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Abstract: Dichroic circular polarizers (DCP) represent an important group of optical filters that
transfer only that part of the incident light with the desired polarization state and absorb the
remainder. However, DCPs are usually bulky and exhibit significant optical loss. Moreover, the
integration of these kinds of DCP devices can be difficult and costly as different compositions
of chemicals are needed to achieve the desired polarization status. Circular polarizers based on
metasurfaces require only thin films in the order of hundreds of nanometers but are limited by their
sensitivity to angle of incidence. Furthermore, few existing solutions offer broadband operation
in the visible range. By using computational simulations, this paper proposes and analyses a
plasmonic DCP structure operating in the visible, from 400 nm to 700 nm which overcomes these
drawbacks. The resulting circular dichroism transmission (CDT) is more than 0.9, and the maximum
transmission efficiency is greater than 78% at visible wavelengths. These CDT characteristics are
largely independent of angle of incidence up to angles of 80 degrees.

Keywords: metasurface; circular polarizer; polarization imaging

1. Introduction

Unlike amplitude (brightness), wavelength (color), and other light information that
the human eye is able to detect without using additional optical devices, polarization
information cannot be directly seen. At the same time, circular polarizers are critical
optical devices in a broad range of polarized imaging applications such as the classification
of biological molecules [1], medical analysis [2], chemical identification [3], quantum
information [4], and many other research fields.

Dichroic circular polarizers (DCPs) are an important class of polarizers that attract
increasing attention. Their key advantage over other circular polarizers is their ability to
absorb the light components with unwanted polarization states instead of reflecting them,
thereby reducing interference and other effects on the incident light [5,6]. However, DCPs
are usually bulky and can have significant optical loss [6–10]. For example, commercial DCP
devices from [9] exhibit transmission efficiencies of around 42% due to the strong absorption
of their polymer-based materials. Similarly, while the transmission efficiency of the circular
polarizers offered by [10] can reach over 80%, the relative circular dichroism transmission
(CDT) is only 0.33 in the visible band. Moreover, this type of circular polarizer needs to use
a range of material compositions and/or chemical concentrations to achieve its desired
optical properties (e.g., polarization angle and phase difference). Creating polarization
sensitive cameras suited to imaging applications [11–13] based on these techniques requires
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advanced overlay methods to integrate the polarizers onto a photodetector array, which is
potentially both complicated and costly.

Metasurface-based circular polarizers do not exhibit these drawbacks. Firstly, their
component nanostructures are usually fabricated from dielectric or metallic films with
thicknesses in the range of a few hundred nanometers and are therefore not bulky [14–17].
Moreover, the operating wavelengths can be simply tuned by varying the size, spacing,
and/or period of the nanostructures [8,15–29]. Lastly, metasurface-based optical devices
have already been described that have smaller optical loss than existing systems. For
example, dielectric and plasmonic metallic nanostructures have been demonstrated in [5,17]
with transmission efficiencies of more than 80% and of around 60% in [20,21,30]. As a result,
there has been much activity in recent decades exploring metasurface-based polarizers
across both academic research and industrial product development.

Metallic nanogratings are polarization-sensitive nanostructures and, thus, can be
used to create linear polarizers [31,32]. Their operating wavelength can be simply tuned
by varying the grating period, and the transmission efficiency is directly related to the
separation between each nanograting element. The further integration of nanograting-
based linear polarizers with different polarization angles [33] onto conventional image
sensors has allowed the development of compact linear polarization cameras.

Dichroic linear polarizers (DLPs) based on metallic nanoparticles are also of interest as
they behave in the same way as conventional DLPs in that they absorb, rather than reflect,
unwanted polarization states [34–37]. Metallic nanostructures behave as perfect electric
conductors with high reflectance, but their optical properties can be simply manipulated.
Although much work has been published to demonstrate this basic idea, there have been
few demonstrations of metasurface-based circular polarizers working within the visible
spectrum. One example is the chiral, two-layer metasurface based on twisted nanorods,
described theoretically in [38]. By rotating the second nanorod by 45 degrees, the whole
polarizer achieves a maximum transmission difference (∆T) between the LHP and RHP
states of around 58% at 1650 nm. It is also able to distinguish LHP light from RHP light
within a broad near IR wavelength range from 1500 nm to 1750 nm by absorbing the
RHP component. However, these larger transmission differences can only be achieved at
limited wavelengths.

Stacked multi-layer nanorod array structures with tailored rotational twist were
presented in [31] that have operational bandwidths in the visible range from around 500
to 750 nm. However, this structure becomes a phase converter at wavelengths less than
500 nm, swapping the polarization state of the incident light (LCP to RCP or vice versa) by
changing its phase difference. Moreover, its constituent gold nanorod material is expensive
and is not CMOS-compatible. Circular polarizers based on helical metasurfaces with a high
extinction ratio were presented in [39–41]. As the metallic structure is asymmetric along
the propagation direction, RHP and LHP states can be distinguished over a relatively wide
range within and just above the mid-infrared region from around 3 µm to 10 µm [39,40].
However, the types of 3D nanostructures required here are difficult to build using typical
nanofabrication facilities such as electron-beam lithography or focused ion beam. An
alternative might be a maskless 3-D nano-printing system such as Nanoscribe [42], but in
this case the restricted accuracy and feature sizes of these systems (typically >300 nm) will
impose limits on the operating range, which is inversely proportional to the size (width,
length, etc.) of the nanostructures.

Double-helical metasurface-based nanostructures have been shown to have a broad
operating range across the whole visible spectrum. However, these structures are also very
difficult to fabricate using any recent nanofabrication technique [41]. Although direction-
controlled bifunctional metasurface Polarizers, formed by inserting nanoslits with two
different thicknesses into a thick gold film, have been demonstrated [43] to exhibit wide-
band operation from 600 nm to 1000 nm, their thick metal layer results in low transmission
efficiency—around 8% in the experiments of [43]. A planar chiral metasurface comprising
double-layered dielectric–metal–dielectric resonant structures in the shape of a gammadion
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has been shown [44] to offer high transmission efficiency, but only over a very narrow
band at around 1100 nm. The metasurface polarization camera of [45], based on TiO2
nanorods, is capable of simultaneously taking polarized and 3D images with one snapshot.
The metasurface can diffract circularly polarized light with four phase differences into four
directions. Although the camera is capable of taking full Stokes images, it has two main
drawbacks. Firstly, as it operates by diffraction, it will work only at a single wavelength
(532 nm), which is determined by the period of the nanostructures. Further, as the four
images result from diffracted rays that are therefore not parallel, an aspheric lens is required
to realign them. Notwithstanding these issues, this research clearly shows that full Stokes
snapshot cameras have potential applications across a number of research fields. In addition
to taking 3D images, they can also be used to characterize biological structures with full
Stokes images [46]. Various other metasurface-based polarizers have been described, but
few of them can operate at visible wavelengths, even after reductions in their period or
size [8,24,43,47–53].

Plasmonic nanostructures were previously introduced as promising candidates for
light filtering applications [16,18–23,25–30,51,54]. Plasmonic behavior emerges in two basic
situations [55]. Firstly, surface plasmon polaritons (SPP) occur if the plasmon is excited and
propagated at the interface between the metal and dielectric with propagation constant:

β = k0

√
ε1ε2
ε1+ε2

, where k0 = ω
c =

2πc
λ
c = 2π

λ , ε1 and ε2 are the dielectric constants of the
dielectric and metal. Secondly, localized surface plasmons (LSP) are evident when the
excited plasmons propagate at the surface of the metallic nanoparticle (e.g., nanosphere,
nanodisk, etc.), and are still coupled to the electromagnetic field. The behavior of the
SPP case will depend largely on the materials chosen, whereas, for the LSP case, the peak
wavelength mostly depends on the nanoparticle size [8,24,43,47–53].

Gold (Au), silver (Ag), and aluminum (Al) are the generally preferred materials for
plasmonic filters operating in the visible and NIR (VNIS) wavelengths (from 400 nm to
1000 nm) because other metals, such as chromium (Cr), nickel (Ni), tungsten (W), and
titanium (Ti), have larger absorption across the VNIS [55]. The resonant wavelength of Au
is above 500 nm, preventing its use in filters with target wavelengths less than this value.
The strong oxidizing property of Ag also limits its application as its optical properties alter
as it oxidizes. In addition, both Au and Ag require a seed layer (e.g., Cr, Ti) to improve
their adhesion to silicon and this extra layer serves to reduce the transmission efficiency of
the resulting optical filters [14]. Aluminum, as a CMOS compatible material, does not need
a seed layer and is therefore more suitable for optical filtering applications that directly
interface to a CMOS sensor [16,21,29,30,54].

In this paper, we present our plasmonic DCPs based on a five-layer polarization
sensitive nanostructure (Al nanograting and nanocuboid combinations) with the capability
to absorb circularly polarized light of an undesired direction. Our plasmonic polarizers
use Al and SiO2 as the main materials, thus demonstrating good compatibility with CMOS
image sensors, making them suitable for polarization imaging applications. Moreover, our
DCPs have a wide operating band through the whole visible wavelengths and its CDT is
largely insensitive to the angle of incidence between 0◦ and 80◦.

2. Design and Simulations

The overall structure of our dichroic circular polarizer (DCP), which is designed on
a quartz substrate, is shown in Figure 1a. The first (top) layer of our DCP in Figure 1b
is based on a 30-nm-thick Al nanograting array placed along the y-axis. The grating is
850 nm long and 30 nm wide, and is repeated along the x-direction with a period of 170 nm.
Figure 1c shows the second layer made of a 30-nm-thick nanocuboid array, each of them
with a width of 30 nm and a length of 170 nm. This layer was designed by rotating each
nanocuboid 45◦ clockwise around the z-axis. Aluminum nanogratings and nanocuboids
are polarization sensitive, so that incident TE light will be suppressed when its electric field
is perpendicular to the repeating nanogratings, or to the longer side of the nanocuboids.
The overall metallic nanostructure in Figure 1g is therefore created by continuing to rotate
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each successive layer by 45◦ in the same clockwise direction around the z-axis, resulting
in the structures shown in Figure 1d–f. Note that a 30-nm layer of SiO2 was deposited
between each metallic nanograting/nanocuboid layer to act as isolation and the whole
nanostructure was also encapsulated with SiO2.
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The simulations were performed using commercial software (COMSOL Multiphysics®),
applying finite element methods (FEMs). To reduce computation time, the small blue block
in Figure 1g was chosen as our simulation unit. Periodic boundary conditions (PBCs)
were applied on all four sides and perfectly matched layers (PMLs) were used along the
propagation direction, surrounded by scattering boundary conditions to absorb redundant
light. Port boundaries were set between PMLs and their adjacent layers, and the LHP and
RHP states were excited along the Z direction. The refractive indices of quartz substrate and
isolation layers were 1.45 and the refractive index of Al was taken from Rakic’s data [56].
Note that PBCs are replaced with PMLs when simulating a single pixel of the dichroic
circular polarizer.

To compute the results, the transmission efficiency was calculated using the S pa-
rameter |S21|2 (in COMSOL the equation is abs (ewfd.S21ˆ2)), and the CDT (circular
dichroism transmission) was determined by the equation: CDT = T1−T2

T1+T2
, where T1 and T2

are the transmission efficiencies of the two orthogonal polarization states, LHP and RHP,
respectively. A higher CDT value means a better capability to detect and distinguish one
direction of circularly polarized light from the other.

3. Results

The electric field shown in Figure 2 indicates the primary working principle for
our left-handed DCP (LHDCP). Here, the LHP light is excited from the top. As the
Al nanogratings/nanocuboids are polarization-sensitive, it is expected that the electric
field will be more concentrated along the two sides in the y-direction than it is in the
x-direction. Based on this concept, we built the model of Figure 1a. Figure 2a–e show the
resulting electric field concentration seen from the top of the simulation unit of Figure 2f.
As expected, most of the electric power is indeed concentrated on the two sides of the
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Al nanograting/nanocuboid along the diagonal direction. This behavior becomes much
clearer as the LHP light propagates further into the structure (Figure 2e).
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The transmission and absorption spectra in Figure 3, below, indicate the second
working principle of our LHDCP under RHP light. From the graph, it can be seen that
instead of reflecting RHP component, our LHDCP absorbs and therefore filters out RHP
light. In contrast, the LHP light passes through the filter. As a result, problems such as
interference between the incident and reflected light will be virtually eliminated.

Nanomaterials 2021, 11, × FOR PEER REVIEW 6 of 12 
 

 

 
Figure 3. Black and red lines are the transmission and absorption spectra of our LHDCP under RHP 
incident light. 

 
Figure 4. The transmission efficiency of LHP, RHP light and CDT of our proposed nanostructures, the combinations of 
nanogratings and nanocuboids for: (a) 1-layer, (b) 2-layer, (c) 3-layer, (d) 4-layer, (e) 5-layer. 

The reasoning behind this combination of nanogratings and nanocuboids is as fol-
lows. The function of a plasmonic nanograting is based on surface plasmon polaritons 
(SPP), and it is well known that any metallic nanostructures based on SPP will be sensitive 
to the angle of incidence. In contrast, the behavior of a nanocuboid surface depends on 
localized surface polaritons (LSP), which are insensitive to the angle of incidence. As 
shown in Figure 5, circular polarizers based only on Al nanocuboid arrays cannot achieve 
a wide operating spectrum across visible wavelengths whereas combinations of 
nanograting and nanocuboid surfaces are able to both function over a wide bandwidth in 
the visible and be insensitive to the angle of incidence. 

Figure 3. Black and red lines are the transmission and absorption spectra of our LHDCP under RHP
incident light.

As mentioned previously, nanogratings and nanocuboids are sensitive to TM polarized
light so that, when the nano-structures are rotated through an angle, the polarization angles
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of incident TM light change correspondingly. Moving the rotated structures to a different
layer will introduce a phase difference. Therefore, LHP and RHP light can be distinguished
by adjusting the layer components. Figure 4 describes our investigation between one-
layer structure and five-layer structures. Note that the first, third, and fifth layers are
nanogratings, whereas the second and fourth are the nanocuboids, previously shown in
Figure 1. It can be seen from Figure 4 that, when we increase the number of rotations or
layers, the CDT becomes larger and the wavelength range where the CDT greater than 0.5
becomes wider.
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The reasoning behind this combination of nanogratings and nanocuboids is as follows.
The function of a plasmonic nanograting is based on surface plasmon polaritons (SPP),
and it is well known that any metallic nanostructures based on SPP will be sensitive to the
angle of incidence. In contrast, the behavior of a nanocuboid surface depends on localized
surface polaritons (LSP), which are insensitive to the angle of incidence. As shown in
Figure 5, circular polarizers based only on Al nanocuboid arrays cannot achieve a wide
operating spectrum across visible wavelengths whereas combinations of nanograting and
nanocuboid surfaces are able to both function over a wide bandwidth in the visible and be
insensitive to the angle of incidence.
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Based on the principles of the LHDCP outlined above, we optimized the size of our
DCPs by varying the width and period parameters of our nanostructures over a narrow
range centered on 30 nm and 170 nm, respectively. The final result is shown in Figure 6a
and the optimization process is the following: The period was first changed from 170 nm
to 160 nm (Figure 6b) and 180 nm (Figure 6c) while maintaining the width at 30 nm. Then,
the width was set in turn to 20 nm (Figure 6d) and 40 nm (Figure 6e) while maintaining
the period at 170 nm. It can be seen that, as the period increases, the range of wavelengths
over which the transmission efficiency of the LHP light is larger than 50% also increases.
At the same time, the range where the CDT is larger than 0.5 decreases. On the other hand,
increasing the width results in a wider range where the CDT is larger than 0.5, but narrows
the transmission efficiency range. Therefore, after evaluating the results in Figure 6a, our
optimized width and period parameter were set at their original values of 30 nm and
170 nm, respectively.
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The resulting transmission spectra of the left circular polarizer under LHP and RHP
incident light and CDT are shown in Figure 6a. The solid black line is the transmission
spectrum of LHDCP when LHP light is incident, which has a maximum transmission
efficiency of 78% at 500 nm. The black line is the transmission spectrum of LHDCP under
RHP incident light. Although the transmission efficiency decreases when the wavelength
is tuned to the red range, the CDT reaches more than 0.9 at 650 nm, and the extinction
ratio is 30. The polarizer filters out almost all the RHP light. Therefore, from the CDT
results in Figure 6a, our LHDCP is sufficient for polarized imaging applications. The
lower transmission efficiency at some wavelengths can be compensated by increasing the
exposure time of the image sensor.

Our LHDCP also exhibits good performance over a wide range of incident angles. We
varied the incident angles for both LHP and RHP light show in Figure 7 and calculated
the corresponding CDT. Figure 8 shows the CDT lines under incident light with angles
up to 80◦. As can be seen, the CDT is almost constant with angles over the visible range,
indicating that our DCP has a large tolerance to incident angles and will not require a
lens with a particular f -number to support polarized imaging. Therefore, it is likely to be
suitable for a wide range of polarized imaging applications.
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In order to evaluate the operation of our polarizer in a real camera system, we under-
took a number of simulations in which a small array was size-matched to a commercial
image sensor. Due to its underlying plasmonic nature. There is a trade-off between the
optical properties (CDT and transmission efficiency) of our DCP and its size. Reducing
the size of plasmonic DCP will degrade its optical properties as each block will encompass
fewer nanoparticle units. Therefore, we considered a CMOS image sensor with a pixel
size around 2.4 um (e.g., a Sony CMOS Exmor sensor (IMX183) with 20-M resolution). To
demonstrate this issue and to obtain the transmission efficiency and CDT of our LHDCP
when interfaced to this image sensor, we replaced the PBCs with PMLs and used an array
of 15 × 15 elements, each 2.4 µm × 2.4 µm in size. The simulation results are shown in
Figure 9. The transmission efficiency is lower than that of the previous periodic models
(< 60% vs. a peak around 75%) due to the reduced number of nano-scale elements within
the smaller overall area. The CDT reaches 0.5 at a lower wavelength (approximately 660 nm
vs. 750 nm) for the same reason. Note that reducing the number of elements will reduce
the peak CDT so it rolls off at a wavelength lower than 700 nm. This implies that 700 nm is
more-or-less a hard limit for our LHDCP—it will not operate on polarized light at longer
wavelengths but will simply act as a phase shifter in this region. However, its performance
at visible wavelengths is still better than comparable DCP systems. Therefore, we think
that our DCP is suitable for use as an image sensor with pixel sizes larger than 2.4 µm.
This problem can also be addressed by trading off size against image resolution, and by
arranging each DCP to cover more pixels—for example, a small block of 2 × 2 each.
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the transmission spectra of our LHDCP under LHP and RHP incident light, the red line is the CDT
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Being able to determine intensity values for the RHP and LHP components means
it becomes possible to calculate the fourth Stokes parameter S3, which is equivalent to
the difference between the circular Jones vectors, E, so that S3 ≡

〈
E2

r
〉
−
〈

E2
l
〉
, where the

subscripts identify the right and left circular bases. By integrating our DCPs with linear
polarizers on the image sensor, we can create a full Stokes polarization camera. Note that
the linear polarizers can be achieved with Al nanogratings, which is a well-developed
technology in the market. A full Stokes polarization camera with our DCPs would have a
broad operating range across the visible spectrum and would be able to measure the Stokes
parameters and position these on the Poincaré sphere [44], something that would be very
useful in bio-inspired designs that mimic insect vision [45].

4. Conclusions

We have developed a dichroic circular polarizer (DCP) based on plasmonic nanostruc-
tures. The DCP comprises five layers of Al nanograting/nanocuboid surfaces embedded
in SiO2 built onto a quartz substrate. The whole layered structure comprises only around a
hundred nanometer of CMOS compatible dielectric and metal materials. Thus, this kind
of DCP is not bulky and has lower optical loss that traditional DCP systems. The CDT of
the device can reach more than 0.9 with maximum transmission efficiencies larger than
78% at visible wavelengths. We also demonstrate that our DCP is insensitive to angle of
incidence by calculating its CDT values under varying angles up to 80◦. During device
integration, the operating wavelengths, transmission efficiency, and CDT can be simply
tuned by varying the size, spacing, and period of the plasmonic nanostructures. Thus, the
integration of these circular polarizers on a photodetector array is less complicated and
much cheaper than previous methods. In addition, the CDT is still high enough to be used
when the structure size shrinks to 2.4 µm, showing its capability and compatibility with
most current image sensors for polarization imaging applications.
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