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Abstract: In this work, we focus on sparse representation of two-dimensional (2-D) radar
signatures for man-made targets. Based on the damped exponential (DE) model, a 2-D augmented
state–space approach (ASSA) is proposed to estimate the parameters of scattering centers on complex
man-made targets, i.e., the complex amplitudes and the poles in down-range and aspect dimensions.
An augmented state–space approach is developed for pole estimation of down-range dimension.
Multiple-range search strategy, which applies one-dimensional (1-D) state–space approach (SSA)
to the 1-D data for each down-range cell, is used to alleviate the pole-pairing problem occurring
in previous algorithms. Effectiveness of the proposed approach is verified by the numerical and
measured inverse synthetic aperture radar (ISAR) data.

Keywords: damped exponential (DE) model; inverse synthetic aperture radar (ISAR); radar signatures;
state–space approach (SSA); sparse representation

1. Introduction

Sparse representation of two-dimensional (2-D) radar signatures has been widely used in many
applications, such as super-resolution radar imaging, data compression, and target identification [1–4].
2-D radar signatures can be reconstructed with fewer data, where a set of parameters including the
locations, amplitudes, and damping factors are used to represent the returned signals from spatial
distributed scattering centers. Moreover, 2-D ultra-wideband images of radar targets can be obtained
through parameter interpolation or extrapolation [5].

Over the years, several model-based spectral estimation approaches have been developed for
sparse representation of 2-D radar signatures, in which the common idea of these approaches is
the development of a parametric model based on electromagnetic scattering mechanisms. In this
way, a set of parameters may be found to represent the original signatures. Please note that most
sparse representation approaches are considered to have super-resolution capabilities because they are
supposed to estimate the parameters of scattering centers that cannot be distinguished by standard
processing [6–21]. Typically, these approaches include the amplitude and phase estimation of a sinusoid
(APES) algorithm [6], fast Fourier transform (FFT)-based technique (CLEAN) [7,8], the compressed
sensing (CS)-based procedure [9–11] and the subspace-based approach [12–21]. The APES algorithm
could provide accurate estimation of the complex amplitudes whereas it does not estimate the locations
of scattering centers. The 2-D CLEAN technique is a computationally efficient procedure which uses
the undamped exponential model and deconvolution algorithm for optimization [7,22]. The main
process of the CS-based procedure is to represent the signatures using an over-complete dictionary
and the corresponding coefficients [9,10]. The performance of this approach depends on the initial
coefficients and the threshold used in terminating iterations.
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Another important group of 2-D sparse representation technique is the subspace-based approaches.
The representative algorithms of this kind include the 2-D multiple signal classification (MUSIC) [12],
matrix enhancement and matrix pencil (MEMP) [13,14], 2-D total least squares (TLS) Prony [15],
algebraically coupled matrix pencils (ACMP) [16], 2-D estimation of signal parameters via rotational
invariance techniques (2-D ESPRIT) [17] and 2-D system realization technique [18,19]. The rationale
and pole-pairing scheme of these algorithms are listed in Table 1.

Table 1. Synopsis of the 2-D subspace-based algorithms.

Technique Rationale Pole (1) Pairing Scheme

2-D MUSIC Signal-noise subspace
decomposition No need for pole-pairing

MEMP Enhanced matrix decomposition Maximizing a certain criterion

2-D TLS Prony TLS-based Prony model Minimizing a certain distance

ACMP Signal subspace decomposition Rank-restoration scheme

2-D ESPRIT Shift-invariance structure of the
signal subspace Joint diagonalization scheme

2-D system realization State–space model Algebraic method
(1). Pole denotes a transfer function of the scattering center collected on target. Usually, the scattering centers are
characterized via pairing the complex amplitudes and the poles in down-range and aspect dimensions.

While these subspace-based algorithms are demonstrated to be useful for the signatures of
targets or simulated scattering centers, there are still some technique challenges, especially for sparse
representation of the wideband radar signatures collected on complex man-made targets. First,
the pairing schemes used by many existing algorithms cannot provide correct pole pairs in certain
circumstances. i.e., MEMP, ACMP and 2-D system realization meet with the pole-pairing problem
when there are numerous repeated poles in either the down-range or aspect dimension [17,20,23].
Second, the model order, which directly affects the result of parameter estimation such as 2-D MUSIC,
MEMP, and 2-D ESPRIT et al., is difficult to be determined in the measurement environment [8].
Third, the compromises between the computational complexity and accuracy should be considered in
the application of these algorithms [12]; for instance, the 2-D TLS Prony has smaller computational
complexity than MEMP but with loss in accuracy [15].

In this paper, we focus on developing an approach for sparse representation of 2-D radar
signatures collected on man-made targets. An augmented state–space approach is proposed for
pole estimation of the down-range dimension. Multiple-range search strategy is then applied to
estimate the pairing poles and corresponding amplitudes along the aspect dimension. Compared to
the existing methods [14,17,18], the advantages of the 2-D augmented state–space approach (ASSA) are:
(1) Computational complexity of the algorithm is much reduced since the newly defined Hankel matrix
and several time-saving operations are adopted, whereas the pole-estimation accuracy is still at the
same level; (2) The pole-pairing problem can be alleviated because all the poles are adaptively paired
by using the multiple-range search strategy; And (3) an eigenvalue sequences transform algorithm is
proposed, which could provide fast model order selection.

The remainder of the paper is organized as follows. Section 2 briefly presents the damped
exponential models for 1-D and 2-D signals. In Section 3, a two-step procedure for 2-D ASSA
is developed. Results for numerical and measured inverse synthetic aperture radar (ISAR) data
representation are demonstrated to validate the effectiveness of the proposed procedure in Section 4.
We conclude the paper in Section 5. Appendices are given to show more mathematical details of the
proposed approach.
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2. Data Model

2.1. 1-D Damped Exponential Model

As described in DE model [22,24], the 1-D radar signatures y( fn) can be expressed as a summation
of K scattering centers corrupted with noise w(n).

y( fn) =
K∑

k=1
Ak exp

[(
βk + j2π rk

c

)
fn
]
+ w(n)

=
K∑

k=1
akpn

k + w(n)
(1)

where n = 1,2, . . . ,N and N denotes the number of pulses, Ak is the complex amplitude of the k-th
scattering center; βk is the damping factor with respect to frequency; rk denotes the relative range;
The parameter fn denotes the radar frequency fn = fc + (n− 1−N2)∆ f where fc is the center frequency
and N2 = ceil(N/2) denotes the smallest integer less than or equal to N/2; ak represents the amplitude
of the k-th scattering center in pole form, the pole pk = exp[(βk + j2πrk/c)∆ f ] represents the transfer
function of the k-th scattering center; c = 3 × 108 m/s is the propagation velocity. It worth noting that
the data models used in this paper are all considered in a stepped frequency radar [25,26].

According to the discrete-time control theory and auto-regressive moving average (ARMA) model,
Piou and Naishadham proposed a one-dimensional state–space approach (1-D SSA) which use a
state–space description to the 1-D radar signatures in (1) [22].

x(n + 1) = Ax(n) + Bu(n) (2)

y(n) = Cx(n) + u(n) (3)

where x(n) ∈ CK×1 is the state vector, y(n) denotes the signal sequence y( fn), u(n) is the input vector,
A ∈ CK×K represents the open-loop matrix, B ∈ CK×1 and C ∈ C1×K are the constant matrices. Thus,
the 1-D noiseless radar signatures same as (1) can be expressed as[

ỹ(1) ỹ(2) . . . ỹ(N)
]
=

[
CB CAB . . . CAN−1B

]
(4)

As described in [22], 1-D SSA could precisely estimate the state matrices A, B, and C. Once
these three state matrices are computed, the model parameters in (1) can be estimated by using the
eigen-decomposition technique.

2.2. 2-D Damped Exponential Model

As a 2-D extension of 1-D DE model, the radar signatures obtained from different aspect angles are
considered to be the summation of a finite number of dispersive scattering centers [13–18]. Typically, it
is applicable to modeling the 2-D radar signatures with small aspect ranges [27].

y(θm, fn) =
K∑

k=1
Ak exp

[( j2πr1k
c + β1k

)
fcθm

]
exp

[( j2πr2k
c + β2k

)
fn
]
+ w(m, n)

=
K∑

k=1
aksm

k pn
k + w(m, n)

(5)

in matrix notation, the 2-D radar signatures in (5) can be expressed as:

Y =


y(1, 1) y(1, 2) . . . y(1, N)

y(2, 1) y(2, 2) . . . y(2, N)
...

... . . .
...

y(M, 1) y(M, 2) . . . y(M, N)

 (6)
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where m = 1, . . . , M and n = 1, . . . , N; {r1k,r2k} give the relative locations of the k-th scattering center;
{β1k, β2k} characterize the frequency and aspect dependence of scattering; θm = θ0 + (m− 1)∆θ denotes
the m-th aspect angle where θ0 is the starting angle and ∆θ represents the angle interval; w(m, n) is the
Gaussian noise with zero-mean; y(m, n) denotes the signal sequences y(θm, fn); {sk, pk} refer to poles of
the down-range and aspect dimension.

sk = exp
[(

j2πr1k

c
+ β1k

)
fc∆θ

]
(7)

pk = exp
[(

j2πr2k

c
+ β2k

)
∆ f

]
(8)

3. Two-Dimensional Augmented State–Space Approach

From the 2-D DE model in (5), the vector Ỹ(n), which represents the n-th column of the noiseless
signature matrix Ỹ = Y−W (where W is the noise matrix), can be decomposed as.

Ỹ(n) =



a1s1
1p1 a2s1

2p2
... aKs1

KpK

a1s2
1p1 a2s2

2p2
... aKs2

KpK
...

...
...

...

a1sM
1 p1 a2sM

2 p2
... aKsM

K pK





p1 0
... 0

0 p2
... 0

...
...

...
...

0 0
... pK



n−1

lK (9)

where K denotes the number of scattering centers, lK indicates the column vector of ones with length K.
Actually, we often meet the one-to-multiple matching situation, i.e., one pole pk is corresponding

to more than one poles sk1, sk2, . . .. These repeated poles can be merged and (9) could be rewritten as.

Ỹ(n) =



l1∑
t=1

a1ts1tp1

l2∑
t=1

a2ts2tp2 . . .
lK1∑
t=1

aK1tsK1tpK1

l1∑
t=1

a1ts2
1tp1

l2∑
t=1

a2ts2
2tp2 . . .

lK1∑
t=1

aK1ts2
K1tpK1

...
...

...
...

l1∑
t=1

a1tsM
1t p1

l2∑
t=1

a2tsM
2t p2

...
lK1∑
t=1

aK1tsM
K1tpK1





p1 0
... 0

0 p2
... 0

...
...

...
...

0 0
... pK



n−1

lK1 (10)

where K1 represents the number of non-repeated poles in the down-range dimension. l1, l2, . . . lK1

denote the number of repeated poles, respectively, for the corresponding poles p1, p2, . . . pK1 .
We define the matrix P as.

P = Q



p1 0
... 0

0 p2
... 0

...
...

...
...

0 0
... pK1


Q∗ (11)

where * denotes the Hermitian operator; Q is a unitary matrix which satisfies Q∗Q = QQ∗ = E, E is
the identity matrix.
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Two constant matrices, i.e., S and D, are defined to simplify the expression in (10).

S =



l1∑
t=1

a1ts1tp1

l2∑
t=1

a2ts2tp2 . . .
lK1∑
t=1

aK1tsK1tpK1

l1∑
t=1

a1ts2
1tp1

l2∑
t=1

a2ts2
2tp2 . . .

lK1∑
t=1

aK1ts2
K1tpK1

...
...

...
...

l1∑
t=1

a1tsM
1t p1

l2∑
t=1

a2tsM
2t p2

...
lK1∑
t=1

aK1tsM
K1tpK1


Q∗ (12)

D = QlK1 (13)

Using (11)–(13), expression in (10) is simplified as.

Ỹ(n) = SPn−1D (14)

Thus, the noiseless signatures Ỹ can be written as.

Ỹ =
[

SD SPD . . . SPN−1D
]

(15)

Comparing (15) with (4), it can be found that these two equations have extremely similar structures.
Thus, the parameters ak, sk and pk can be estimated by 2-D augmentation of 1-D SSA, which is called
2-D augmentation state–space approach (2-D ASSA).

Here, the 2-D ASSA consists of two steps. An augmented state–space approach is applied to
estimating the pole pk in down-range dimension. Then multiple-range search strategy is used for
estimating the matching pole sk as well as the corresponding amplitude ak. Details are as follows.

3.1. Pole Estimation of the Down-Range Dimension

First, we introduce a single augmented Hankel matrix H of size M(N − L + 1) × L by analogy of
the enhanced Hankel matrix in 1-D SSA:

H =


Y(1) Y(2) . . . Y(L)
Y(2) Y(3) . . . Y(L + 1)

...
... . . .

...
Y(N − L + 1) Y(N − L + 2) . . . Y(N)

 (16)

where each element Y(n), first mentioned in (9), represents the n-th column of the matrix Y; L is the
step size of the correlation window, which is heuristically set to be L=N2 [22].

Next, do the singular value decomposition (SVD) of the Hankel matrix.

H = [ Usn Un ]

[
<sn

<n

][
V∗sn
V∗n

]
(17)

where Usn,Un,V∗sn and V∗n are unitary matrices;<sn and<n are diagonal matrices; The matrices with
subscript ‘sn’ refer to the components of signal space and those matrices with subscript ‘n’ denote the
components of noise space; The rank of the noiseless matrix Usn<snV∗sn is known as the model order
which has been widely used in [14,22,27].
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As proved in [14,17], the model order in the down-range dimension is equal to K1 and should be
less than the number of columns or rows of H at least. Thus, the number of non-repeated poles K1

should satisfy the following condition.{
MN −ML + M ≥ K1

L ≥ K1
(18)

Model order selection is an inevitable problem in modeling the 2-D signatures [14,22,27]. A series
of eigenvalue-based criteria, such as Akaike information criterion (AIC), minimum description length
(MDL) criterion and the minimum eigenvalue (MEV) criterion, have been proposed for solving this
problem [28,29]. Those criteria are useful in model order selection but with time consuming process [30].
Here an eigenvalue sequences transform algorithm is proposed for estimating the model order due
to its low computational complexity. This algorithm can provide fast estimation but with loss in
robustness to noise. More details of this algorithm are presented in Appendix A.

Based on the linear systems theory [31] and the matrix expression in (14) and (16), the noiseless
matrix H̃ can be further factorized as:

H̃ = Usn<snV∗sn = ΩΓ (19)

where Ω is the (N − L + 1)M×K1 observability matrix which can be further expressed by the matrices
S and P.

Ω = Usn<
1/2
sn =

[
S SP . . . SPN−L

]T
(20)

and Γ is the K1 × L controllability matrix which can be expressed by the matrices P and D.

Γ = <1/2
sn V∗sn =

[
D PD . . . PL−1D

]
(21)

Considering that computational complexity of (19)–(21) is enlarged observably for large data
sets, operations (22)–(24) are used for alternative steps which have lower computational load but with
minimal calculation error.

H̃
∗

H̃ = Vsn<
2
snV∗sn = VsnZV∗sn (22)

Ω ≈ HVsnZ−1/4 (23)

Γ = Z−1/4V∗sn (24)

where Z = <2
sn.

As an analogy of the open-loop matrix in 1-D SSA, the augmented open-loop matrix P can be
derived from the observability matrix by using least square.

P =
(
Ω∗r f Ωr f

)−1
Ω∗r f Ωrl (25)

Or it can be computed by the controllability matrix Γ.

P = ΓclΓ
∗

c f

(
Γc f Γ∗c f

)−1
(26)

where Ωr f is the first (N − L)M rows of Ω and Ωrl denotes the last (N − L)M rows of Ω; Γc f represents
the first (L − 1) columns of Γ and Γcl is the last (L − 1) columns of Γ. From (20) and (21), these matrices
can be rewritten as [

S SP . . . SPN−L−1
]T

= Ωr f (27)[
SP SP2 . . . SPN−L

]T
= Ωrl (28)
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[
D PD . . . PL−2D

]
= Γc f (29)[

PD P2D . . . PL−1D
]
= Γcl (30)

More details of the derivation of the matrices S, P, and D are listed in Appendix B.
According to (11), the vector [ p1 p2 . . . pK1 ] is obtained by performing the SVD.

Λ = Q∗PQ (31)

diag(Λ) =
[

p1 p2 . . . pK1

]
(32)

where diag(Λ) denotes the diagonal element of matrix Λ.

3.2. Pole Estimation of the Aspect Dimension

In this step, multiple-range search, which applies one-dimensional (1-D) state–space approach
(SSA) to the 1-D data for each down-range cell, is used for pole estimation of the aspect dimension and
pole adaptive pairing. Details are as follows.

We introduce the Vandermonde sub-matrix O.

O =



p1
1 p2

1

... pN
1

p1
2 p2

2

... pN
2

...
...

...
...

p1
K1

p2
K1

... pN
K1


(33)

From (5), the noiseless signatures Ỹ can be factorized as a product of the pairing matrix G and O,
where each column of G is associated with each row of O.

Ỹ =



l1∑
t=1

a1ts1t
l2∑

t=1
a2ts2t . . .

lK1∑
t=1

aK1tsK1t

l1∑
t=1

a1ts2
1t

l2∑
t=1

a2ts2
2t . . .

lK1∑
t=1

aK1ts2
K1t

...
...

...
...

l1∑
t=1

a1tsM
1t

l2∑
t=1

a2tsM
2t

...
lK1∑
t=1

aK1tsM
K1t


O = GO (34)

Thus, the pairing matrix G in (34) can be calculated by using least square, i.e.

G = ỸO∗(OO∗)−1 (35)

The k-th column of the pairing matrix G is presented as

G(k) =
[

lk∑
t=1

akts1
kt

lk∑
t=1

akts2
kt . . .

lk∑
t=1

aktsM
kt

]T

(36)

where k = 1, 2, . . . , K1.
Using (36), each column of the pairing matrix is constructed in a same structure to 1-D DE model

defined in (1). This indicates that the pole skt and akt, which correspond to the k-th pole pk in (32), can
be solved by using 1-D SSA [22] to each column of the pairing matrix G. For example, for the first
column of the pairing matrix G corresponds to p1, the parameter matrices (C, A, B) can be obtained by
using 1-D SSA in (4).

G(1) =
[

CB CAB . . . CAM−1B
]T

(37)
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The eigenvalue decomposition of the open-loop matrix A leads to.[
ỹ(1) ỹ(2) . . . ỹ(N)

]
=

[
CB CAB . . . CAN−1B

]
(38)

The matching pole s1t and the corresponding amplitude a1t are computed as.[
s11, s12, . . . , s1l1

]
=

[
Λ1(1, 1) Λ1(2, 2) . . . Λ1(l1, l1)

]
(39)[

a11, a12, . . . , a1l1

]
= (CM1)

∗
·

(
M−1

1 B
)

(40)

Thus, the pairing matrix G can be searched column by column until all poles skt and the
corresponding amplitudes akt are estimated. No extra pairing scheme is required because the poles
[sk1, sk2, . . . , sklk ] and the amplitudes [ak1, ak2, . . . , aklk ] have already been adaptively paired to the poles
pk in (34). In addition, considering that the model order may be overestimated sometime, the searched
pole pairs are usually checked again according to their amplitudes. Finally, locations and damping
factors of all the scattering points can be obtained from (41) and (42).

(r1k, r2k) = (
Arg{sk

}
4π fc∆θ/c

,
Arg{pk

}
4π∆ f /c

) (41)

(β1k, β2k) = (
ln(|sk|)

fc∆θ
,

ln(
∣∣∣pk

∣∣∣)
∆ f

) (42)

4. Results and Discussion

In this Section, three examples are presented to demonstrate the usefulness of the proposed
procedure, i.e., the numerical signatures with 14 point scattering centers, the numerical signatures of
a sphere tipped cone-cylinder-frustum combination model, the measured ISAR data for an aircraft
model. The results obtained by 2-D ESPRIT are used for comparison since it is one of the very few
techniques which have been used in real radar applications [17,32].

4.1. Numerical Signatures with Point Scattering Centers

In this example, the noisy signatures composed of 14-point scattering centers are considered to be
as follows:

y(m, n) =
14∑

k=1

ak exp[( j2πr1k/c + β1k) fcθn] exp[( j2πr2k/c + β2k) fm] + w(m, n) (43)

where (M, N) = (41, 41); ak is set to be 1; fc = 12GHz and ∆ f = 150MHz; θ0 = 0 rad and ∆θ = 0.0125
rad; The setting of coupled ranges are shown in Figure 1; All the damping factors including β1k and
β2k are set as −0.05/( fc∆θ) and −0.05/∆ f except the far left scattering points (β11, β21) = (−0.02/( fc∆θ),
−0.02/∆ f ); w(m, n) denotes the additive white Gaussian noise.
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Figure 1. Spatial distribution of the simulated poles.

As shown in Figure 1, these scattering points form a missile-like shape in Cartesian coordinates.
It contains 13 pole pairs which have repeated poles in either the down-range or aspect dimensions.
The noisy signatures in space domain by Fourier transform-based imaging algorithm (add Taylor
window) are displayed in Figure 2a,b. As can be seen, the positions and decay rates of these scattering
points are consistent with the corresponding ranges and damping factors. To sparse representation
of these noisy signatures, the parameter for 2-D ASSA is chosen to be L = 20; the parameters for 2-D
ESPRIT are set as: (P, Q) = (20, 20), β= 0.8, which are suggested in [17]. For each signal to noise ratio
(SNR), the number of Monte Carlo simulation is 200. A series of range estimation results in different
SNRs are presented in Figure 3. Please note that the model order in 2-D ESPRIT is pre-specified because
the singular values-based criterion [28,29] cannot be used when there are repeated poles in either the
down-range or aspect dimensions. Because of different pairing strategies, K1 and K in 2-D ASSA could
be estimated by the eigenvalue sequences transform algorithm (Appendix A) when SNR > 10 dB.
However, the numbers K1 and K in 2-D ASSA should be pre-specified or use the other criterion [30]
when the noise level is higher (SNR ≤ 10 dB).

As can be seen in Figure 3a,b, the positions of scattering points estimated by 2-D ESPRIT are
generally according to the preset poles in Figure 1, except for some missing or incorrect points (shown
by the black rectangular). The possible reason of this problem is that the pairing procedure in 2-D
ESPRIT may provide incorrect pole pairs when there are repeated poles in either the down-range or
aspect dimension, i.e., six pole pairs (s1, p1), (s1, p2), (s1, p3), (s2, p1), (s2, p2), (s2, p3). In contrast, the
results estimated by 2-D ASSA showed higher accuracy than 2-D ESPRIT for different pairing strategies.

The estimation accuracy of cross/down ranges and damping factors are displayed in Figure 4.
Root mean square error (RMSE) is used as the evaluating indicator which is defined in (44). As we can
see, estimation accuracy of these two algorithms are basically at the same level although the size of
Hankel matrix used by 2-D ASSA is smaller than the block-Hankel matrix defined by 2-D ESPRIT.

Figure 2. Simulated radar image with different SNR by Fourier transform. (a) Simulated radar image
with SNR = 5 dB; (b) Simulated radar image with SNR = 0 dB.
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Figure 3. Estimation of the coupled ranges by 2-D ASSA and 2-D ESPRIT with different SNR.
(a) Estimation by 2-D ESPRIT with SNR = 5 dB; (b) Estimation by 2-D ESPRIT with SNR = 0 dB;
(c) Estimation by 2-D ASSA with SNR = 5 dB; (d) Estimation by 2-D ASSA with SNR = 0 dB.

Figure 4. Estimation accuracy of r11, r21, β11 and β21 with different SNR. (a) Estimation of r11 with
different SNR; (b) Estimation of r21 with different SNR; (c) Estimation of β11 with different SNR;
(d) Estimation of β21 with different SNR.
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Figure 5. Estimation of the coupled ranges by 2-D ASSA with 2000 Monte Carlo runs (SNR = 0 dB).

δRMSE = 10 log10

√√√
1

Mc

Mc∑
t=1

[Xest −Xreal]
2 (44)

where Mc = 2000 denotes the number of Monte Carlo runs, Xest and Xreal are the esimated and real
parameters.

Figure 5 also presents the statistic result with 2000 Monte Carlo runs (SNR = 0 dB). The result
demonstrates that the multiple-range search strategy used by 2-D ASSA is robust in pole-pairing for
low SNR.

4.2. Numerical Signatures of Computer-Aided Design (CAD) Model

The numerical signatures are obtained using method of moment (MOM), where the target is
from a computer-aided design (CAD) model of a sphere tipped cone-cylinder-frustum combination,
(shown in Figure 6). The data was calculated from 8–12 GHz in 10 MHz frequency step size, view angle
ranging from −5 to 5 deg with an increment of 0.25 deg. Figure 7a presents 2-D radar image processed
using 2-D FFT. As it can be seen, strong scattering points can be observed at differential discontinuities,
such as the base-edge, the body groove, and nosetip. To sparsely represent the numerical data, the
parameters of this example are set as follows. For 2-D ASSA, L is set as N2. For 2-D ESPRIT, (P,
Q) = (M2, N2), where M2 = ceil(M/2) denotes the smallest integer less than or equal to M/2, and β = 0.8.

Location estimation of key scattering points for these two algorithms are shown in Figure 7b–e.
As can be seen, when the number of scattering centers is set to be 14, all key scattering points are
accurately estimated by these two algorithms except for some minor differences. However, when K
is set to be 18, 2-D ESPRIT encountered the pole-pairing problem and could not provide the right
estimation. Relative reconstruction error (RRE) δRRE (defined in (45)) of these two algorithms are
shown in Figure 8. We can see that the RRE of 2-D ASSA has been falling when K increased from 10 to
30, whereas the RRE of 2-D ESPEIT stopped falling after K = 14. The result shows that 2-D ASSA tends
to be more robust in pole-pairing for different numbers of scattering centers.

δRRE =
1

MN

M∑
m=1

N∑
n=1

∣∣∣20 log10[Yrecon(m, n)/Yreal(m, n)]
∣∣∣ (45)

where Yrecon denotes the signatures reconstructed by the estimated parameters. Yreal is the original
signatures.
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Figure 6. CAD model of the sphere tipped cone-cylinder-frustum combination.

Figure 7. 2-D radar image of the CAD model and location estimation of main scattering points result
by 2-D ESPRIT and 2-D ASSA. (a) 2-D radar image in aspect angle from −5 to 5 deg; (b) Pole estimation
by 2-D ESPRIT(K = 14); (c) Pole Estimation by 2-D ASSA(K = 14); (d) Pole estimation by 2-D ESPRIT(K
= 18); (e) Pole Estimation by 2-D ASSA(K = 18).

Figure 8. Relative reconstruction error of the numerical signatures of CAD model with different
numbers of scattering centers.

Figure 9a displays the sub-band data image (8–10 GHz, from −5 to 5 deg) which was extracted
from the full-band data. Compared to the full-band data image in Figure 7a, scattering centers of the
base-edge and the body groove cannot be distinguished when the signal bandwidth is only 2 GHz.
Figure 9b presents the scattering points estimated by 2-D ASSA and Figure 9c shows the full-band data
image extrapolated by these extracted pole pairs. As can be seen, scattering centers of the base-edge
and the body groove are distinguished from the extracted scattering points. The full-band data image
extrapolated by 2-D ASSA is in keeping with the main scattering centers distributed in the original
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full-band data image (Figure 7a). It is clear from these figures that 2-D ASSA results in higher-resolution
images than traditional 2-D FFT imagery.

Figure 9. Sub-band data image and extrapolated data image by 2-D ASSA. (a) Sub-band data image by
2-D FFT (8–10 GHz); (b) Scattering points estimated by 2-D ASSA; (c) Full-band data image extrapolated
by 2-D ASSA (8–12 GHz).

4.3. Measured ISAR Signatures

In the third example, the measured ISAR signatures are acquired in an indoor test range where
a mocked aircraft model is used. The data was collected using S-band radar with center frequency
3 GHz and 1.5 GHz bandwidth. The range of aspect angle is from −4◦ to 4◦ with an interval of 0.1◦.
Figure 10a shows the ISAR image of the aircraft model generated by 2-D FFT. As it can be seen, the
scattering distribution of this model is more complex than the previous model, i.e., many scattering
points are densely distributed in the fuselage. The estimation parameter for 2-D ASSA is set to be
L = N2; For 2-D ESPRIT, (P, Q) = (M2, N2) and β = 0.8.

Figure 10. Pole-estimation result of the measured data with different K. (a) Measured ISAR image of the
aircraft model by using 2-D FFT (b) Pole estimation by 2-D ESPRIT (K = 57); (c) Pole estimation by 2-D
ASSA (K = 57); (d) Pole estimation by 2-D ESPRIT(K = 115); (e) Pole estimation by 2-D ASSA (K = 115).
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Figure 11. Reconstruction result of the measured data with different K. (a) Reconstruction result by
2-D ESPRIT(K = 57); (b) Reconstruction result by 2-D ESPRIT (K = 115); (c) Reconstruction result by
2-D ESPRIT (K = 304); (d) Reconstruction result by 2-D ASSA(K = 57);(e) Reconstruction result by
2-D ASSA(K = 115); (f) Reconstruction result by 2-D ASSA(K = 304); (g) Reconstruction result by 2-D
ASSA(K = 507); (h) Reconstruction result by 2-D ASSA(K = 607).

Location estimation of main scattering centers for measured data are shown in Figure 10b–e.
As we can see, both 2-D ESPRIT and 2-D ASSA could estimate the right positions of strong scattering
centers. The scattering points estimated by 2-D ASSA are more densely distributed around the strong
scattering centers than 2-D ESPRIT’s for different pole-pairing strategies. A few relatively weak
scattering points, i.e., the red point in rectangle box, are wrongly estimated by 2-D ESPRIT when the
number of scattering points is set to be 115, and more wrongly estimated pole pairs can be seen in
K > 115 which are not displayed in Figure 10.

Figure 11a–h display a set of reconstructed 2-D images by the estimated pole pairs. Please note
that the number of scattering points K in 2-D ESPRIT should be equal to the model order whereas
K in 2-D ASSA could be larger than the model order K1 (the number of non-repeated poles in the
down-range dimension) when there are one-to-multiple pairing poles. That is the reason K could be set
to 607 which is already exceed the limitation of model order in [17]. As we can see from the figures, all
those two algorithms can reconstruct those strong scattering centers of target which are in consistent
with the estimated poles in Figure 10a–d. As displayed in Figure 11f–h, more and more relatively
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weak scattering centers have been reconstructed by 2-D ASSA with the increasing number of K and
the reconstruction result with compression ratio of 91.04% is extremely similar to the original data in
Figure 10a.

Evaluation of the reconstructed results by 2-D ASSA are listed in Table 2. Compression ratio (CR)
εCR and image similarity degree (ISD) are defined in (46) and (47). The RRE δRRE is used for evaluating
the reconstructed result in frequency-domain, whereas the ISD γISD is for the result in image-domain.
From the table, we can see that the numbers of scattering points in 2-D ASSA are negatively correlated
with RRE (or ISD). In contrast, 2-D ESPRIT performs higher RRE than 2-D ASSA when the number
of scattering centers remains the same. Please note that part of evaluation results by 2-D ESPRIT are
abnormal because 2-D ESPRIT cannot do the right reconstruction when K > 307. The possible reason is
that for 2-D ESPRIT, all amplitudes factors

[
a1 a2 . . . aK

]
(defined in (3)) are estimated together

by using least square technique after all the pole pairs are confirmed. Thus, numerous incorrect pairing
poles estimated by 2-D ESPRIT will lead to entirely wrong reconstruction. In comparison, 2-D ASSA
performs better robustness for the measurement data.

εCR =
M×N − nP ×K

M×N
× 100% (46)

γISD =

∑
IreconIreal√∑
I2

recon
∑

I2
real

(47)

where nP = 3 represents parameter number of each paired pole (ak, sk, pk), K is the number of scattering
points, M ×N denotes size of the original signatures. Irecon, Ireal represent the reconstructed and original
2-D images-domain data.

Table 2. Evaluation of the reconstruction result of the measured data by 2-D ESPRIT and 2-D ASSA.

2-D ASSA 2-D ESPRIT

Number of Scattering δRRE(dB) γISD δRRE(dB) γISD

K = 57 (εCR = 99.16%) 3.26 0.90 3.93 0.88

K = 115 (εCR = 98.30%) 2.60 0.92 3.20 0.90

K = 156 (εCR = 97.70%) 2.53 0.92 3.11 0.90

K = 207 (εCR = 96.95%) 2.47 0.93 2.96 0.91

K = 256 (εCR = 96.22%) 2.27 0.94 2.94 0.91

K = 304 (εCR = 95.51%) 2.07 0.94 2.90 0.91

K = 407 (εCR = 93.99%) 1.76 0.95 41.28 0.26

K = 507 (εCR = 92.52%) 1.60 0.96 68.69 0.12

K = 607 (εCR = 91.04%) 1.51 0.96 43.57 0.24

Running time of the processed examples are listed in Table 3. All the results are carried out by
Matlab (R2016b) with same hardware platform: Intel Core i7-6900k 3.2 GHz and 128 G memory. Please
note that the running time of 2-D ESPRIT does not contain the estimation of model order. According to
the table, 2-D ASSA performs higher efficiency than 2-D ESPRIT in processing the same data with the
following differences.

(1) The size of the augmented Hankel matrix used by 2-D ASSA is approximate 1/(M/4) of the
block-Hankel matrix used by 2-D ESPRIT when L = Q = N2 and P =M2. Moreover, the data size of the
Hankel matrix could be further reduced by using the operation (22)–(24);

(2) No extra pairing scheme is required by using multiple-range search strategy which can finish
the pairing process once the pole estimation of the aspect dimension is confirmed. Moreover, calculation
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of the block-Hankel matrix for the aspect dimension in 2-D ESPRIT is simplified as calculating multiple
small Hankel matrices with size M2 × (M −M2 + 1).

Table 3. Running time of the numerical radar signatures and the measured ISAR data by 2-D ESPRIT
and 2-D ASSA.

Method K Hankel Matrix (pk) Hankel Matrix (sk) Running Time

Numerical data
(41 × 401)

2-D ESPRIT 14 4000 × 4444 4000 × 4444 34.81 s

2-D ASSA 14 8282 × 200 K1 × 20 × 22 0.94 s

Measured ISAR
data (81 × 251)

2-D ESPRIT
57 5000 × 5334 5000 × 5334 53.27 s

115 5000 × 5334 5000 × 5334 94.18 s

2-D ASSA
57 10287 × 125 K1 × 40 × 42 1.04 s

115 10287 × 125 K1 × 40 × 42 1.19 s

5. Conclusions

In this paper, we have presented a two-dimensional augmented state–space approach for sparse
representation of 2-D wideband radar signatures collected on man-made targets. To do this, a two-step
procedure, i.e., an augmented state–space approach followed by multiple-range search strategy, is
proposed to estimate the complex amplitudes and poles in down-range and aspect dimensions. In
general, there are mainly two contributions provided in this paper. First, we develop a computationally
efficient approach by adopting several time-saving operations, whereas the pole-estimation accuracy
is still at the same level; second, the proposed approach can apparently alleviate the pole-pairing
problem by using the multiple-range search strategy.

Numerical as well as measured ISAR data are processed to validate the proposed approach.
Experimental results demonstrate that 2-D ASSA is robust and accurate in pole-paring for different
SNRs, and is applicable for sparse representation of 2-D wideband radar signatures collected on
man-made targets with low computational cost.

Future works are considered to be as follows. On the one hand, physical meanings of the extracted
parameters of scattering centers by 2-D ASSA might be further studied to the possible applications
in automatic target recognition (ATR). On the other hand, the extension of the proposed approach
to 3-D radar signatures obtained from different azimuth and elevation angles would also be an
interesting study.
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writing—review and editing, K.W. and X.X.

Funding: This research was funded by National Natural Science Foundation of China: 61371005.
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Appendix A

In the appendix, we provide an eigenvalue sequences transform algorithm to estimate the model
order K1. Details are as follows.

Suppose that the size of the input matrix H is m× n(m ≥ n), do the SVD of the matrix H∗H.

H∗H = V<2V∗ (A1)

where V is unitary matrix;<2 is the diagonal matrix.
Λ = [λ1,λ2, , . . . λn] is the diagonal vector of<. It can be normalized as:

wi =
λi −min(Λ)

max(Λ) −min(Λ)
(A2)
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where i = 1, 2, . . . , n; max(Λ) and min(Λ) denote the maximum and minimum elements of Λ.
The coordinate form of the normalized eigenvalue vector is:

[Q1, Q2, . . . , Qn] = [(1, w1), (2, w2), . . . , (n, wn)] (A3)

where Qn denotes the n-th points.
Based on information theory and principal factor analysis [28], the separable signals and noises in

H often have the following hypothesis.

w1 > . . . > wK1 > wK1+1 . . . > wn

signal space
∣∣∣noisespace

(A4)

wK1 −wK1+1 > wK1+1 −wK1+2 ≈ . . . ≈ wn−1 −wn (A5)

where K1 is the number of separable signals which also denotes the model order.
From (A5), it can be deduced that the point QK1 belonging to [Q1, Q2, . . . , Qn] has the longest

distance to line Q1D which has the following condition.

k
(

→

QiQK1+1

)
> k

(
→

Q1D
)
> k

(
→

QK1+1Qn

)
(A6)

where i = 1, 2, . . . , K1, k
(

→

QiQK1+1

)
denotes the slope of line

→

QiQK1+1, D is a point which satisfies the

slope condition (A6).

Here, an approximate calculation is used to estimate the slop of
→

Q1D.

k
(
→

Q1D
)
≈ k

(
→

Qp−1Qn

)
(A7)

g(p) = max[g(1), g(2), . . . , .g(n)] (A8)

g(i) =

∣∣∣∣∣k( →

Q1Qn

)
(i− 1) − (wi −w1)

∣∣∣∣∣√
k
(
→

Q1Qn

)2
+ 1

(A9)

where Qp represents the point in [Q1, Q2, . . . , Qn] which has the longest distance to line Q1Qn; g(i)

denotes the distance from point Qi to
→

Q1Qn; i = 1, 2, . . . , n.

Thus, QK1 can be confirmed by searching the longest distance from point Qi to line
→

Q1D.

g′(i) =

∣∣∣∣∣k( →Q1D
)
(i− 1) − (wi −w1)

∣∣∣∣∣√
k
(
→

Q1D
)2
+ 1

(A10)

g′(K1 + 1) = max[g′(1), g′(2), . . . , .g′(n)] (A11)

where i = 1, 2, . . . , n; g′(i) denotes the distance from point Qi to
→

Q1D.

Appendix B

From the observability matrix Ω given by (20), controllability matrix Γ given by (21) and the
matrices Ωr f , Ωrl, Γc f ,Γcl in (27),(28),(29) and (30), it is not difficult to deduce that the augmented
open-loop matrix P satisfies the following matrix equations.

Ωr f P = Ωrl (A12)
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PΓc f = Γcl (A13)

Then the augmented open-loop matrix P can be obtained by least squares.

P =
(
Ω∗r f Ωr f

)−1
Ω∗r f Ωrl (A14)

or

P = ΓclΓ
∗

c f

(
Γc f Γ∗c f

)−1
(A15)

Moreover, here are two ways to compute the corresponding constant matrices S and P. The first
way is for matrix P computed by (A14), the corresponding matrix S is defined as the first M rows of
the observability matrix Ω.

S =


Ω(1, 1) · · · Ω(1, K1)

...
...

...
Ω(M, 1) · · · Ω(M, K1)

 (A16)

Using (A14) and (A16), we calculate the matrix Ω̃

Ω̃ =
[

S SP . . . SPN−1
]

(A17)

From (15) and (A17), the original 2-D signatures Y can be written as

Y = Ω̃D (A18)

By using least square again, the matrix D is

D =
(
Ω̃
∗

Ω̃
)−1

Ω̃
∗

Y (A19)

The second way is for matrix P computed by (A15), the corresponding matrix D is defined as

D =


Γ(1, 1)

...
Γ(K1, 1)

 (A20)

Using (A15) and (A20), we calculate the matrix Γ̃

Γ̃ =
[

D PD . . . PN−1D
]

(A21)

Similar to (A18), the original 2-D signatures Y can also be rewritten as

Y = SΓ̃ (A22)

By using least square, the matrix S is

S = YΓ̃
∗(̃

ΓΓ̃
∗)−1

(A23)

In this appendix, we provide two ways to estimate the parameter matrices (S, P, D).
For consideration of the robustness to noise, (A23), (A14) (or (A15)) and (A19) are preferred. It
is also worth mentioning that 2-D ASSA has two ways, which include the matrix form (S, P, D) and
the pole form (ak, sk, pk), to reconstruct the original signatures Y. The matrix form could provide more
accurate reconstruction result than the pole form but with much more parameters.
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