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ABSTRACT

We developed a comprehensive resource for the
genome-reduced bacterium Mycoplasma pneumo-
niae comprising 1748 consistently generated ‘-
omics’ data sets, and used it to quantify the power of
antisense non-coding RNAs (ncRNAs), lysine acety-
lation, and protein phosphorylation in predicting pro-
tein abundance (11%, 24% and 8%, respectively).
These factors taken together are four times more
predictive of the proteome abundance than of mRNA
abundance. In bacteria, post-translational modifica-
tions (PTMs) and ncRNA transcription were both
found to increase with decreasing genomic GC-
content and genome size. Thus, the evolutionary
forces constraining genome size and GC-content
modify the relative contributions of the different reg-
ulatory layers to proteome homeostasis, and impact
more genomic and genetic features than previously
appreciated. Indeed, these scaling principles will en-
able us to develop more informed approaches when
engineering minimal synthetic genomes.

INTRODUCTION

Recent molecular and systems biology studies in bacteria
have revealed a surprisingly dynamic and complex regula-
tion of gene expression, in some aspects even resembling
that of eukaryotes (1,2). Consequently, the information flow
from genome to RNA to protein, a central dogma in molec-
ular biology (3,4), has been refined by newly identified reg-
ulatory layers and detailed regulatory mechanisms, includ-
ing non-coding RNAs (ncRNAs; 1,5,6), post-translational
modifications (PTMs; 2) and second messengers (7–9). Nev-
ertheless, we still do not fully understand the contribution of
these regulatory layers to protein abundances, nor the com-
plex interplay that characterizes the physiological state of a
cell.

Although considerable progress has been made to model
some of the regulatory processes linking genomes to phe-
nomes (10), dissecting their putative interactions and quan-
tifying their contributions to the regulation of protein abun-
dance remains difficult due to the paucity of available ‘-
omics’ data sets. For example, recent work in humans re-
sulted in a collection of ≈500 genes for which sufficient
multi-omics data sets were available (11), but this only rep-
resents ≈5% of the genes with identified proteins (12,13).
Furthermore, most ‘-omics’ data sets of model organisms
have been derived in different laboratories under different
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conditions, thereby considerably hampering their integra-
tion.

To allow complex and systemic analyses within a sin-
gle organism, we took various Mycoplasma pneumonia data
sets that were previously generated under standardized con-
ditions, integrated them into a single resource (MyMpn:
http://mycoplasma.crg.eu/; 14) and added new screens for
both ncRNAs and PTMs. In total, the 1748 data sets
(1680 published, 68 new; Supplementary Table S1) include
DNA methylomes (15), transcriptomes (1,16), proteomes
(17), protein–protein interaction networks (18), PTMs (2),
metabolomes (19) and a genome-wide essentiality map (20).
For comparison purposes, we also generated some of the
data sets using the related pathogen Mycoplasma geni-
talium (43 data sets; Supplementary Table S1; 10,15,21–
24). These data feature biological replicates, synchronized
experimental conditions (e.g. longitudinal data along the
growth curve) and matching sample batches.

Our ‘-omics’ data generally cover a much larger fraction
of genes or proteins than data for other model bacteria; for
example, the M. pneumoniae interactome covers ≈90% of
the tested soluble proteins (18), in contrast to the ≈77% in
Escherichia coli (25). Overall, our data could link 99% (816
360 out of 816 394) of the base pairs of the M. pneumo-
niae genome to at least one data set (Figure 1 and Supple-
mentary Figure S1), and represent the largest coordinated
effort in ‘-omics’ profiling for a model bacterium (Figure
1B; Supplementary Table S2). While technical details of the
databases have been previously described [14], here we sum-
marize the data and illustrate the value of this unified re-
source by a number of integration approaches, to provide a
quantitative view of the individual and combinatorial con-
tributions of different regulatory layers to the fine-tuning of
protein abundance. Our results indicate that antisense ncR-
NAs, lysine acetylation and phosphorylation correlate bet-
ter with protein abundance than mRNA levels when com-
bined or even evaluated individually in this genome-reduced
bacterium. Comparative analyses of about 1600 bacteria re-
veal that both genomic guanine-cytosine (GC) content and
genome size affect the abundances of ncRNAs, as well as
lysine acetylation and phosphorylation. GC content and
genome size were previously shown to be significantly corre-
lated with each other (26). Our results suggest that genome-
reduction in bacteria correlates with the prevalence of other
genomic and genetic features and the respective wiring of
different regulatory layers at transcriptomic and proteomic
levels.

MATERIALS AND METHODS

Assembly of the 1748 ‘-omics’ data sets of M. pneumoniae

The 1748 multi-omics data sets from M. pneumoniae are
summarized in Supplementary Table S1, of which 1680 were
previously published. Additionally, 43 data sets were also
generated for M. genitalium, including transcriptome pro-
filing at two time points and proteome profiling at 12 time
points from 0 to 96 h along the growth curve (Supplemen-
tary Table S1). These data have been used to manually an-
notate the genomes of M. pneumoniae and M. genitalium
and the coding capacity of newly annotated genes; see Sup-
plementary Tables S3 and S4 for all annotated genes of the

two mycoplasmas. All data are freely accessible at MyMpn:
http://mycoplasma.crg.eu (14).

Re-annotation of M. pneumoniae and M. genitalium by com-
bining multi-omics data and manual inspection

We have identified non-coding genome regions, previously
unannotated RNAs (ncMPNs), transcriptional start sites
(TSSs), promoter sequences and 5′-untranslated regions (5′-
UTRs) by analyzing newly-generated (this study) and pre-
viously published deep sequencing data (RNAseq; 27) and
tiling array data of the M. pneumoniae transcriptome (1;
Supplementary Figure S2). In order to validate the annota-
tion of new genes and refine existing annotations, we inte-
grated data concerning a new class of short RNAs, denom-
inated tssRNAs, which precisely map to the TSSs of bacte-
rial genes (27). The results for M. pneumoniae are shown in
Supplementary Table S3. Briefly, if the TSS is downstream
of the annotated translational start codon (TSC), the open
reading frame (ORF) is annotated as shorter; ORFs with
more than one TSS are indicated as having an alternative
TSS. The transcripts with a 5′-UTR region longer than 40
base pairs are indicated by an ‘x’ in column I of Supplemen-
tary Table S3 (See legend for Supplementary Table S3). This
analysis revealed 34 previously annotated protein-coding
genes with the TSS downstream of the annotated transla-
tional start codon (TSC), 72 cases with an alternative TSS
(of which 30 were found inside the annotated gene), 160
ORFs with a 5′-UTR longer than 40 nucleotides and 313
ncRNAs (ncMPNs; Supplementary Table S3).

In order to annotate putative coding genes, we translated
all the identified transcripts into all three possible frames,
and obtained 2392 putative new ORFs of at least 25 amino
acids in length. Sequence comparison supports the tran-
scriptome prediction of 22 new proteins (Supplementary
Table S3). Mass spectrometry (MS) analysis using newly
generated proteome data for this study detected 575 pro-
teins with unique peptides (538 from the 689 annotated, and
37 novel) and 51 proteins (29 from the 689 annotated, and
22 of the predicted new ones) with shared peptides unable to
be unequivocally assigned (Supplementary Table S3), cov-
ering 82% of the previously described M. pneumoniae pro-
teome. The total number of detected proteins is similar to
a previously published MS analysis of the M. pneumoniae
proteome, where 557 out of 689 ORFs were found (28; Sup-
plementary Table S3). Taking into consideration both stud-
ies, 706 proteins of the M. pneumoniae proteome have been
identified, representing 96% of the total proteome. We de-
tected all genes with significant expression levels (average
log2 > 11 for tiling array and log2 > 5 for deep sequenc-
ing results) by MS, but found only 71% of the proteins with
low expression levels or significantly shorter RNAs than
expected from the formerly annotated ORFs. Considering
that the number of totally or partially duplicated proteins is
around 104 in the M. pneumoniae genome, we are approach-
ing complete coverage. Most of the new coding ORFs (35
out of 38) are located in intragenic regions, showing that the
same part of the genome encodes for different proteins. For
instance, in the region of mpn199, two new proteins encoded
by mpn199a (in antisense orientation versus mpn199) and
mpn200a (in sense) have been identified. The newly identi-
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Figure 1. A comprehensive resource for M. pneumoniae and comparisons with selected model bacteria. (A) -omics data and the number of data sets
collected (see Supplementary Table S1 for more details); (B) Comparison of data coverage with the selected model bacteria (as of May 2013). The numbers
for each selected model bacteria come from the individual study where the largest quantities of data sets were included; if two or more studies contain the
same number of ‘-omics’ data sets, the one published most recently was chosen (Supplementary Table S2). (C) A graphical view of all available data sets
for M. pneumoniae, where each circular layer represents an -omics datatype. Only data for the plus strand are shown; see Supplementary Figure S1 for a
full-sized figure containing all data for both strands.

fied proteins are usually very short, i.e. less than 50 amino
acids (Supplementary Table S3).

Out of the 689 previously annotated ORFs, we identi-
fied by sequence comparison 11 proteins with putatively
longer and shorter isoforms, 26 possibly longer proteins and
34 presumably shorter ones (Supplementary Table S3). We
assigned molecular weights to 518 proteins based on SDS
gel/MS analysis, confirming the existence of 12 out of the
26 predicted longer proteins (Supplementary Table S3). For
five of the 26 putative larger proteins (MPN006, MPN148,
MPN163, MPN388 and MPN664), we identified unique
peptides corresponding to the extended sequences (Supple-
mentary Table S3).

For six of the 30 ORFs that were found to have in-
ternal TSSs in the transcriptome analysis, we detected
the expression of two proteins of different sizes: MPN310
(200/19 kDa), MPN130 (16.5/10 kDa), MPN410 (17.5/10
kDa), MPN073 (44/38 kDa), MPN196 (27/6.5 kDa) and
MPN307 (33/20 kDa; Supplementary Table S3). In fact, the
two isoforms of MPN310 have been previously described by
Boonmee et al. (29).

Finally, we found two cases in which sequence analysis
revealed proteins split into two different ORFs (mpn279
(LepA) and mpn520 (IleS)). Genome re-sequencing of these
two ORFs revealed a frame shift that, when corrected, re-
sulted in the correct functional proteins with peptides cor-
responding to the two split regions identified by MS (Sup-
plementary Table S3).

In summary, the integration of transcriptomics and pro-
teomics data with a library of the theoretical proteome of
M. pneumoniae enabled us to identify 49 new ORFs (35 of
them overlapping with annotated proteins), to change the
length of 46 proteins (12 longer and 34 shorter), to correct
two frame shifts and to identify two long and short isoforms
for 6 proteins. It also revealed the existence of a significant
number of small proteins (≈5%) of unknown function that
are probably missing in the majority of bacterial genome
annotations (20).

Re-annotation of M. genitalium genome

The same procedure was used to annotate the genome of
M. genitalium. In total, we were able to refine the annota-
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tion for 12 previously annotated protein-coding genes (21),
identify 23 new protein-coding genes and 494 new ncRNAs
(Supplementary Table S4).

Orthologous groups and phylogenetic reconstruction of 16
completely sequenced mycoplasma genomes

The orthologous relationships between protein-coding
genes of 16 completely sequenced mycoplasmas includ-
ing M. pneumoniae and M. genitalium, and five addi-
tional closely related bacteria were reconstructed using the
EGGNOG 3 (30) pipeline. The selected species and result-
ing orthologous groups are shown in Supplementary Tables
S14 and S15. The one-to-one orthologous genes between
M. pneumoniae and M. genitalium are defined as those that
are in the same orthologous group, with each species having
only one gene in that group.

The phylogenetic relationships among the 21 selected
species were reconstructed based on the concatenation of 40
universal one-to-one marker genes (Supplementary Table
S14) that were previously described (31). Briefly, for each of
the one-to-one genes a multiple sequence alignment (MSA)
was built using MUSCLE (32), with the maximum num-
ber of iterations set to 100, followed by GBLOCKS (33),
with parameters ‘-b3 = 8 –b4 = 2 –n = y’ to remove poorly
aligned positions. The resulting 40 MSAs were concate-
nated and RAxML (34) was used to reconstruct the phylo-
genetic relationships for the 21 species using the default JTT
model with 100 bootstrap iterations. The resulting species
tree can be found in Supplementary Table S14 and visual-
ized using EvolView (35).

Characteristics of ncRNAs and their putative roles in gene
regulation

ncRNAs are abundantly expressed in M. pneumoniae (Sup-
plementary Figure S3). The majority (236 out of 311; 76%)
of the ncRNAs are antisense to protein-coding genes, sug-
gesting putative regulatory roles. As expected, we found that
coding genes targeted by genome-encoded antisense ncR-
NAs had relatively lower mRNA abundances (P = 0.0039;
Wilcoxon Rank Sum Test) than untargeted genes, suggest-
ing putative transcriptional interference. Furthermore, we
found that the protein/mRNA abundance ratios of tar-
geted coding genes were also significantly lower compared
to the untargeted ones (P = 0.006; Supplementary Figure
S8); for example, the three most targeted genes (red dots
in Supplementary Figure S8) showed lower than average
protein/mRNA ratios, suggesting post-transcriptional reg-
ulation by ncRNAs. The respective regulatory effects of
ncRNAs on the abundances of either the target mRNAs or
corresponding proteins differ among the distinct classes of
genes with different abundances (Supplementary Figure S9)
or functional categories (Supplementary Figure S8).

Similar results were found in M. genitalium: most of the
ncRNAs (447 out of 494; 90.4%) overlap with antisense
protein-coding genes; genes that overlapped with antisense
ncRNAs showed decreased mRNA and protein abundances
as compared with those that did not (P < 0.05).

M. pneumoniae–specific and conserved genes (i.e. those
also found in M. genitalium) have a similar likelihood of

being targeted by ncRNAs, thus implying that there is no
preference with regard to targeting conserved genes. Cod-
ing genes targeted by antisense ncRNAs are not random
in M. pneumoniae: proteins involved in the translation ma-
chinery or the regulation of translation efficiency are often
heavily targeted (Supplementary Table S6; Figure S10). For
example, among the top 10 most targeted genes (ordered
according to the percentage of gene length covered by the
antisense ncRNA), two are related to the assembly and reg-
ulation of the 50S ribosome complex, rplC and yceC. rplC
is a member of the large ribosome complex (Supplemen-
tary Figure S10A) while yceC is a putative regulator of its
assembly (Supplementary Figure S10C), and their disrup-
tion could lead to fitness and lethal phenotypes respectively
(20). In addition, Ygl3, a putative tRNA methyltransferase
essential in M. pneumoniae (Supplementary Figure S10C),
is capable of controlling translation efficiency by increasing
the tRNA methylation in eukaryotes (36).

Generally, the ncRNAs are not conserved between the
two mycoplasmas, and the extent to which the coding genes
overlap with antisense ncRNAs between one-to-one or-
thologs varies significantly between the two species (R =
−0.025, P = 0.592; Supplementary Table S6). However, the
heavily targeted genes (i.e. those which have ≥50% of their
lengths overlapping with antisense ncRNAs) in M. genital-
ium (Supplementary Table S6) fall in the same functional
categories as those in M. pneumoniae (Supplementary Fig-
ure S10). For example, ribosomal proteins are preferentially
targeted. The ribosomal proteins rpsP, rpsD and rpsF are
targeted by ncRNAs with significant overlap in M. genital-
ium. Interestingly, genes of the small (30S; Supplementary
Figure S10B) ribosome subunit are preferentially targeted
in M. genitalium, while those of the large (50S; Supplemen-
tary Figure S10A) subunit are targeted in M. pneumoniae;
this is somewhat similar to the regulation of cell cycle ex-
pression, where the level of selection is the complex and not
the individual gene or protein (37).

Furthermore it appears that if only one subunit of a sto-
ichiometrically well-balanced protein complex is targeted,
the entire complex becomes low abundant regardless of the
exact protein that has been suppressed by the ncRNA (Sup-
plementary Figure S10).

Identification and comparative analyses of lysine acetylation
in M. pneumoniae, M. genitalium and the larger pathogen
Salmonella enterica, subsp. enterica serovar Typhimurium
LT2

A method previously described in ref. (2) was used to iden-
tify lysine acetylation sites in the three bacteria. To maxi-
mize the identification, lysine-acetylated peptides were en-
riched and three technical replicates were performed for
each bacterium. In total we identified 3045, 4156 and 2804
acetylated lysine residues in M. pneumoniae, M. genitalium
and S. enterica, respectively. The total number of lysine sites
and acetylated ones identified per protein are listed in Sup-
plementary Tables S7–S9. Based on the overlap between the
triplicated samples, we estimated the total number of acety-
lated sites to be as high as 3500, 4500 and 4000 for M. pneu-
moniae, M. genitalium and S. enterica, respectively (Supple-
mentary Figure S11), indicating that we have captured most
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of the possible acetylated lysines in the two mycoplasmas
(87% and 92% for M. pneumoniae and M. genitalium respec-
tively) and the majority (70%) of them in S. enterica.

Conserved proteins are more likely to be acetylated
(Supplementary Figure S4). Indeed, metabolic enzymes,
chaperones and proteins involved in transcription, protein
turnover and PTMs, were preferentially lysine-acetylated
(for each protein the number of lysine acetylation sites was
normalized by the total number of lysines identified by
MS; Supplementary Tables S7–S9; Figure S12). Interest-
ingly, we found that the enzymes involved in central car-
bon metabolism and production of acetyl-CoA were all
frequently lysine-acetylated (Supplementary Figure S13).
High levels of acetyl-coA are known to induce increased
lysine acetylation in the mitochondria of mammalian cells
(38). Acetyl-coA is a key indicator of cellular energy status
and can regulate enzymatic activities (39), thus providing
an evolutionary conserved feedback loop in central carbon
metabolism (Supplementary Figure S13).

In addition, we found that the likelihood that a protein
is lysine-acetylated in both M. pneumoniae and S. enterica
increases with the number of species in which orthologs of
this protein can be found (Supplementary Figure S4).

We found that both the total numbers and proportions
of acetylated lysines per protein between one-to-one or-
thologs in the two mycoplasmas are significantly correlated
(R2 = 0.376, P < 2.2e-16, Pearson correlation; Supple-
mentary Figure S14A). However, when exact lysine sites
were examined in the alignments of one-to-one orthologs of
the two mycoplasmas (conserved and non-conserved lysine
residues between one-to-one orthologs were identified by
using MUSCLE (32) to align the two protein sequences), we
found that the percentage of conserved and non-conserved
lysine sites being acetylated in each species was similar (Sup-
plementary Figure S14B). The results did not change even
upon considering the so-called ‘neighboring effects’ (i.e.
when the acetylated lysine was not conserved, an alterna-
tive lysine could frequently be found within the immedi-
ate neighboring amino acids of the original aligned site in
other species (2)), suggesting fast evolution of the PTM sites
and their putative species-specific regulatory roles. How-
ever, the conserved lysine sites are more likely to be acety-
lated in both mycoplasmas than is randomly expected (P =
0.00037; Supplementary Figure S15), indicating a selective
functional advantage.

Collection of genomic and genetic features for 1600 complete
prokaryotic genomes

M. pneumoniae is a rather unique bacterium with respect
to its highly reduced genome and yet free-living lifestyle. In
order to extrapolate our findings to other bacterial species
with confidence, we needed to identify the evolutionary
forces that were at work. We therefore also performed com-
parative analyses with different groups of bacterial species.
Genome sequences and annotations for 1600 completely se-
quenced prokaryotic genomes (as of January 2013) were
downloaded from the NCBI GenBank (40). The following
features were then calculated for each genome: number of
protein-coding genes, median and mean protein length, to-
tal number of amino acids, numbers of select amino acids

such as K (lysine), Y (tyrosine), T (threonine) and S (serine),
genome size, and genomic and coding GC-contents.

In order to identify possible transcription factors in
each genome, protein sequences were searched against the
PFAM (41) domain profiles version 18 using HMMER3
(42), with an e-value cutoff of 0.01. Then, resulting domain
hits were cross-compared with a list of DNA-binding do-
mains downloaded from DBD (43). A protein was marked
as a putative transcription factor if it contained one or more
DNA-binding domains.

Operon predictions were obtained from DOOR, the
database of prokaryotic operons (44). tRNAs were pre-
dicted using tRNAscan-SE version 1.3.1 (45) with param-
eter –G (use general tRNA model) on the downloaded
genome sequences.

Regular and partial correlations

Pearson correlation coefficients between mRNA and pro-
tein concentrations were calculated using a built-in func-
tion, cor.test() in R (46). To estimate the contribution of
selected sequence features and -omics data sets on protein
abundance, independent of its mRNA abundance, partial
correlation coefficients (Pearson) were also calculated us-
ing the R function pcor.test() with default parameters. The
pcor.test can be obtained from http://www.yilab.gatech.edu/
pcor.R.

Multiple regression using MARS

Multivariate adaptive regression splines (MARS) was used
to describe the individual as well as combined contribution
of the selected features to protein abundance. MARS is a
non-parametric regression technique and is implemented in
the ‘earth’ package (47) in R (46).

RESULTS AND DISCUSSION

As a first use case, we derived high-quality annotations
for the M. pneumoniae and M. genitalium genomes (Sup-
plementary Figure S2) by integrating previously published
transcriptomics (RNAseq (27) and tiling arrays (1)), with
newly derived deep sequencing RNAseq (at 6 and 96 h),
transcription start site (TSS) associated RNAs (tssRNAs;
27) and quantitative proteome data. We were able to refine
annotated ORFs, annotate new protein-coding genes and
ncRNAs, and assign TSSs for all of them (see Materials and
Methods). Taken together, our current annotation for M.
pneumoniae contains 694 ORFs (32 smORFs, 43 conven-
tional RNAs (rRNAs and tRNAs) as well as 311 ncRNAs
(195 new; Supplementary Table S3), while the annotation
for M. genitalium contains 544 (23 new since the last anno-
tation (21); 12 refined) protein-coding genes, 36 tRNAs, 3
rRNAs and 494 new ncRNAs (Supplementary Table S4).

The resulting large number of ncRNAs (311) in M. pneu-
moniae was quite striking as we found 30 times more per
million base pairs (MB) when compared to E. coli (5,6; Sup-
plementary Table S5). Many of the ncRNAs are abundantly
expressed during all stages of the growth curve (Supple-
mentary Figure S3). As many as 85% overlap with protein-
coding genes, with 76% of these being on the opposite

http://www.yilab.gatech.edu/pcor.R
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Figure 2. Factors controlling protein abundance. (A) Correlations of individual factors with mRNA and protein (partial) abundances. Levels of significance:
*** < 0.001, ** < 0.01, * < 0.05. Percentages higher than 10% in the last column are highlighted in red. (B) Combined contributions of the factors listed
above in (A) to protein abundance variation using MARS (Multivariate adaptive regression splines) analysis. (C) A schematic view of the information
flow from genome to RNA to protein and the additional regulatory layers. The widths of the dark-blue arrows correspond to the relative contributions to
protein abundances as compared with mRNA abundances.

strand (Supplementary Table S6). We previously found that
5% of the newly annotated ncRNAs are essential for the
growth of M. pneumoniae in rich-media (20). Although
overexpression of 11 of these ncRNAs did not affect the
transcriptome or proteome of M. pneumoniae (Llorens et
al., in print), we observed in our data set that coding genes
targeted by genome-encoded antisense ncRNAs have lower
mRNA abundances (P = 0.0039; Wilcoxon Rank Sum Test)
and protein/mRNA abundance ratios (P = 0.004) than the
untargeted ones. This could be due to antisense ncRNAs
functioning by the generated RNA (48) or their generation
itself (20,49,50), or simply reflect that poorly transcribed
genes could tolerate transcriptional noise in the opposite
strand. Similar results were found for M. genitalium (Sup-
plementary Table S6).

We have previously detected a high number of phos-
phorylation sites in M. pneumoniae, and, surprisingly, even
more lysine acetylation sites (2). We have now also measured
them comparatively with both M. genitalium and S. enter-
ica (4857 Kbp, 4423 protein-coding genes (51); Materials

and Methods). We not only found four times as many ly-
sine acetylation sites as previously reported (3045 versus 759
sites (2); Supplementary Table S7) in M. pneumoniae, but
also many more in the smaller M. genitalium (4156; Sup-
plementary Table S8), and significantly less in the larger
S. enterica (2804; Supplementary Table S9). Starting with
the smallest genome, at least 82%, 58% and 20% of lysine-
containing proteins, and 25%, 15% and 4.6% of all identi-
fied lysines are found acetylated in the three bacteria, re-
spectively (Supplementary Table S9), implying that smaller
genomes tend to have considerable higher rates of lysine
acetylation. Consistent with our observations, recent stud-
ies on acetylome profiling identified 1070 (52) and 1355 (53)
unique acetylation sites in E. coli and B. subtilis, respec-
tively; these numbers are lower than those of the two my-
coplasmas. We did identify more unique acetylation sites in
S. enterica than in E. coli or B. subtilis, even though they
have similar genome sizes; this is likely due to the more sen-
sitive technology used in our study and our exhaustive sam-
pling strategy. The higher acetylation rate in streamlined
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Figure 3. The percentage of post-translationally modifiable residuals (PTMRs) decreases with decreasing GC-content. Colored dots: selected model bac-
terial species; black dots: the other 1600 bacterial species. (A) The proportion of putative acetylation targets (lysine - K) in a genome decrease with an
increasing genomic GC-content. (B) Proportion of putative phosphorylation targets as a function of genomic GC-content; shown is the major phospho-
rylation target serine – S.

genomes is likely due to the fact that a higher proportion
of proteins in these genomes are involved in essential pro-
cesses such as translation, transcription and metabolism;
these proteins are often conserved, and more likely to be
acetylated (52; see also Supplementary Figure S4).

In M. pneumoniae both the total number of acetylated
lysines per identified protein and the proportion of acety-
lated lysines out of all identified lysines (taken into account
so that the protein abundance can be controlled for; see Ma-
terials and Methods) correlate positively with the protein
abundance (Pearson Correlation R = 0.47 and 0.35, P < 2.2
× 10−16). As our identification of acetylated sites reached
saturation in M. pneumoniae, i.e. the total number of identi-
fied acetylation sites did not increase with additional exper-
iments (Supplementary Figure S11), the observed positive
correlation cannot be a byproduct of sampling biases (e.g.
abundant proteins have higher chance to be sampled) and
may imply a functional role for acetylation in protein abun-
dance. Indeed, previous studies suggested that lysine acety-
lation may play regulatory roles in protein stability (54).
Similarly, a positive correlation between protein abundance
and the number of phosphorylation sites was observed (R
= 0.28 and 0.41, P < 1.1 × 10−8; using data from (2)). How-
ever, we cannot rule out that these results are related to the
sensitivity of the mass spectrometer, where low abundant
peptides are not detected or only very rarely detected, re-
sulting in a depletion of acetylated sites in low abundant
proteins.

So far we have shown that both the abundantly expressed
ncRNAs and extensive PTMs correlate with (and may con-
tribute to) protein abundances, but in order to quantify their
predictive power to the latter, other factors have to be taken
into account. For example, protein half-life in M. pneumo-
niae is generally longer than the generation-time (17), while

mRNA half-life is rather short (on average 8 min; Llorens
V., Yus E. & Serrano, L. in preparation), similar to other
bacteria (e.g. on average ≈5 min in both E. coli (55) and B.
subtilis (56)). We thus derived from our M. pneumoniae re-
source a total of 20 features that could possibly be predictive
of protein abundance (11; see Supplementary Table S10 for
a complete list) when the contribution of the mRNAs is con-
trolled for (a method called ‘partial correlation’ (57); also
see Materials and Methods). Among them, 10 were found
to correlate significantly with protein abundance at a given
mRNA abundance and thus were retained for subsequent
analysis (Figure 2).

On average <11% of the variation in protein abundance
could be explained by mRNA abundance under the same
conditions (Figure 2); this is much lower than in larger bac-
teria (e.g. 30–50% for E. coli (58)). In M. pneumoniae, many
factors could have an impact on protein abundance and are
hence called ‘regulatory layers’ hereafter. The largest con-
tributor is the extent of lysine acetylation, which explains
as much as 24% of the protein abundance variation (Fig-
ure 2), followed by protein half-life (17.09%), the length of
gene overlap with its antisense ncRNAs (10.51%), sequence
features including the proportion of leucines (9.58%) and
codon adaptation index (CAI; 9.57%), as well as phospho-
rylation (8.46%).

Considering redundancies among these factors (Supple-
mentary Table S10), together they are capable of explaining
55.3% of the variance in protein abundance (Figure 2B, see
also Supplementary Table S10). These results indicate the
need to factor in sequence constraints and regulatory lay-
ers when drawing conclusions from transcriptomic readouts
to the protein landscape of a cell. Some of the remaining
variance could be attributed to technical limitations associ-
ated with the quantification of transcriptomes (≈4%) and
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Figure 4. Dissecting the relative predictive powers of genome size and GC-content on selected genomic and genetic features that have been used to derive
scaling laws. (A) Most of the selected features correlate with both genome size and GC-content in a similar way using regular Pearson Correlation; (B)
Genome size and GC-content correlate significantly across 1600 bacteria. The dashed red-line represents the linear regression. (C) Separating the impact
of one factor from the other using partial correlation. Genome size was found to have more predictive power than GC-content for some features (in
dark-green), while for others, GC-content was found to be more predictive (in dark-red). A factor (i.e. genome size or genome GC) is defined as a major
contributor if it has significantly more predictive power than the other. For this to be true one of the following conditions must be satisfied: (i) it (genome
size or GC-content) correlates significantly with a genomic feature while the other factor (GC or genome size) does not, or (ii) both correlate significantly
with a genomic feature, but one (GC or genome size) has an absolute correlation coefficient value that is twice as high or higher than the other (genome
size or GC). (D) Distances of the features in (C) to the diagonal line showing the relative predictive power (absolute partial correlation coefficient value)
of GC-content over genome size; the more to the left on the x-axis, the more predictive power of GC-content over genome size. Black data points in (C)
and (D) are those for which the GC-content and genome size have similar predictive powers. See Supplementary Table S13 for the data.

proteomes (≈17%; see Materials and Methods). Notably, a
substantial proportion of the protein abundance variation
(23.6%) remains unexplained (Figure 2). This suggests the
existence of additional, independent regulatory layers such
as translational controls or second messengers for which
data are currently not available in M. pneumoniae.

Although deriving comparable data for two closely re-
lated mycoplasmas validates our observations, the power

of individual features to predict protein abundance can ob-
viously vary in other bacteria and might be heavily con-
strained by genome-reduction. To extrapolate our findings
and derive scaling laws (a scaling law is a functional rela-
tionship between two variables where one varies as a func-
tion of the other) for related features, we performed com-
parative analyses with different groups of bacteria with
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varying phylogenetic distances to M. pneumoniae and M.
genitalium.

Unlike the number of protein-coding genes, which tightly
correlates with genome size (R2 = 0.97; Supplementary Fig-
ure S5; using 1600 complete bacterial genomes from NCBI
as of January 2013, Supplementary Table S11), the number
of ncRNAs appears to follow a different principle, as the
smaller bacterium M. genitalium expresses more ncRNAs
(Supplementary Table S5). We recently found that the num-
ber of ncRNAs per million bases shows a strong negative
correlation with genomic GC-content (R2 = 0.88) in 20 se-
lected bacteria (unpublished results). As Sigma 70 factors in
bacteria are known to recognize A/T rich regions, it is pos-
sible that in genomes with a low GC-content more regions
promote transcription in an unspecific way, and therefore
having more ncRNAs could provide a needed level of con-
trol.

The GC-content can also explain ≈87.7% and ≈40%
of the variation in acetylation and phosphorylation sub-
strates (lysine% and serine%; Figure 3A,B), respectively.
The codons for these amino acids are AT-rich and occur
frequently in low-GC genomes (Supplementary Table S12).
Larger bacteria such as S. enterica and E. coli encode fewer
lysine residues per protein, after normalizing for protein
lengths (Supplementary Table S11); the same is true for ty-
rosines and serines (59). Both conserved and species-specific
proteins are equally affected (Supplementary Figure S6).

These observations have several important implications.
Firstly, in two species with comparable genome sizes but dif-
ferent GC-contents (e.g. E. coli and B. subtilis) the num-
bers of post-translationally modifiable residues (PTMRs)
per protein are very different (Figure 3). Secondly, the in-
cidences of the two types of PTMRs decrease differently.
For instance, the genomic GC-content increases from 31.5%
in M. genitalium to 51.9% in E. coli, and the frequency of
lysines drops from 9.5% to 4.4% (2.15-fold), but that of ty-
rosines, threonines and serines remains largely unaffected
(varying from 6.6% to 5.7%, or 1.15-fold). Due to the fact
that the interactions between the two types of PTMs, i.e. de-
creased protein phosphorylation affects acetylation and vice
versa, depend on the frequency of the modification (2), our
results suggested that GC-content could be a key indicator
in the dynamics of crosstalk among PTMs in prokaryotes.

Many genomic and genetic properties such as the num-
ber of transcription factors or the percent of duplicated
genes that correlate with GC-content, correlate similarly
with genome size (Figure 4A), due to the correlation be-
tween the two factors (R2 = 0.367; Figure 4B). To dissect
the relative predictive power of one factor independent of
the other for selected genomic and genetic features, we again
used partial correlation (57) to revisit existing and newly
identified scaling laws. This way we were able to show that
the number of transcription factors increases with genome
size (60) regardless of GC-content (Figure 4). Similar results
were found for operon size, proportion of genes in operons,
gene density and proportion of duplicated genes (Figure
4C). Conversely, the correlations with the proportion of se-
lect amino acids (serine, tyrosine, lysine) could be attributed
mostly to genome GC-content (Figure 4D). These results
confirm that GC-content is a better predictor for features
that have important regulatory roles while genome size ap-

pears to be more directly associated to the pool of proteins,
i.e. functional capacity (Figure 4D).

In bacteria, the reduction of genome size has been at-
tributed to a variety of factors, e.g. degenerative reduction
because of parasitic life styles (e.g. pathogens) or adap-
tive streamlining because of environmental energetic con-
straints (61); either way, genome-reduction is often accom-
panied by decreasing genome GC-content (Supplementary
Table S11). The decreasing complexity of traditional regula-
tory networks consisting of transcription factors that comes
along with genome size reduction (Supplementary Figure
S7; R2 = 0.8; see also (60)), appears to be counteracted by
elevated nonconventional regulatory layers including ncR-
NAs, and PTMs. Thus, the evolutionary forces constraining
genome size and GC-content modify the relative contribu-
tions of the regulatory mechanisms to proteome homeosta-
sis, and impact more genomic and genetic features than pre-
viously appreciated.

Taken together, we make use of the richest resource that
has been assembled so far for any bacterium, as measured
by base pair coverage and diversity. This resource has a huge
potential to boost systems biology research in M. pneumo-
niae and beyond. We were able to quantify the predictive
power of different factors in estimating protein abundance,
many of which follow simple scaling laws (see Supplemen-
tary Figure S16 for an overview of our data integration
workflow), demonstrating that global principles can be de-
rived from this genome-reduced bacterium.
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