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Simulating para-Fermi oscillators
C. Huerta Alderete  1 & B. M. Rodríguez-Lara  1,2

Quantum mechanics allows for a consistent formulation of particles that are neither bosons nor 
fermions. These para-particles are rather indiscernible in nature. Recently, we showed that strong 
coupling between a qubit and two field modes is required to simulate even order para-Bose oscillators. 
Here, we show that finite-dimensional representations of even order para-Fermi oscillators are feasible 
of quantum simulation under weak coupling. This opens the door to their potential implementation 
in different contemporaneous quantum electrodynamics platforms. We emphasize the intrinsic value 
of para-particles for the quantum state engineering of bichromatic field modes. In particular, we 
demonstrate that binomial two field mode states result from the evolution of para-Fermi vacuum states 
in the quantum simulation of these oscillators.

The harmonic oscillator is an archetype in both classical and quantum mechanics; it can be used to approximate 
the dynamics of a large number of physical systems and interactions. In quantum mechanics, it is straightforward 
to connect the harmonic oscillator with bosons (fermions) through bilinear commutation (anticommutation) 
relations1,
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for boson (fermion) annihilation and creation operators, b̂ and ˆ
†

b  ( f̂  and ˆ†
f ). However, Wigner showed that it is 

possible to deform these relations leaving the equations of motion unchanged2. A specific deformation was later 
provided using the reflection operator3. In parallel, Green showed that a generalization of the harmonic oscillator 
yields para-statistics, distributions different from Bose or Fermi statistics4,5. In his formulation, the number oper-
ator takes a form,
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that yield the trilinear commutation relations,

= − = −ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †( )b b b b f f f f[{ , }, ] 2 [[ , ], ] 2 ,
(3)

of the harmonic oscillator. This formulation describe the standard Bose and Fermi operators for the statistic order 
parameter value p = 1, and so-called “para-Bose” (“para-Fermi”) operators for p > 1. It was later demonstrated 
that this approach relates to the previous idea of parity deformed oscillators3,6–8 characterized by a deformation 
parameter equivalent to the statistics order. Quantization of these parity deformed oscillators leads to interesting 
properties9–12 but their selection rules render their natural occurrence highly unlikely13,14. Thus, a method for 
simulating these para-oscillators is most sought after.

A practical representation of para-particles is found in the parity deformed Heisenberg algebra8,

ν
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(4)

where the para-particle annihilation (creation) operator is given by Â( ˆ†
A ) and the parity operator by Π̂, such that 

Π̂
2
 = 1. This algebra characterizes para-Bose (pB) systems of order p when ν = p − 1, and para-Fermi (pF) systems 

of even order 2p when ν = −(2p + 1), with p = 1, 2, 3, …. Standard bosons are recovered when the order is p = 1, 
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while the lowest order of pF particles recovered is two. As a consequence, Plyushchay introduced a 
finite-dimensional deformed (2p + 1)-dimensional pF algebra8,

= − = ±+ −
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I I I I I I[ , ] 2 ( 1) , [ , ] , (5)I p
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capable of providing standard fermions, that is the standard representation of su(2), for p = 1 where 
− =+ˆ ˆˆ

I I( 1)I
3

1
3

3 . The latter has a simple relation with the former parity-deformed Heisenberg algebra for p > 1 
because the operators { ±̂I , Î3} realize a nonlinear deformation of su(2) involving the parity operator defined as a 
reflection operator8,  = − +ˆ ˆ

( 1)I p3 .
In previous works, we have showed that the two-mode quantum Rabi model (QRM)15,16, in the homogene-

ous, strong-coupling limit mimics a collection of even order pB oscillators feasible of quantum simulation in 
trapped-ions-QED platform17. Here, we will start from the cross-cavity QRM and show that, in the weak-coupling 
limit, it might be realized with contemporaneous platforms beyond trapped-ions, for example cavity- and 
circuit-QED. Then, we will show the particular partition of its Hilbert space that allows us to describe its dynam-
ics as deformed pF oscillators. We will also show that the eigenstates of these deformed pF oscillators are similar 
to binomial states of the fields via a Schwinger two-boson representation of SU(2). Finally, we will use this fact to 
create an educated guess, localized initial-field states, to engineer two-field mode states through time evolution 
that produce the collapse and revival of the qubit population inversion without the presence of a coherent initial 
field state.

Results
Quantum simulators18–21 allow us to imitate the dynamics of an exotic quantum model in a system that, in prin-
ciple, is easier to control and measure. Within quantum simulation platforms20,22,23, trapped ion systems are one 
of the most important due to the variety of interactions that can be designed17,24–30. Here, we consider our recent 
proposal where a trapped ion is driven by two pairs of lasers, each pair orthogonal to the other and tuned to the 
first side-bands. This system simulates the dynamics of even order pB oscillators under certain model parame-
ters17. This scheme is described by the cross-cavity quantum Rabi model (ccQRM) Hamiltonian15,16,
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where the two internal levels of an ion interact with two orthogonal vibrational modes with effective coupling 
strength gj with j = 1, 2. The two ion states constitute the effective qubit with transition frequency ω0 and described 
by Pauli matrices σ̂j, with j = 1, 2, 3. The effective field modes of frecuency ωj are described by the creation (anni-
hilation) operators, ˆ†aj (âj), such that, δ



 =ˆ ˆ †a a,j k j k,  with j = 1, 2. When the fields are weakly coupled to the qubit, 

ωgj 0, and near-resonance, ω ω~j 0, we can move into a rotating frame defined by the energy of the free system. 
Then, we can carry out a rotating wave approximation (RWA) to neglect high-frequency terms, and obtain the 
cross-cavity Jaynes-Cummings (ccJC) model after a ˆ ˆ†π

ei a a2 2 2 rotation,

δ δ σ σ σ= + + + + +− + − +
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † †H a a a a g a a g a a a( ) ( ), (7)ccJC 1 1 1 2 2 2 1 1 1 2 2 2

with detunings δj = ω0 − ωj. We want to stress that this weak-coupling Hamiltonian can be implemented in our 
trapped-ion scheme discussed above, sketched in Fig. 1(a), and in cavity-QED where the qubit is realized by 
two internal levels of a neutral Rydberg atom coupled to two electromagnetic field modes of orthogonal cavities, 
Fig. 1(b).

Furthermore, our ccJC Hamiltonian is also feasible in hybrid systems using nanomechanical and transmission 
line resonators coupled through a quantum node given by a Cooper-pair box or charge qubit, Fig. 2(a), or two 

Figure 1. Sketch of the cross-cavity JC model in the (a) trapped-ion-QED and (b) cavity-QED platforms.
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transmission line resonators controlled by a superconducting qubit31–33, Fig. 2(b). In addition, an extra rotation to 
the frame defined by the operator 

π ˆ ˆ†
ei a a2 2 2 relates our Hamiltonian to parallel field modes of a coplanar waveguide 

resonator coupled to an effective superconducting qubit provided by a Cooper-pair box34, charge35 or flux qubit36, 
Fig. 2(c).

We can stop here and notice that a Schwinger two-boson representation of SU(2) might open the door for 
more potential experimental realizations. Under an additional rotation, −π ˆ ˆ ˆ ˆ† †

ei a a a a( )2 1 2 1 2 , the ccJC model can be 
rewritten in the following form,
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where just one boson field is coupled to the qubit under a JC type interaction and the second boson field is cou-
pled to the first one through a beam splitter interaction with modified parameters16, δ δΩ = +g g g( )/1 1 1

2
2 2

2 2, 
δ δΩ = +g g g( )/2 1 2

2
2 1

2 2, γ = (ω2−ω1)g1g2/g2, and = +g g g1
2

2
2 . In this frame, our model might be experimen-

tally feasible with coupled photonic-defect resonators including a quantum dot, Fig. 3(a), or circuit-QED with 
capacitively-coupled cavities, Fig. 3(b). In both cases, only one of the cavities is interacting with the effective qubit. 
This Hamiltonian, ĤD, suggests similar dynamics to that of the single-mode JC model plus a perturbation due to 
the beam splitter term. Considering identical field modes, ω1 = ω2, makes the model solvable. This simplified 
version has been widely studied with focus on the description of atomic inversion and generation of two-mode 
entangled states37–40. Here, we are interested in the general model.

So far, we have seen that the weak interaction between a two-level system and two boson fields might be real-
ized in several contemporaneous quantum platforms described by QED. Now, we will show the connection 
between this model and pF oscillators. Both our models, ĤccJC and ĤD, conserve the total number of excitations 
and, therefore, the parity, σ= + + +ˆ ˆ ˆ ˆ ˆ ˆ† †N a a a a ( 1)z1 1 2 2

1
2

 and ˆ ˆ
Π = πei N , respectively, such that [Ĥx, N̂ ] = [Ĥx, 

Π̂] = 0 with x = ccJC, D.
The Foulton-Gouterman (FG) approach41,42 states that a Hamiltonian of the form Ĥ  = Â ⊗ 1̂2 + B̂ ⊗ σ̂x + 

 Ĉ ⊗ σ̂y + D̂ ⊗ σ̂z can be diagonalized in the qubit basis if there exists an operator R̂, such that [Â, R̂] = [B̂, R̂] = 
Ĉ ,  R̂ }  =  {D̂ ,  R̂ }  =  0 .  The unitar y transformation that  diagonal izes  the Hamiltonian,  ÛFG= 

σ σ σ


+ ⊗ + + − ⊗ − 


ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )R R i(1 ) ( ) (1 ) 1 /(2 2 )x z y2 , usually receives the name of FG transformation. We can 
use a π/4 rotation around σ̂y and the FG transformation with the auxiliar operator given by the two-mode parity 

operator,  ˆ ˆ ˆ ˆ ˆ ˆ† †
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12
( )1 1 2 2 , to construct a unitary transform,  σ= − Π ⊗ + + Π ⊗ˆ ˆ ˆ ˆ ˆU [(1 ) 1 (1 ) ]x

1
2 12 12 , 

that diagonalizes our Hamiltonian in the qubit basis,

Figure 2. Sketch of ccJC model in circuit QED platform. (a) Mechanical-electrical system controlled by a 
superconducting qubit, (b) and (c) superconducting transmission lines controlled by a superconductor qubit.

Figure 3. Sketch of ĤD in (a) cavity quantum dot and (b) circuit QED platforms.
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This procedure uncouples the system into two different subspaces, characterized by the two-mode 
parity-deformed Hamiltonian,
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In this frame of reference, the total number of excitations in each subspace is also conserved and given by the 
expression ˆ ˆ ˆ ˆ ˆ ˆ† †

= + + Π±N a a a a (1 )1 1 2 2
1
2 12 . The conservation of the excitation number allows us to partition 

the even and odd parity Hilbert subspaces,
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associated to each one of the two-mode parity-deformed Hamiltonians,  ±Ĥ , into subspaces of dimension (2λ + 1),

 λ λ λ λ= | | ≡ | + −λ ⟩ ⟩ ⟩m m h m h m{ ; ; ( ), ( ) }, (12)

span by the vectors |λ; m〉 with m = −λ, −λ + 1, …, 0, …, λ − 1, λ and the generating function,

= − + πh k k e( ) 1
4

(2 1 ), (13)
i k

where the constant mean excitation number in each subspace is given by the parameter λ = 0, 1, 2, 3, …; even 
(odd) values of λ correspond to subspaces of even (odd) parity +  (−). Henceforth, we will give the name of pF 
states of even order and dimension (2λ + 1) to our particular choice of states |λ; m〉. Before moving forward, we 
want to show that it is natural to choose this orthogonal basis to partition the Hilbert space of our model.

Our model conserves the total number of excitations and we have used it to label each subspace. For example, 
the subspace with λ = 0 has dimension one, positive parity, and is spanned by the vector |0; 0〉 ≡ |g, 0, 0〉 equiva-
lent to the qubit being in the ground state and both field modes in the vacuum state, shown in blue in Fig. 4. The 
subspace with λ = 1 has dimension three, negative parity, and the single excitation is either in the qubit or one of 
the field modes, these states are shown in red in Fig. 4. The subspace with λ = 2 has dimension five, positive parity, 
and the vectors spanning it are shown in green in Fig. 4, and so on. We chose this representation to have the state 
with the lowest possible value of the parameter m for a subspace with dimension λ, that is m = −λ, given in terms 
of the ground state of the qubit, the vacuum state of the first mode, and the second mode in a number state with 
excitation number equal to λ, as shown by the dashed box in Fig. 4.

In order to show that our states are pF states, we can project the auxiliary field Hamiltonians, ±Ĥ , using these 
bases,

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆε λ ε γ γ= − − − + + + − −λ
λ

+ − + + − − + −{ }H I I I I I1
2

[1 ( 1) ] ( ) ( ) ,
(14)3

where the effective frequencies are defined as ε δ δ= ±± ( )1
2 1 2  and γ± = 2−3/2(g1 ± g2). The effective operators,

Figure 4. Sketch relating the states of the cross-cavity JC model and the orthonormal pF deformed oscillator 
basis. The dashed box encloses our choice of lowest energy states, |λ; m = −λ〉, for each subspace λ .
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realize the deformed pF algebra introduced by Plyushchay8 in each of the subspaces with constant excitation 
number. Furthermore, we can calculate the action of the creation and annihilation operators over the lowest 
energy state of each subspace,

ˆ ˆ λ λ λ λ λ− = −− +I I ; 2 ; , (16)

and realize that our basis states are pF states4,5,8 of even order p = 2λ. The single element |0; 0〉 of the subspace 0  
does not evolve, so the lowest pF order that we can simulate is p = 2 if we stay inside the subspace 1 . Thus, our 
model is a quantum simulator of even-order pF oscillators and standard fermions are not covered.

It is worth mentioning that we can give an expression for the population inversion in the laboratory frame, σ̂z, 
in terms of the pF frame operators,

ˆ ˆ ˆσ λ= − + .+ −I I{ , } (2 1) (17)z

Thereby, it is possible to relate the pF frame evolution to that in the laboratory frame without the need of 
complicated transformations. The dynamics of the population inversion can serve as a witness for the dynamics 
in the pF frame.

Discussion
We now turn to the dynamics of our model. For the sake of simplicity, we will focus on the evolution of an initial 
state equal to the pF state |λ; −λ〉, for identical field modes on resonance with the transition frequency of the 
qubit, ω0 = ω1 = ω2 = ω. This allows us to focus on just the interaction part of our deformed pF oscillators,

γ γ= + − −+ + − − + −
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and provide a closed form evolution for the lowest energy state in each subspace,
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The evolution of the pF state |λ; −λ〉 is interesting because it is straightforward to see that this state corre-
sponds to a binomial state with η = 1/2,

⟩ ˆ ⟩
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in the frame provided by the Hamiltonian in the Schwinger two-boson representation of SU(2). To the best of our 
knowledge, this is the first proposal that realizes binomial states since their theoretical introduction43.

The evolution of the pF state |λ; −λ〉 is equivalent to considering an initial state where the second field mode 
is in a Fock state with λ excitations in it, Fig. 4, while the first field mode and the qubit are in the vacuum and 
ground states each. In the laboratory frame, the mean photon number evolution of the field modes, under reso-
nant and homogeneous coupling conditions, shows slow excitation exchange with fast perturbation, Fig. 5(a). 
This behavior stems from the evolution of the mean pF number in the deformed oscillator frame, Fig. 5(b). The 
two-level system provides the excitation exchange between the field modes. Thus, its population inversion under-
goes Rabi oscillations that collapse and then revive partially, Fig. 5(c). Here, the lack of a complete revival in the 
population inversion signals the partial exchange of excitations between the field modes. One is reminded of the 
obvious analogy with the collapse and revival process in the simple Jaynes-Cummings model for an initial coher-
ent state44. Furthermore, the revival time for our dynamics has a similar form, π λ=t g/r , to that found in the 
standard JC model for initial coherent states45,46. One may wonder about these similitudes. Well, the dynamics 
under these localized initial states allows us to identify the field mode as a type of binomial state. It is possible to 
reduce binomial states to number or coherent states in special limits43,47. This can be seen more easily in the 
Schwinger reference frame, ĤD, where the field modes uncouple for resonant frequencies, and we are left with a 
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JC model whose initial field mode state is a binomial state. In particular, a binomial state with a large 
mean-excitation number λ approximates a coherent state with amplitude α λ| | ≈ . Thus in the Schwinger refer-
ence frame, on-resonance and large initial mean-excitation number, we approximate the Jaynes-Cummings 
model with an initial coherent field that yields the collapse and revival in the dynamics of the population 
inversion.

The collapse and revivals in the population inversion are not lost if we break the coupling symmetry, Fig. 6. 
Actually, stronger revivals and extra revival series can be observed for particular coupling ratios, Fig. 6(c), related 
to a reduced excitation exchange, Fig. 6(a), between the field modes when compared to the on-resonance homo-
geneously coupled case. This translates into incomplete pF state transfer, Fig. 6(b). Furthermore, inhomogeneous 
couplings can be used to suppress the revival time, Fig. 6(f), and localize the mean pF number, Fig. 6(e), which is 
equivalent to have asymmetric field modes with different mean photon number, Fig. 6(d), due to the asymmetric 
coupling between the field modes and the two-level system.

On the other hand, detuning between the two-level system and the field modes can severely impair excitation 
exchange between the field modes, Fig. 7(a), leading to highly localized oscillations of the pF state, Fig. 7(b), 
accompanied by almost complete revivals of the population inversion, Fig. 7(c).

Figure 5. Time evolution for the (a) mean photon number of the first (second) field mode, n̂1(2) , in blue (red), 
(b) mean deformed pF number, Î3 , and (c) mean population inversion, σ̂z , in the laboratory frame for a ccJC 
model with initial state |g, 0, λ〉 with parameters λ = 25, ω1 = ω2 = ω0 and g1 = g2 = 10−3ω0.

Figure 6. Time evolution for the (a,d) mean photon number of the first (second) field mode, n̂1(2) , in blue 
(red), (b,e) mean deformed pF number, Î3 , and (c,f) mean population inversion, σ̂z , in the laboratory frame 
for a ccJC model with initial state |g, 0, λ〉 with parameters λ = 25, ω1 = ω2 = ω0, (a–c) g1 = 2g2 = 10−3ω0, and  
(d–f) 2g1 = g2 = 10−3ω0.

Figure 7. Time evolution for the (a) mean photon number of the first (second) field mode, n̂1(2) , in blue (red), 
(b) mean deformed pF number, Î3 , and (c) mean population inversion, σ̂z , in the laboratory frame for a ccJC 
model with initial state |g, 0, λ〉 with parameters λ = 25, ω1 = ω0 and ω2 = 1.001ω0, (a–c) g1 = g2 = 10−3ω0.
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Conclusion
In summary, we showed that the cross-cavity quantum Rabi model in the weak coupling regime can be described 
as a collection of isolated parity deformed pF oscillators of even order. The weak coupling requirement between 
each field mode and the two-level system opens the door for feasible and highly controllable experimental real-
izations in trapped-ion-, cavity-, circuit-, and photonic-QED platforms. Our approach facilitates realizing, for 
example, the engineering of two-mode binomial states that, to the best of our knowledge, had only been dis-
cussed theoretically without relation to an experimental realization. In addition, the population inversion of the 
two-level system in the laboratory frame might act as a witness for the two-mode states. This state engineering of 
bichromatic field modes is just an example of the uses that might arise from the simulation of para-particles in 
quantum electrodynamics platforms.
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