK3 and OsICE1 under cold stress. (d) Under warm temperature,
OsMPK3 cannot phosphorylate OsICE1, which can be degraded by OsHOS1. This figure was created using BioRender
(http://biorender.com/; accessed on 14 December 2020).

http://biorender.com/
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The critical roles of MPK3, MPK4 and MPK6 in cold stress are well known [8,32,88].
However, the biological function of MPK3, MPK4 and MPK6 in freezing responses is still
unclear. Hence, identifying the specific substrates of MPK3, MPK4 and MPK6 is a direct
way to discover the exact function of MPK3, MPK4 and MPK6 in freezing responses. To
date, multiple genetic and biochemical studies have already elucidated that AtMYB15,
AtICE1, SlSPRH1 and OsbHLH002 are substrates of MPK3 and MPK6 under temperature
stress in Arabidopsis, rice and tomato [8,9,88,94,95] (Figure 2). However, to date, the spe-
cific substrate of MPK4 under cold stress has not been identified (Figure 2a). Previous
studies have already clarified that the ICE1-CBF-COR module plays a key role in cold
acclimation [96,97] (Figure 2b). Uncovering the upstream signal affecting ICE1 stability
and transcriptional activity is important for controlling cold tolerance. In Arabidopsis,
AtMPK3 and AtMPK6, which are the upstream kinases of AtICE1, phosphorylate AtICE1
and promote AtICE1 degradation [8,88] (Figure 2a). The expression of AtCBF genes did
not obviously differ between atmpk3/atice1 and atmpk6/atice1 double mutants, but the
expression of AtCBF genes was rescued in AtMKK5DD/ pro AtICE1: AtICE1-YFP plants.
This genetic evidence fully supports that AtICE1 is epistatic to AtMPK3/6 in genetic po-
sition. Protein interaction and phosphorylation assays prove that AtMPK3 and AtMPK6
interact and phosphorylate AtICE1. Such phosphorylation achieves dual-level regulation
of AtICE1. On the one hand, AtMPK3- and AtMPK6-mediated phosphorylation affects
AtICE1 transcriptional activity, which, in turn, attenuates the ability to bind the AtCBF3
promoter. When the phosphorylation sites of AtICE1 are mutated to an inactive (AtICE16A)
and phosphor-mimic status (AtICE16D), transgenic plants show opposite phenotypes
after chilling treatment. AtICE16A/atice1, but not AtICE16D/atice1, rescued the freezing
sensitivity of atice1, suggesting that the function of AtICE1 in freezing stress is repressed
after phosphorylation. Moreover, the transcriptional activities of GUS were reduced in
AtICE1WT and AtICE16D but enhanced in AtICE16A when AtICE1 and proCBF3::GUS were
co-transformed in tobacco. On the other hand, AtMPK3- and AtMPK6-mediated phospho-
rylation affects AtICE1 stability. The protein level of AtICE1 is reduced in AtICE16D/atice1
and AtICE1/atice1 mutants but obviously increased in AtICE16A/atice1 mutants, suggesting
that phosphorylation promotes the ubiquitination of AtICE1 and ultimately promotes
AtICE1 degradation [8,88] (Figure 2a). Furthermore, it has been shown that OsMPK3 can
also phosphorylate OsICE1 (OsbHLH002) in rice, but the influence of phosphorylation
is opposite in rice. Under warm conditions, OsHOS1 interacts with OsICE1 and induces
OsICE1 degradation (Figure 2d). However, upon cold stress, OsMPK3 can phosphorylate
OsICE1, enhance OsICE1 transcriptional activity and promote OsICE1 stability by inhibit-
ing OsHOS1-mediated OsICE1 ubiquitination [95] (Figure 2c). A previous study showed
that OsMKK6 can activate OsMPK3 and OsMPK6 to increase resistance to chilling stress
in rice [98] (Figure 2c,d). Thus, OsMKK6 may be upstream of OsMPK3-OsICE1-OsTPP1,
but additional experimental evidence is needed to prove this hypothesis. Recently, it was
shown that OsPP2C72 can interact with OsMPK3 and OsICE1 in planta. More importantly,
OsPP2C72 can directly dephosphorylate OsMPK3 and OsICE1 to prevent the positive
effect of the OsMPK3-OsICE1-OsTPP1 module under cold stress [99] (Figure 2d). In ad-
dition, another transcriptional network composed of AtMPK6-AtMYB15-AtCBF-AtCOR
plays a key role in cold stress in Arabidopsis [94] (Figure 2c). AtMYB15 is a repressor of
AtCBF that can bind to the AtCBF promoter and inhibit AtCBF expression [100] (Figure 2b).
AtMPK6 can phosphorylate AtMYB15 at the Ser 168 residue. When Ser 168 was mutated
to Ala, the binding affinity of AtMYB15S168A was significantly increased in the presence
of AtMPK6 and ATP, but the binding affinity of AtMYB15WT was almost abrogated. In
addition, AtMYB15S168A-OX (overexpressing) plants are more sensitive to chilling stress
than AtMYB165WT-OX and WT plants, suggesting that AtMPK6-mediated AtMYB15 phos-
phorylation reduces the binding affinity to AtCBF and enhances the AtCBF transcription
levels, ultimately conferring tolerance to cold [94] (Figure 2a). Overall, the direct connection
between MAPK and CBF genes has been revealed. However, some important questions
remain to be answered. First, the relationship between AtICE1 and AtMYB15 needs to be
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verified because AtICE1 and AtMYB15 are substrates of AtMPK6 but play an antagonistic
role in regulating AtCBF expression. Second, whether OsTPP1 can regulate the OsCBF-
OsCOR gene expression cascade is unknown because OsTPP1 can be phosphorylated by
OsICE1, and OsTPP1 positively regulates chilling stress. The substrate of MPK6 under
high-temperature (HT) stress has been identified in tomato. SlMPK1 is an ortholog of
AtMPK6 in tomato. SlSPRH1 is a substrate of SlMPK1. SlMPK1 and SlSPRH1 are negative
regulators of HT stress [9]. Further studies should focus on identifying the substrate of
SlSPRH1 to deeply understand the molecular mechanism by which SlMPK1-SlSPRH1
mediates HT stress sensitivity.

In addition to the molecular reactions that change under temperature stress, some
physiological processes are already changed in adaptation to adverse temperature factors.
The MAPK cascade regulates temperature stress by changing compatible solute contents
and antioxidative enzyme activities. Soluble sugar, proline, MDA and REL contents are
four major physiological parameters of abiotic stress [101,102]. Antioxidative enzyme
activities reflect ROS scavenging ability, which maintains oxidative homeostasis under
temperature stress. Overexpressing ZmMKK1 in tobacco confers chilling tolerance to plants
by accumulating soluble sugars and proline and decreasing the MDA and REL levels after
chilling treatment. The activities of POD, SOD, CAT and APX are significantly increased af-
ter chilling treatment in ZmMKK1-overexpressing transgenic plants [103]. Overexpressing
ZmMPK1 in Arabidopsis enhances tolerance to heat stress by increasing the proline contents
and decreasing the MDA contents [104]. Furthermore, it has been shown that the overex-
pression of SlMPK7 and SlMPK3 confers tolerance to chilling stress in tomato [105,106].
Under chilling stress, the MDA and REL contents are reduced in overexpression plants, but
the soluble sugar and proline contents obviously accumulate in transgenic overexpression
plants. Moreover, POD, SOD and CAT activities are increased in transgenic overexpression
plants under chilling stress [105,106]. Although these studies broaden our understanding
of the MAPK function under temperature stress in vegetable plants, the complete MAPK
cascade needs to be identified to reveal the molecular mechanisms underlying temperature
stress in vegetable plants.

5. MAPK in Biotic Stress

Potential pathogens exist in the air and soil and consistently threaten plant adaption
and crop productivity [12]. Using chemical pesticides in planting areas is the most common
strategy, but this method dramatically destroys the balance between humans and ecology.
Cultivating resistant crops has become the most effective and environmentally friendly
way to address this serious problem [107]. During a long period of plant–pathogen inter-
actions, plants have evolved sophisticated immune systems to prevent pathogens from
invading. [108]. The MAPK cascade plays a critical role in the plant defense response.
MPK3, MPK4 and MPK6 are activated after pathogen perception to induce an early defense
response [109]. MPK3, MPK4 and MPK6 regulate plant disease resistance by regulating
phytoalexin and phytohormone biosynthesis in biotic stress and activating downstream
substrates, which play a vital role in the early plant defense response. The upstream of
MPK3, MPK4 and MPK6 in biotic stress has already been identified [110–113]. Other
studies also showed the function of other MAPK cascade members in biotic stress.

When pathogens enter plants, the plants produce phytoalexins in response and ini-
tiate disease resistance [114,115]. Phytoalexins are low-molecular weight antimicrobial
compounds that differ among species [110]. As a major phytoalexin, camalexin (3-thiazol-
2-yl-indole) accumulates after Botrytis cinerea and other pathogen infections [63,116]. It
has been reported that AtMPK3 and AtMPK6 play key roles in camalexin production in
Arabidopsis [63,117,118] (Figure 3a). There are two major ways to activate AtMPK3 and
AtMPK6, which finally induce camalexin production. One way is AtMAPKKKα/AtMEKK1-
AtMKK4/AtMKK5-mediated AtMPK3 and AtMPK6 activation [63,117]. The produc-
tion of camalexin is reduced in atmpk3 single mutants but delayed in mpk6 single mu-
tants. Moreover, the expression of AtPAD3 is almost reduced and delayed in atmpk3 and
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atmpk6 mutants, suggesting that AtMPK3 and AtMPK6 perform redundant functions in
B. cinerea-induced camalexin accumulation. Gain-of-function genetic and epistatic anal-
yses have revealed that AtMAPKKKα/AtMEKK1 and AtMKK4/AtMKK5 are upstream
of AtMPK3 and AtMPK6 and are necessary for AtMPK3 and AtMPK6 activation [63]
(Figure 3a). Another way is AtMKK9-induced AtMPK3 and AtMPK6 activation [118]
(Figure 3a). AtMKK9DD transgenic plants accumulate more camalexin than AtMKK4DD

and AtMKK5DD transgenic plants after Dex induction in Arabidopsis, suggesting that
AtMKK9, AtMKK4 and AtMKK5 perform overlapping functions in camalexin produc-
tion. AtCYP79B2 and AtCYP79B3 are two major enzymes that catalyze Trp conversion to
indole-3-acetaldoxime (IAOx). AtCYP71A13 and AtPAD3 are critical for camalexin biosyn-
thesis [119]. The transcription levels of AtCYP79B2, AtCYP79B3, AtCYP71A13 and AtPAD3
are strongly induced in AtMKK9DD plants but partially compromised in AtMKK9DD/atmpk3
and AtMKK9DD/atmpk6 plants, suggesting that AtMKK9 is essential for MPK3 and AtMPK6
activation [118] (Figure 3a). However, the relationship between AtMKK9 and AtMKK4/5
in camalexin production is still unclear. An atmkk4/5/9 triple mutant is needed for fur-
ther research.

Figure 3. MAPK cascade function in biotic stress. (a) The MAPK cascade is involved in camalexin biosynthesis after Botrytis
cinerea infection. (b) The AtMEKK1-AtMKK4/5-AtMPK3/6 cascade regulates ethylene (ET) production in two dependent
ways. In one approach, AtMPK3/6 phosphorylates AtWRKY33, which can bind the promoters of AtACS2 and AtACS6
and activate AtACS2 and AtACS6 expression. In the other approach, AtMPK3/6 can directly phosphorylate AtACS2 and
AtACS6, eventually promoting AtACS2 and AtACS6 stability. (c) AtMEKK1-AtMKK1/2-AtMPK4 negatively regulates
salicylic acid (SA) production by negatively regulating AtPAD4 and AtEDS1 activities, whereas OsMKK10.2-OsMPK6
positively regulates SA production. (d) AtMAPKKK14-AtMKK3-AtMPK1/2/7/1 can be activated by jasmonic acid (JA)
after insect feeding. The red arrows mean content increase. This figure was created using BioRender (http://biorender.com/;
accessed on 14 December 2020).

A substrate of AtMPK3 and AtMPK6, i.e., AtWRKY33, regulates camalexin biosynthe-
sis in four different ways. First, AtWRKY33 directly binds the AtPAD3 promoter and acti-
vates AtPAD3 expression, which is involved in camalexin biosynthesis [117,120] (Figure 3a).
Second, AtWRKY33 can bind its own promoter, which activates AtWRKY33 expression and
eventually activates AtPAD3 expression [117]. Third, AtWRKY33, AtMPK4 and AtMKS1
naturally form a complex in the nucleus. After Pst DC3000 (Pseudomonas syringae pv.
maculicola) infection or flg22 treatment, AtWRKY33 is released from this complex and

http://biorender.com/
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binds the promoter of AtPAD3 to regulate AtPAD3 expression [120]. Fourth, AtWRKY33
can bind multiple genes in the camalexin biosynthesis process according to ChIP-seq
analyses [121] (Figure 3a). Based on these findings, the transcription factor AtWRKY33
is critical for camalexin production. However, some questions remain unsolved. First,
AtMPK3 and AtMPK6 can phosphorylate AtWRKY33, and AtMPK4 can form a complex
with AtWRKY33. The relationship among AtMPK3, AtMPK6 and AtMPK4 needs to be
verified. Second, additional experimental evidence is needed to further determine whether
AtWRKY33 can directly regulate multiple genes in addition to AtPAD3 in the camalexin
biosynthesis process.

In addition to camalexin, other phytoalexins can be induced by the MAPK cascade.
The OsMKK4-OsMPK6 pathway specifically activates numerous genes involved in diter-
penoid phytoalexin biosynthesis, thereby regulating diterpenoid phytoalexin biosynthe-
sis [122]. NtSIPK (salicylic acid-induced protein kinase) and NtWIPK (wound-induced
protein kinase) phosphorylate NtWRKY8, and NtWRKY8 upregulates the expression of
HMGR2 (gene encoding 3-hydroxy-3-methylglutaryl CoA reductase 2), which is the rate-
limiting enzyme in isoprenoid production in tobacco [123]. AtMPK3 also induces the
accumulation of the phytoalexin scopoletin. However, how MAPK regulates diterpenoid
and scopoletin phytoalexin production requires further investigation.

Salicylic acid (SA), JA and ET are three major plant hormones involved in the plant
defense response [112,124,125]. Several studies have reported that the MAPK cascade
participates in JA, SA and ET biosynthesis and signaling [126,127].

The MAPK module plays a key role in ET biosynthesis and signaling. The MAPK
cascade controls ET biosynthesis by regulating the rate-limiting step of ET biosynthesis.
ACS is the rate-limiting enzyme in ET biosynthesis [128]. In Arabidopsis, AtMPK3 and
AtMPK6 regulate AtACS2 and AtACS6 at the transcriptional, posttranscriptional and
protein stability levels. On the one hand, AtMPK3 and AtMPK6 regulate AtACS2 and
AtACS6 expression [129]. AtMPK3 and AtMPK6 phosphorylate AtWRKY33, which binds
the promoters of AtACS2 and AtACS6 and activates AtACS2 and AtACS6 expression,
eventually resulting in cellular ET accumulation [117,129] (Figure 3b). On the other hand,
AtMPK3 and AtMPK6 can directly phosphorylate AtACS2 and AtACS6, which enhances
AtACS2 and AtACS6 protein stability. AtACS2 and AtACS6 can be degraded by the
ubiquitin-proteasome pathway, whereas AtMPK3 and AtMPK6 phosphorylate AtACS6,
which reduces AtACS6 degradation, eventually promoting AtACS6 stability and inducing
ET production [15,17,130] (Figure 3b). AtMKK4 and AtMKK5 are upstream of AtMPK3
and AtMPK6, which perform redundant functions in ET production in Arabidopsis [15,130]
(Figure 3b). In addition to AtMKK4 and AtMKK5, it has also been shown that ZmMKK10
positively regulates ET biosynthesis [131]. ZmMKK10 exhibits 46.8% similarity to AtMKK9.
ZmMKK10DD-overexpressing plants induced ethylene accumulation under normal con-
ditions. AVG (Aminoethoxy vinyl glycine) and CoCl2 are inhibitors of ACSs and ACOs,
respectively. ZmMKK10DD-overexpressing plants treated with AVG and CoCl2 display re-
duced ET production. Reverse genetic and epistatic analyses further proved that ZmMPK3
and ZmMPK7 are substrates of ZmMKK10 in ET production [131]. Further studies should
elucidate whether ZmMKK10, AtMKK4 and AtMKK5 perform redundant functions in
ET production.

Ethylene signaling pathways have already been well studied [132,133]. The MAPK
cascade regulates ET signaling through two independent pathways. On the one hand,
AtMPK6 phosphorylates AtERF6, which activates AtPDF1.2a and AtPDF1.2b expression.
AtMPK6 phosphorylates AtERF6 at the Ser 266 and Ser 269 residues. Such phosphorylation
increases the transcriptional activity of genes that have GCC boxes in their promoter
regions [134]. In addition, AtMPK6 phosphorylates AtERF104, which can bind GCC box cis-
elements, i.e., the potential target genes of AtERF104, including AtPDF1.2 and AtPDF1.2b,
which can be significantly upregulated in AtERF104 overexpression plants [135].

SA also plays a critical role in the plant defense response and can be regulated by the
MAPK cascade [126]. MPK3, MPK4 and MPK6 are involved in regulating SA biosynthesis



Int. J. Mol. Sci. 2021, 22, 1543 14 of 22

and signaling. CA-MPK3 (Constitutively active AtMPK3) in Arabidopsis increased the SA
levels, but overexpressed CA-AtMPK3 on an atsid2 background impaired SA biosynthesis,
suggesting that AtMPK3 plays a key role in SA biosynthesis [136] (Figure 3). OsMKK10.2
phosphorylates OsMPK6 after Xoc (Xanthomonas oryzae pv. oryzicola) infection, whereas
phosphorylation is impaired in nahG transgenic plants (SA-deficient transgenic rice), sug-
gesting that OsMPK6 confers resistance to Xoc via SA [11] (Figure 3c). In contrast to
MPK3 and MPK6, MPK4 plays a negative role in SA production [137,138]. The atmekk1
and atmkk1/2 mutants exhibit accumulated cellular SA levels. However, when nahG is
expressed in atmekk1 and atmpk4 mutant plants, nahG rescues the atmekk1 and atmpk4
dwarf phenotypes and compromises resistance to pathogens [139–141], suggesting that
AtMEKK1-AtMKK1/2-AtMPK4 negatively regulates the defense response by reducing the
endogenous SA levels [120,140,142,143] (Figure 3c). In addition, AtMKK7 plays a critical
role in systemic acquired resistance (SAR) by regulating SA biosynthesis and signaling.
The expression of AtMKK7 is increased in bud1 mutants (elevated SA mutants), which
increases the SA levels and PR gene expression. The ectopic expression of AtMKK7 in local
tissues induces SA accumulation and AtPR1 expression and enhances resistance to Psm
ES4326 in systemic tissues, indicating that AtMKK7 is necessary for SA-induced SAR [144].
SlMPK3 increases resistance to TYLCV (tomato yellow leaf curl virus) by activating SA
signaling, and the expression of SlPR1 and SlPR1b is increased in SlMPK3-overexpressing
plants [145]. Further studies should focus on the substrates of MPK3 and MPK6, which can
regulate SA-related genes to control SA biosynthesis and signaling.

After pathogen infection, herbivore attacks and mechanical wounding, JA biosynthesis
and signaling are activated [125]. The MAPK cascade has been reported to regulate both
JA biosynthesis and signaling. In tobacco, NtSIPK and NtWIPK trigger JA accumulation,
but NtMEK2DD, which is upstream of NtSIPK and NtWIPK, does not increase the JA levels
in cells. MKK2 is likely insufficient to induce JA production [146,147]. To date, which MKK
is necessary and sufficient to induce JA production has not been determined. In tomato,
LeMPK1, LeMPK2 and SlMPK3 are involved in JA production and signaling. After Manduca
sexta (Lepidoptera) feeding, the overexpression of LeMPK1 and LeMPK2 transgenic plants
induced JA accumulation, whereas the co-silencing of LeMPK1 and LeMPK2 reduced JA
production, suggesting that LeMPK1 and LeMPK2 confer tolerance to herbivorous feeding
by accumulating the endogenous JA levels [148]. SlMPK3 enhances resistance to TYLCV
inoculation by activating JA signaling, which increases SlLapA, SlPI-I and SlPI-II expression
after virus inoculation in overexpressing SlMPK3 transgenic plants [145]. In Arabidopsis,
AtMPK4 and AtMPK6 are also involved in JA signaling. In the atmpk4 mutant, AtPDF1.2
and AtTHI 2.1 are not expressed under normal conditions, and even after MeJA treatment,
the expression of AtPDF1.2 and AtTHI 2.1 could not be detected, suggesting that AtMPK4
may positively regulate the JA signaling pathway [139]. It has also been reported that
AtMPK6 along with AtMKK3 negatively regulates AtMYC2 expression, which can control
JA signaling [149]. Recently, another report also showed that JA can activate the MAPK
cascade in Arabidopsis. AtMAPKKK14- AtMKK3-AtMPK1/2/7/14 can be activated after
insect feeding, and their activities are controlled by the JA levels, suggesting that potential
feedback may exist between the MAPK cascade and JA [150] (Figure 3d).

The above findings indicate that MAPK cascades regulate plant immunity by phos-
phorylating specific transcription factors or regulating a specific gene expression. This
change seems to be limited. In other words, it is not sufficient for plants to acquire resis-
tance to pathogens. Other mechanisms controlling gene expression in plant immunity
need to be identified. Some research has already proved the critical role of histone modi-
fication in plant immunity, such as histone acetylation, histone methylation and histone
ubiquitination [151]. HUB1 and HUB2 (histone monoubiquitination) are involved in the
plant defense response to necrotrophic fungi in Arabidopsis and tomato [152,153]. At-
SRT2 (HDAC SIRTUIN2), AtHDA19, AtHDA6 and OsHDT701, some histone deacetylases,
also regulate plant immunity [154–157]. Some histone demethylases have been associ-
ated with the regulation of the plant defense response, such as AtJMJ27, OsJMJ705 and
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OsJMJ704 [158–160]. More importantly, AtMKK5 and AtMKK3 loci displayed increased
H3K36me3 and decreased H3K36me1 in the Col-0 but not in the sdg8 mutant (histone
methyltransferase SET DOMAIN GROUP8) in response to infection. Therefore, histone
methylation can directly change the expression of MKK3 and MKK5 at early signaling
of the defense response [161]. However, whether MAPK cascades can regulate the plant
defense response by global chromatin reprogramming remains unclear. Recently, it has
been reported that MAPK cascades can regulate plant immunity by involvement in histone
acetylation. MPK3 acts as a key regulator in histone modification-mediated chromatin
modulation in microbe-associated molecular pattern (MAMP)-triggered plant immunity.
MPK3 phosphorylates HD2B (a histone deacetylase) in vivo. HD2B localizes from the nu-
cleolus to the nucleoplasm, where it removes H3K9ac marks in several loci, thereby leading
to a global change in defense gene expression [162]. This finding fills the gap between
MAPK cascades and global gene expressions after pathogen perception. It provides new
cues to explain that MAPK cascades are a key regulator for plant immunity. However,
some central questions still need to be resolved, such as the question of whether MAPK
cascades also directly regulate histone methylation and histone ubiquitination. Further
study needs to pay attention to discovering the role of MPK4 and MPK6 in global changes
of gene expression in plant immunity.

6. Conclusions

After cells sense environmental stimuli, the MAPK cascade is activated to transform
extracellular signaling into intracellular responses. Based on biochemical and genetic
analyses and the development of functional genomics, proteomics and phospho-proteomics
analyses, information regarding the biofunction of the MAPK cascade under environmental
stress has already increased. Additionally, the MAPK network under environmental
stresses has become increasingly complex. This phenomenon may be explained by different
upstream RLKs/RLPs and specific downstream substrates.

Currently, there are still some challenges in functionally characterizing the MAPK
linear pathway. First, the gap between pattern recognition receptors (PRRs) and MAPK
in plant immune signaling has already been filled in, but limited success has already
existed in understanding the relationship between RLKs/RLPs and MAPK cascades in
abiotic stress [163,164]. The reason can be concluded by the large member of RLK and
RLP families in plants [12,83,165]. AtMEKK1, AtRAF18, AtRAF20, AtRAF24, RAF40,
AtM3Kδ1, AtM3Kδ8, AtM3Kδ7 and AtMAPKKK18 have been well studied in abiotic
stress [32,47,82,83,143,166]. AtMEKK1, AtMKKK5, OsMKKK18/24, AtANP1/2 and AtY-
ODA have been identified to function in plant disease resistance [167–170]. The functions
of other MAPKKKs are still unclear. More importantly, RLKs/RLPs function as receptor
kinases, and other RLKs/RLPs function as co-receptors and scaffold proteins involved
in the receptor complex. Second, the specific signaling transduction of MAPK cascades
relies on the docking interaction of MKKs with MAPKs, as well as the specific interaction
of MAPKs with substrates [171–173]. Moreover, the interaction of MKKs with MAPKs also
needs scaffold proteins’ help [174]. However, the mechanisms of the specific interaction
between MAPKKKs and MAPKKs are less known [171]. Further study should make efforts
to underly this mechanism. Third, abnormal phenotypes are observed in null mutants,
especially in plant immunity, and it is difficult to conduct genetic analyses and phenotype
analyses. Hence, some new approaches rather than T-DNA insertion, such as chemical
strategies, are needed to address these problems [175].

Approximately 20 MAPKs have been identified in Arabidopsis, but only three MAPKs
(MPK3, MPK4 and MPK6) are well studied in environmental stress. A few advances have
revealed the functions of 17 other MAPKs in environmental stress. Hence, the regulatory
network of the MAPK cascade seems to be generally single. With the development of
high-throughput phospho-proteomics analysis, many transcription factors, enzymes and
proteins have been shown to be candidate substrates of MAPKs. Further studies should
exert efforts to reveal the function of the 17 other MAPKs in environmental stresses. More
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importantly, identifying novel substrates of MAPKs is essential to enrich the current
understanding of MAPK regulation under environmental stress.
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