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Abstract: The invasion of immune cells in the tumor microenvironment (TME) is closely related
to cancer development. Studies have demonstrated that N6-methyladenosine (m6A) can affect the
invasion of immune cells in TME as well as cancer development. We comprehensively analyzed the
RNA-seq data of 16 different cancer types based on 20 m6A regulators and identified two distinct
m6A modification patterns, which were closely associated with TME cell infiltration and overall
patient survival. Then, we used principal component analysis (PCA) to construct m6Ascore based
on the expression of m6A-related prognostic genes, which can successfully predict patient survival.
The low-m6Ascore subtype is characterized by more immune cell infiltration, good prognosis and
lower TNM stages, while the high-m6Ascore subtype is characterized by low immune infiltration,
stromal activation, and poor prognosis. m6Ascore was also closely associated with immunotherapy
response and was significantly higher in complete response/partial response (CR/PR) patients than
in stable disease/progressive disease (SD/PD) patients in both immunotherapy cohorts. Therefore,
our study indicates that m6A modification plays an important role in the prognosis of pan-cancer
and the formation of complex TME in pan-cancer. Our research helps to improve the cognition of
m6A modifications at pan-cancer levels and identify more effective strategies for immunotherapy.

Keywords: pan-cancer; N6-methyladenosine; immune infiltration; tumor microenvironment;
immunotherapy

1. Introduction

In 2020, there were approximately 19.3 million new cancer cases and nearly 10 million
deaths worldwide, excluding melanoma. Cancer has become the leading cause of death
before the age of 70 in many countries [1]. While there have been many studies on can-
cer, treating cancer remains difficult because of its complex pathogenic mechanism and
diversified risk factors. Therefore, it is important to identify new cancer diagnoses and
treatment strategies.

More than 150 RNA modifications, such as N6-methyladenosine (m6A), N1-methy
ladenosine (m1A), Pseudouracil (ψ), and adenosine to inosine (A-to-I) RNA editing have
been identified in nature [2]. The m6A modification was first identified in hepatocellular
carcinoma mRNAs [3]. m6A is the most abundant RNA modification in nature. It is not only
abundant in eukaryotes such as mammals and plants, but also in prokaryotes. m6A methy-
lation is the most common and dominant methylation modification in mammals [4], in
which 7676 animal genes have undergone m6A modification in their mRNAs [5]. m6A mod-
ifications were mainly concentrated on consensus motif RRACH (R = A or G, H = A, C or U),
and were highly enriched near the 3’UTR and stop codons [6]. In mammals, m6A methy-
lation is a dynamic reversible mRNA modification co-regulated by methyltransferases
(writers), demethylases (Erasers), and binding proteins (readers). Methyltransferases such
as METTL3/5/16, RBM15/15B, ZC3H13, ZCCHC4, KIAA1429, and WTAP catalyze the
formation of m6A methylation. The removal process is mediated by two demethylating
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enzymes, FTO and ALKBH5. Binding proteins, such as YTHDF1/2/3, IGF2BP1, HNRNPC,
and FMR1, can recognize m6A methylation [7]. m6A regulators play an important role in
various biological processes and are closely related to the occurrence and development of
tumors [8,9]. For example, the low expression of HNRNPC in LUAD patients has a better
prognosis. In most cancers, the expression of m6A regulators is positively correlated with
stemness indices and negatively correlated with immune invasion. The expression of many
m6A regulators is also significantly correlated with drug sensitivity [10].

TME is mainly composed of tumor cells, stromal cells, and the extracellular matrix
(ECM). Tumor progression involves tumor cells, and is closely related to other components
of TME, especially immune cells [11]. For example, endothelial cells can provide nutrition
for tumor cells, fibroblasts can help tumor cells metastasize through blood vessels, and
immune cells can eliminate tumor cells and effectively inhibit tumor development [12].
Studies have shown that TME plays an important role in tumor development and im-
munotherapy, and various cells in TME, including T cells, B cells, innate immune cells, and
fibroblasts, can affect the immune checkpoint block (ICB) response [13]. TME subtypes
obtained by TME classification of patients with pan-cancer can predict patient survival and
serve as biomarkers for immunotherapy [14]. In recent years, some studies have confirmed
that some m6A methylation regulators can affect TME and enhance or inhibit the infiltra-
tion of some immune cells. Wang et al. showed that up-regulated METTL3 expression
could promote the activation and maturation of dendritic cells (DC), while down-regulated
METTL3 expression would lead to impaired DC functional maturation, reduced expression
of il-12, CD40, and CD80, and inhibited T cell activation [15]. The expression of METTL3
is significantly up-regulated in most human cancers such as breast cancer, lung cancer,
gastric cancer, and liver cancer. High expression of METTL3 promotes cancer development
and is associated with poor prognosis in these cancers [16]. In 2019, Han et al. found that
inhibition of YTHDF1 expression could enhance the anti-tumor response of CD8 + T cells
and improve the therapeutic effect of PD-L1 [17]. Comprehensive analysis of immune
cell infiltration mediated by various m6A regulators demonstrated that m6A modification
was significantly correlated with the level of immune cell infiltration in gastric cancer and
played a significant role in immunotherapy and patient prognosis. Similar results were
obtained in glioblastoma, hepatocarcinoma, gastric cancer, and pancreatic cancer [18–21].
Pathways can also have a dramatic impact on immune cells in the tumor microenvironment.
For example, TGF-β signaling can limit T cell trafficking to TME, inhibit B cell proliferation
and promote B cell death [22,23]. WNT/β-catenin pathway activation is usually closely
associated with poor spontaneous T-cell infiltration [24]. The PI3K/Akt pathway regulates
the survival, migration, proliferation and polarization of macrophages [25].

We comprehensively analyzed the RNA-seq data of 16 different cancer types in the
TCGA database based on 20 m6A regulators. From this, we identified two different
m6A modification patterns using an unsupervised clustering method for the expression
of m6A regulatory factors in pan-cancer. These two modification patterns were closely
associated with immune cell infiltration in TME and overall patient survival (OS). Next, we
identified differentially expressed genes (DEGs) of the two modification patterns and used
a univariate COX proportional risk model to select the DEGs that impacted survival. Then,
we constructed the m6Ascore by PCA and found that it was significantly correlated with
the two modification patterns. The m6Ascore could also predict the survival of pan-cancer
patients and was closely related to immune cell infiltration in TME. Finally, it was verified
that the m6Ascore could successfully predict the survival and prognosis of patients in
METABRIC and GSE3494 cohorts, and that it was correlated with immunotherapy response
in IMvigor210 and GSE78220 immunotherapeutic cohorts.

2. Results

2.1. The Landscape of m6A Regulators in Pan-Cancer

We extracted 20 m6A regulators from pan-cancer patients, including nine writers,
eight readers, and two erasers. First, we compared the expression levels of 20 regulators
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in normal and pan-cancer patient samples (Figure 1A). There were 18 significantly differ-
entially expressed regulators, and all of them were significantly up-regulated in cancer
samples. Among them, the expression levels of HNRNPC, RBMX, and ALKBH5 were
significantly higher than other regulators, and only FTO and METTL14 showed no signifi-
cant difference between cancer and pan-cancer samples. The univariate Cox proportional
hazards model was constructed based on the differential genes. The results demonstrated
that METTL3/14/16, WTAP, RBM15, RBM15B, VIRMA, IGF2BP1/2/3, CBLL1, ZCCHC4,
ELAVL1, YTHDC1, YTHDC2, HNRNPC, RBMX, FMR1, FTO, and ALKBH5 all signifi-
cantly affected survival. In particular, RBM15 had the most significant effect on survival
(Figure 1B). We divided patients into low-expression and high-expression groups based
on median RBM15 expression. Kaplan-Meier curves were generated according to the
low-expression and high-expression groups, and patients in the low-expression group had
a significant survival advantage (Figure S1). This is consistent with previous studies, which
found that high expression of RBM15 is significantly associated with tumor progression and
poor prognosis in a variety of cancers, including LSCC, COAD, LIHC, and PAAD [26–29].
Most m6A regulators were significantly positively correlated, while IGF2BP1, IGF2BP2, and
IGF2BP3 were weakly correlated with other regulatory factors. Only IGF2BP2 was nega-
tively correlated with METTL14, ALKBH5, YTHDC2, and FTO (Figure 1C and Table S1). In
conclusion, m6A regulators are closely related to patient survival, and there is a significant
difference in expression between normal and cancer samples. There is also a significant
correlation between regulators, and m6A regulators could play an important role in the
occurrence and development of cancer.
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Figure 1. The landscape of m6A regulators in pan-cancer. (A) Expression of the 20 m6A regulators 
in normal and tumor tissues in pan-cancer. Red is normal tissue; blue is cancer tissue. The asterisks 
represent the statistical p value (**** p < 0.0001). (B) Univariate Cox regression analysis of OS in pan-
cancer patients. (C) Relationships of the 20 m6A regulators in pan-cancer using Spearman analysis. 
Negative correlations are marked in red and positive correlations are marked in blue. The asterisks 
represent the statistical p value (* p < 0.05; ** p < 0.01; *** p < 0.001). The number represents the 
correlation coefficient, and X represents no correlation. 
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had a significant survival advantage (Figure 2A). There were also significant differences 
in the expression of m6A regulators between the two m6A modification patterns. 
Compared to m6Acluster 2, the expression levels of ELAVL1, HNRNPC, IGF2BP2, 
IGF2GP3, METTL3, and RBM15B were higher in m6Acluster 1. The expression levels of 
RBM15, VRMA, and WTAP showed no difference between m6Acluster 1 and m6Acluster 
2, and the expression levels of other regulators were higher in m6Acluster 2 (Figure 2B). 

Figure 1. The landscape of m6A regulators in pan-cancer. (A) Expression of the 20 m6A regulators in
normal and tumor tissues in pan-cancer. Red is normal tissue; blue is cancer tissue. The asterisks
represent the statistical p value (**** p < 0.0001). (B) Univariate Cox regression analysis of OS in
pan-cancer patients. (C) Relationships of the 20 m6A regulators in pan-cancer using Spearman
analysis. Negative correlations are marked in red and positive correlations are marked in blue. The
asterisks represent the statistical p value (* p < 0.05; ** p < 0.01; *** p < 0.001). The number represents
the correlation coefficient, and X represents no correlation.
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2.2. m6A Regulator-Mediated Methylation Modification Patterns in Pan-Cancer

Based on the expression of these 20 m6A regulators, two distinct m6A modification
patterns (called m6Acluster 1 and m6Acluster 2) were determined (Figure S2 and Table S2).
Prognostic analysis of the two modification patterns demonstrated that m6Acluster 2 had a
significant survival advantage (Figure 2A). There were also significant differences in the
expression of m6A regulators between the two m6A modification patterns. Compared to
m6Acluster 2, the expression levels of ELAVL1, HNRNPC, IGF2BP2, IGF2GP3, METTL3,
and RBM15B were higher in m6Acluster 1. The expression levels of RBM15, VRMA, and
WTAP showed no difference between m6Acluster 1 and m6Acluster 2, and the expression
levels of other regulators were higher in m6Acluster 2 (Figure 2B).
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in Pan-Cancer 

To explore the correlation between m6A modification patterns and cell infiltration 
characteristics of TME, we used the ssGSEA method to evaluate the infiltration level of 28 
immune cells (Table S4). We found that most of the 28 immune cells were more infiltrated 
in m6Acluster 2 (Figure 3A). We also used the ESTIMATE package to calculate the im-
mune score, stromal score, and ESTIMATE score for the samples, all of which were higher 
in m6Acluster 2 (Figure 3B). At the same time, the tumor purity was lower in m6Acluster 

Figure 2. Survival and biological characteristics of m6A methylation modification patterns.
(A) Kaplan-Meier curves of patients in m6Acluster 1 and m6Acluster 2 in pan-cancer. The X-axis
shows survival in days. The Y-axis shows the overall survival rate. (B) Expression of the 20 m6A
regulators between m6Acluster 1 and m6Acluster 2 in pan-cancer. Red is m6Acluster 1; blue is
m6Acluster 2. The asterisks represent the statistical p value (*** p < 0.001; **** p < 0.0001). (C) GSVA
enrichment analysis heat map. Each row represents a path; each column represents a sample.

GSVA enrichment analysis was used to explore the differences in biological functions
of the two modification patterns (Table S3). m6Acluster 1 was significantly enriched in
cell cycle, P53 signaling pathway, WNT signaling pathway, basal cell carcinoma, and
other cancer-related pathways. m6Acluster 2 was significantly enriched in beta-alanine
metabolism and circadian rhythm mammal pathways (Figure 2C). Activation of the P53
signaling pathway and WNT signaling pathway can promote the development of cancer,
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thus affecting patient survival. It could be that significant enrichment of the P53 signaling
pathway, the WNT signaling pathway, basal cell carcinoma, and other cancer-related
pathways in m6Acluster 1 lead to the poor survival of patients in m6Acluster 1.

2.3. Correlation between m6A Modification Patterns and Cell Infiltration Characteristics of TME
in Pan-Cancer

To explore the correlation between m6A modification patterns and cell infiltration
characteristics of TME, we used the ssGSEA method to evaluate the infiltration level of
28 immune cells (Table S4). We found that most of the 28 immune cells were more in-
filtrated in m6Acluster 2 (Figure 3A). We also used the ESTIMATE package to calculate
the immune score, stromal score, and ESTIMATE score for the samples, all of which were
higher in m6Acluster 2 (Figure 3B). At the same time, the tumor purity was lower in
m6Acluster 2 (Figure 3B). Therefore, the m6Acluster 2 modification pattern has a significant
survival advantage.
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Figure 3. Characteristics of TME immune infiltration in two distinct m6A modification patterns.
(A) Differences in the abundance of immune infiltrating cells between two m6A modification patterns.
The asterisks represent the statistical p value (** p < 0.01; **** p < 0.0001). (B) Differences in the
immune score, stromal score, estimate score, and tumor purity between two m6A modification
patterns (Wilcoxon test). (C) Differences in biological functions between two m6A modification
patterns. The asterisks represented the statistical p value (**** p < 0.0001).
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Activation of the epithelial-mesenchymal transition (EMT) and WNT signaling path-
ways are enriched in m6Acluster 1. This indicates that the stroma activity of m6Acluster
1 is significantly enhanced. CD8 effector T-cell immune-related pathways are enriched
in m6Acluster 2 (Figure 3C). This suggests that the m6A modification pattern has a sig-
nificantly different immunophenotype. m6Acluster 1 lacks effective immune infiltration,
activates immunosuppressive pathways such as WNT, and has a poor prognosis. It is
classified as an immune-desert phenotype. m6Acluster 2 is enriched in immune cell infil-
tration, activates immune-related CD8 T-effector signature, and has a good prognosis. It is
classified as an immune-inflamed phenotype.

To investigate the role of m6A-related phenotypes in immune regulation, we extracted
WNT signaling pathway-related genes, immune-related genes, and immune checkpoint-
related genes from the published literature and investigated the expression of these genes
in different m6A modification patterns. Immune-related genes, including CD8A, GZMA,
PRF1, and TBX2, were significantly up-regulated in m6Acluster 2 (Figure 4A). This indi-
cates that m6Acluster 2 was the immune-activation group. Genes relevant to the WNT
pathway were up-regulated in m6Acluster 1 (Figure 4B), indicating that m6Acluster 1 was
a stromal-activated group, which was consistent with the results obtained by previous
enrichment analysis and immune infiltration. There was no difference in the expression
of immune checkpoint-related gene TIGIT between the two groups, while the other im-
mune checkpoint-related genes were significantly different between the two m6A clusters,
and most were significantly up-regulated in m6Acluster 2 (Figure 4C). This suggests that
m6A modification patterns could be associated with immune checkpoint therapy. Then,
Spearman correlation analysis was used to test the correlation between m6A regulators and
immune cell infiltration (Table S5). m6A regulators had a certain correlation with infiltrat-
ing immune cells, of which IGF2BP1, IGF2BP2, and IGF2BP3 were positively correlated
with most immune cells. Most other regulators were negatively correlated with immune
cells (Figure 4D).

2.4. m6A Gene Signature Subtypes

A total of 40 m6A-related DGEs between m6A modification patterns were obtained,
after which a univariate Cox proportional hazards model was constructed based on the
DGEs (Table S6). Thirty-seven DGEs with significant prognosis were then used for KEGG
enrichment analysis (Table S7). These genes are enriched in immune or cancer-related
pathways, such as the Toll-like receptor signaling pathway, choline metabolism in cancer,
and complement and coagulation cascades (Figure S3). These results indicate that m6A
modification is closely related to immune regulation. Unsupervised cluster analysis was
performed based on the expression of these prognostic DGEs, and patients were divided
into two m6A-related gene phenotypes: m6A gene cluster A and m6A gene cluster B
(Figure S4 and Table S2). Prognostic analysis demonstrated that m6A gene cluster B had a
significant survival advantage (Figure 5A). Meanwhile, activation of the EMT and WNT
signaling pathways were enriched in m6A gene cluster A. This indicates that the stroma
activity of the m6A gene cluster A was significantly enhanced. CD8 effector T-cell immune-
related pathways were enriched in m6A gene cluster B (Figure 5B). The level of immune
infiltration in m6A gene cluster B was significantly higher than that of m6A gene cluster
A (Figure 5C). A comparison of the expression of m6A regulators in the two m6A gene
clusters demonstrated results that were consistent with the previous m6A modification
patterns (Figure 5D). In the two m6A gene clusters, patient prognosis, immune infiltration,
pathway enrichment, and expression of m6A regulators were consistent with the results
of m6A methylation modification patterns. Of them, patients with m6A gene cluster B
and m6Acluster 2 had significant survival advantages, and there was abundant infiltration
of immune cells in TME. Stroma activation was observed in m6A gene clusters A and
m6Acluster 1, and effective immune infiltration was absent in TME. This indicates that
m6A methylation modification patterns were closely associated with cancer development
and TME immune cell infiltration.
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Figure 4. Transcriptome traits in two m6A clusters, and correlation between m6A regulators and
immune infiltration in TME. (A) Different expressions of immune-related genes in distinct m6A
modification patterns (Wilcoxon test). (B) Different expressions of WNT pathway-related genes in
distinct m6A modification patterns (Wilcoxon test). (C) Different expression of checkpoint-related
genes in distinct m6A modification patterns (Wilcoxon test). (D) Heat map of correlation between
m6A regulators and levels of immune cell infiltration in TME; the X-axis shows 28 kinds of immune
cells, and the Y-axis shows m6A regulators. Red represents positive correlations, and blue represent
negative correlations. The asterisks represent the statistical p value (* p < 0.05; ** p < 0.01; *** p < 0.001).
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Figure 5. Characteristics of TME immune infiltration in two m6A gene clusters. (A) Kaplan-Meier
curves of patients in m6A gene cluster A and m6A gene cluster B in pan-cancer. The X-axis shows
survival in days. The Y-axis shows the overall survival rate. (B) Differences in biological functions
between two distinct m6A gene clusters. Asterisks represent the statistical p value (** p < 0.01;
**** p < 0.0001). (C) Difference in the abundance of immune infiltrating cells between two dis-
tinct m6A gene clusters. Asterisks represent the statistical p value (***p < 0.001; ****p < 0.0001).
(D) Comparisons of the expression of 20 m6A regulators between m6A gene cluster A and m6A gene
cluster B in pan-cancer. Blue is the m6A gene cluster A. Yellow is the m6A gene cluster B. Asterisks
represent the statistical p value (**** p < 0.0001).

2.5. m6Ascore and Performance Validation

To evaluate the methylation modification of a single patient in pan-cancer, we used
37 DEGs with prognostic effects to construct the m6Ascore using PCA. The R package
“Maxstat” was used to calculate the optimal cut-off value, and patients were divided into
the low-m6Ascore group and the high-m6Ascore group according to m6Ascore (Table S2).
Prognostic analysis showed that patients with a low m6Ascore had a significant survival
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advantage (Figure 6A). We found that patients with low m6Ascore had higher levels of
immune cell infiltration, and CD8 effector T-cell immune-related pathways were enriched
in them. Meanwhile, the EMT and WNT signaling pathways were enriched in the high-
m6Ascore group (Figure 6B,C). The low-m6Ascore group also had higher immune and
stromal scores (Figure 6D–F), and the corresponding low-m6Ascore group had lower tumor
purity (Figure 6G). This suggests that the m6Ascore in a single patient is closely related to
tumor progression and immune infiltration.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 6. Characteristics of TME immune infiltration in two m6Ascore groups. (A) Kaplan-Meier 
curves of patients in the low-m6Ascore group and high-m6Ascore group in pan-cancer. The X-axis 
shows survival in days. The Y-axis shows the overall survival rate. (B) Differences in biological 
functions between two distinct m6Ascore groups. Asterisks represent the statistical p value (**** p < 
0.0001). (C) Difference in the abundance of immune infiltrating cells between two m6A gene clusters. 

Figure 6. Characteristics of TME immune infiltration in two m6Ascore groups. (A) Kaplan-Meier
curves of patients in the low-m6Ascore group and high-m6Ascore group in pan-cancer. The X-axis
shows survival in days. The Y-axis shows the overall survival rate. (B) Differences in biologi-
cal functions between two distinct m6Ascore groups. Asterisks represent the statistical p value
(**** p < 0.0001). (C) Difference in the abundance of immune infiltrating cells between two m6A
gene clusters. Asterisks represent the statistical p value (**** p < 0.0001). (D–G) Differences in
the stromal score, immune score, estimate score, and tumor purity between the two m6A gene
clusters (Wilcoxon test).
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We found significant differences in the expression level of m6A regulators between the
low-m6Ascore group and the high-m6Ascore group (Figure 7A), which was consistent with
the previous m6Acluster and m6A gene cluster. We compared the differences in m6Ascore
between two m6A modification patterns, while m6Acluster 2 showed lower m6Ascore
(Figure 7B). We also compared the difference in m6Ascore between two m6A gene clusters,
while m6A gene cluster B showed lower m6Ascore (Figure 7C). This is consistent with a
better prognosis for patients with lower m6Ascore. The alluvial diagram shows that almost
all samples of low-m6Ascore and m6A gene cluster B come from m6Acluster 2 (Figure 7D).
These results also show that m6A methylation modification is closely related to tumor
progression and immune infiltration.

To further explore the function of the m6Ascore, we compared the differences in
m6Ascore of the six immune subtypes from C1 to C6 introduced in [30] and found that C3,
with the best survival rate, had the lowest scores (Figure 7E). In addition, m6Ascore was
significantly lower in stage I/II patients than in stage III/IV patients (Figure 7F), which
indicates that the m6Ascore is also a good predictor of tumor stage. In conclusion, m6A
modification is significantly correlated with tumor immunophenotype and patient survival
in pan-cancer. The m6Ascore can distinguish the level of immune infiltration and different
tumor stages and has a certain prognostic ability for patients.
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Figure 7. The interrelation of m6Ascores with other groups. (A) Comparisons of the expression of
20 m6A regulators between the low-m6Ascore and high-m6Ascore groups in pan-cancer. Blue is the
low-m6Ascore group. Red is the high-m6Ascore group. Asterisks represent the statistical p value
(*** p < 0.001; **** p < 0.0001). (B) Difference in the m6Ascore between two m6Aclusters (Wilcoxon
test). (C) Difference in the m6Ascore between two m6A gene clusters (Wilcoxon test). (D) Alluvial
diagram showing changes in m6Aclusters, m6A gene clusters, and m6Ascore groups. (E) Difference
in the m6Ascore among six immune subtypes. Asterisks represent the statistical p value (Wilcoxon
test)). (F) Difference in the m6Ascore between tumor stages (Wilcoxon test).

Finally, we validated the m6Ascore in an external data set, calculated the m6Ascore
in METABRIC and GSE3494 breast cancer datasets, and tested the effect of m6Asore on
survival. We found that patients with low m6Ascore had a significant survival advantage in
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these two datasets (Figure 8A,B). Finally, we used two immunotherapy cohorts, IMvigor210
(anti-PD-L1 cohort) and GSE78220 (anti-PD-1 cohort), to validate the correlation between
m6Ascore and immunotherapy. We found that in IMvigor210, the high-m6Ascore group
had a significant survival advantage (Figure 8C), and the proportion of CR/PR patients
in the high-m6Ascore group was significantly higher than in the low-m6Ascore group
(Figure 8D), and m6Ascore was significantly higher in CR/PR than in SD/PD patients in
both immunotherapy cohorts. (Figure 8E). This suggests a significant therapeutic advantage
and better clinical response in patients with anti-PD-L1 immunotherapy in the higher
m6Ascore group. In IMvigor210, the tumor mutation burden (TMB) and neoantigen burden
in the high-m6Ascore group were also significantly higher than those in the low-m6Ascore
group (Figure 8F,G). In the GES78220 cohort, the proportion of patients with CR/PR
in the high-m6Ascore group was significantly higher than in the low-m6Ascore group
(Figure 8H). In summary, our constructed m6Ascore can help predict clinical responses
to immunotherapy.Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 15 of 21 
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days. The Y-axis shows the overall survival rate. (B) Kaplan-Meier curves of patients in the low-
m6Ascore group and high-m6Ascore group in METABRIC. The X-axis shows survival in days. The
Y-axis shows the overall survival rate. (C) Kaplan-Meier curves of patients in the low-m6Ascore
group and high-m6Ascore group in IMvigor210. The X-axis shows survival in days. The Y-axis shows
the overall survival rate. (D) Proportion of IMvigor21 patients with different responses between the
high-m6Ascore group and low-m6Ascore group. (E) Difference in the m6Ascore between two distinct
response groups (Wilcoxon test). (F) Difference in TMB between two m6Ascore groups (Wilcoxon
test). (G) Difference in the neoantigen burden between two distinct m6Ascore groups (Wilcoxon test).
(H) Proportion of GES78220 patients with different responses between the high-m6Ascore group and
low-m6Ascore group.

3. Discussion

Many studies have demonstrated that m6A regulators play an important role in tumor
progression, inflammation, immune system, and drug resistance [31–33]. In this study,
based on the RNA-seq data of 16 cancer types in the TCGA database, we analyzed the
prognostic ability of m6A regulators in pan-cancer and found that RBM15 was the most
significant adverse survival factor among 20 m6A regulators. The significant role of RBM15
in malignant cancer progression has been confirmed in many studies. We then divided the
patients into two distinct m6A modification patterns based on 20 m6A regulators. There
was a significant difference in TME immune cell infiltration between the two modification
patterns. m6Acluster 2 is characterized by immune activation, and a significant survival
advantage corresponds to the immune-inflamed phenotype. m6Acluster 1 is characterized
by immunosuppression, activation of the EMT and WNT pathways, and poor prognosis,
which corresponds to the immune-desert phenotype. The immune-desert phenotype
is associated with a lack of T cell infiltration [34]. Activation of the EMT pathway in
m6Acluster 1 inhibits T cells, resulting in low infiltration of immune cells in m6Acluster 1.
GSVA results showed that there were significant functional differences between different
m6A modification patterns at the pan-cancer level. Meanwhile, due to the heterogeneity
among different cancer types, there were also some functional differences among different
cancer types even in the same m6A modification pattern. Our study confirmed that m6A
modification could play an important role in various cancers. In the future, we will perform
a detailed analysis of the m6A regulator-mediated methylation modification patterns and
tumor microenvironment infiltration characterization in each single cancer.

Thirty-seven DEGs with a significant impact on survival were selected based on
two m6A modification patterns. According to the 37 differential genes, two distinct m6A
gene clusters were obtained by clustering. The results showed that m6A modification
played an important role in tumor prognosis and immunity. Finally, the m6Ascore was
constructed based on 37 m6A-related prognostic genes: a high m6Ascore was characterized
by significant enrichment of the WNT and EMT pathways, immunosuppression, poor
prognosis, and an immune-desert phenotype; a low m6Ascore was characterized by an
immune-inflamed phenotype.

Subsequently, we verified the prognostic ability of the m6Ascore in two breast cancer
datasets, METABRIC and GSE3494, and found that the m6Ascore could significantly differ-
entiate patient survival. Finally, we found that the m6Ascore can predict clinical response
to immunotherapy in two immunotherapy cohorts: IMvigor21 (anti-PD-L1 Cohort) and
GSE78220 (anti-PD-1 Cohort). The m6Ascore was significantly higher in CR/PR patients
than in PD/SD patients in both immunotherapy cohorts, and TMB was positively corre-
lated with m6Ascore. This suggests that patients with high m6Ascore have a better clinical
response to immunotherapy.

There are interactions between immune cells, which jointly affect the entire TME.
Orchestrating immune responses by CD4 and CD8 T cells was unraveled by a study
carried out by the group of Hans Schreiber, interrogating the cooperation of CD4 and
CD8 T cell responses in a model of bystander killing of cancer. Tumor-specific CD4 T
cells provide signals for CD8 T cells to destroy tumor cells and effectively inhibit tumor
development. Only these two cells act in concert to produce the effect of inhibiting tumor
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progression. If the tumor microenvironment has a large number of CD8 T cells, the
lack of tumor-specific CD4 T cells will not be able to mount an immune response and
therefore will not destroy the tumor cells. Similarly, only large numbers of CD4 T cells were
present, but tumor growth was not inhibited without large numbers of CD8 T cells [35].
The infiltration level of activated CD4 T cells was higher in the m6Acluster 1 group and
the high m6Ascore group. However, the infiltration level of CD8 T cells was lower in
m6Acluster 1 group and the high m6Ascore group, which affected the synergistic effect of
the two cells and prevented them from producing effective immune responses. Therefore,
activated CD4 T cells did not contribute to immunity in the m6Acluster 1 group or the high
m6Ascore group.

Type 2 T helper cells usually work in concert with eosinophils and macrophages to
produce immunity against tumors. In addition, some studies have shown that Type 2 T
helper cells can promote the development and metastasis of cancer [36]. The infiltration
level of Type 2 T helper cells was higher in m6Acluster 1 group and the high m6Ascore
group. However, the infiltration levels of eosinophils and macrophages was lower in
m6Acluster 1 group and high m6Ascore group, which leads to the influence of synergism
and the inability to produce effective immune response. Therefore, Type 2 T helper cells do
not contribute to immunity in the m6Acluster 1 group or the high m6Ascore group.

In conclusion, a comprehensive analysis of multiple m6A mediator-mediated mod-
ification patterns can provide a more accurate prognosis for patients. It is helpful to
understand the m6A regulator-mediated complex characteristics of the mediation of TME
cell infiltration. The m6Ascore we constructed can distinguish the characteristics of immune
infiltration in patients and successfully predict patient survival; it can also distinguish
tumor stage and is significantly correlated with TMB. Finally, the m6Ascore can also pre-
dict a patient’s immunotherapy responses. Therefore, the m6Ascore can elucidate the
correlation between m6A and complex TME and the search for better individual-specific
immunotherapy strategies. We hope that these findings can be validated in additional
clinical cohorts to improve their prediction accuracy.

4. Materials and Methods
4.1. Data

RNA-seq data and clinical information data of 16 cancer types were downloaded
from The Cancer Genome Atlas (TCGA) database (http://tcga-data.nci.nih.gov/tcga/
(accessed on 22 March 2022)); the number of samples for each cancer is shown in Table 1.
The GSE3494 dataset, which included 251 breast cancer samples, was downloaded from
the Gene-Expression Omnibus (GEO) database. The RNA-seq and clinical data of 1904
breast cancer patients were downloaded from the METABRIC database, and each patient’s
m6Ascore was validated. We also downloaded two immunotherapeutic cohorts to inves-
tigate the association between m6Ascore and immunotherapy outcomes. The first one
was the IMvigor210 cohort, including 348 samples (advanced urothelial cancer with anti-
PD-L1 antibody altezolzumab) from the R package “IMvigor210”, and the second was
the GSE78220 cohort, including 27 samples (metastatic melanoma treated with anti-PD-1
antibody Pembrolizumab) from the GEO database. The flowchart of this study is shown
in Figure 9.

4.2. Unsupervised Clustering of 20 m6A Regulators

We obtained 20 m6A regulatory factors based on previously published literature.
The 20 regulators include nine writers (METTL3/14/16, WTAP, RBM15, RBM15B, VIRMA,
CBLL1, and ZCCHC4), nine readers (ELAVL1, YTHDC1, YTHDC2, HNRNPC, IGF2BP1/2/3,
RBMX, and FMR1) and two erasers (FTO and ALKBH5). Based on the expression of these
20 m6A regulators, we performed an unsupervised cluster analysis using the PAM method
in the R package “ConsensusClusterPlus”, which was repeated 1000 times to identify
different m6A modification patterns [37].

http://tcga-data.nci.nih.gov/tcga/
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Table 1. Number of samples of 16 types of cancer downloaded from TCGA databases.

Cancer Type Normal Samples Tumor Samples

Bladder Urothelial Carcinoma (BLCA) 408 19
Breast invasive carcinoma (BRCA) 1102 113
Cervical squamous cell carcinoma

and endocervical
adenocarcinoma (CESC)

306 3

Cholangiocarcinoma (CHOL) 36 9
Colon adenocarcinoma (COAD) 287 41
Head and Neck squamous cell

carcinoma (HNSC) 522 44

Kidney Chromophobe (KICH) 66 25
Kidney renal clear cell carcinoma (KIRC) 534 72

Kidney renal papillary cell carcinoma (KIRP) 291 32
Liver hepatocellular carcinoma (LIHC) 374 50

Lung adenocarcinoma (LUAD) 517 59
Lung squamous cell carcinoma (LUSC) 502 51

Prostate adenocarcinoma (PRAD) 498 52
Stomach adenocarcinoma (STAD) 415 35

Thyroid carcinoma (THCA) 513 59
Uterine Corpus Endometrial Carcinoma (UCEC) 177 24

Total 6548 688
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4.3. Gene Set Variation Analysis (GSVA)

We downloaded the “C2.cp.kegg.v7.4. symbols” gene set from MSigDB database,
which contains 186 KEGG pathways. Mariathasan et al. constructed some sets of genes
related to biology, including EMT markers (including EMT1, EMT2, and EMT3), antigen
processing and presentation (APAP), cell cycle, nucleotide excision repair (NER), angio-
genesis, CD8 T-effector signature, the Wnt pathway, the TGF-β pathway, DNA replication,
and DNA damage repair (DDR) (Table S8) [22,38,39]. These gene sets were used to explore
the correlation between m6A modification patterns and biological pathways. We used the
R package “GSVA” for GSVA enrichment analysis to analyze the differences in biologi-
cal functions of different m6A clusters. Functional annotation of m6A-related genes was
performed using the R package “ClusterProfiler”.
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4.4. Estimation of TME Cell Infiltration

We used ssGSEA (single-sample gene set enrichment analysis) to quantify the infiltra-
tion levels of 28 immune cells in pan-cancer TME (Table S9). The gene set of 28 immune
cells came from Charoentong’s study, including 13 innate immune cells and 15 adaptive
immune cells [40]. The R package “ESTIMATE” was further used to assess the immune
score and stromal score for each sample.

4.5. Generation of m6A Gene Signature

We constructed the m6Ascore to quantify the m6A modification pattern of an individ-
ual pan-cancer patient. The R package “LIMMA” was used to select the DEGs between
different m6A modification patterns (|log2fold change| > 1, adjusted p < 0.05). Then, a
univariate Cox proportional hazards model was constructed based on the DEGs. The genes
with p < 0.05 were selected as DEGs with a significant prognosis for further analysis. Finally,
PCA was used to construct the m6Ascore:

m6Ascore = ∑
i
(PC1i + PC2i) (1)

where i is the expression value of each m6A-related prognostic gene.

4.6. Statistical Analysis

A Kaplan-Meier survival curve was plotted using the “Survival” package and
“SurvMiner” package in R/Bioconductor 3.13 (https://www.bioconductor.org/ accessed
on 15 September 2022). The R package “ezcox” constructed univariate Cox proportional
Hazards model, p < 0.05, was considered to have a significant effect on survival. Spearman’s
correlation coefficient was used to analyze the correlation between m6A regulators and im-
mune cell infiltration in TME. Patients were divided into high-score and low-score groups
based on m6Ascore using the R package “Maxstat.” All data analysis was performed using
R4.1.0 software.

5. Conclusions

In this study, we comprehensively analyzed 16 different cancer types in the TCGA
database based on 20 m6A regulators to identify different m6A modification patterns. First,
a separate prognostic analysis was performed for each regulator. Second, two different
m6A modification patterns were determined. Finally, the individual-specific m6Ascore was
constructed. This was validated in two breast cancer datasets and two immunotherapy
cohorts. Studies have assessed the m6Ascore construction based on m6A regulators, but
they have only been analyzed in a single cancer, such as glioblastoma, hepatocarcinoma,
gastric cancer, or pancreatic cancer [18–21]. We performed a comprehensive analysis of
m6A regulator-mediated methylation modification patterns and TME characterization in
16 types of cancer. The results demonstrated that different m6A modification patterns had
significant differences in patient prognosis and immune infiltration in TME. The m6Ascore
is also a good predictor of patient survival, which is helpful for immunotherapy. Our
study demonstrated that m6A modifications could influence TME infiltration, which is
closely related to tumor occurrence and development. Therefore, studies assessing m6A
regulator-mediated methylation modification patterns and TME infiltration characteriza-
tion in pan-cancer can elucidate the relationship between m6A modification patterns and
TME infiltration characterization and identify more effective immunotherapy strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911182/s1.
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39. Şenbabaoğlu, Y.; Gejman, R.S.; Winer, A.G.; Liu, M.; Van Allen, E.M.; de Velasco, G.; Miao, D.; Ostrovnaya, I.; Drill, E.;
Luna, A.; et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and
immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016, 17, 231. [CrossRef]

40. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Im-
munogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.
Cell Rep. 2017, 18, 248–262. [CrossRef]

http://doi.org/10.3389/fimmu.2021.653711
http://doi.org/10.3389/fcell.2021.687756
http://doi.org/10.1186/s12885-021-08550-9
http://doi.org/10.1186/s12943-020-01170-0
http://www.ncbi.nlm.nih.gov/pubmed/32164750
http://doi.org/10.1038/nature25501
http://www.ncbi.nlm.nih.gov/pubmed/29443960
http://doi.org/10.1101/cshperspect.a022236
http://www.ncbi.nlm.nih.gov/pubmed/28108486
http://doi.org/10.3389/fimmu.2019.02293
http://doi.org/10.4049/jimmunol.1601515
http://doi.org/10.1186/s13046-021-01871-4
http://doi.org/10.1089/cbr.2021.0226
http://doi.org/10.1038/s41420-021-00703-w
http://doi.org/10.3389/fmolb.2022.842833
http://doi.org/10.1016/j.immuni.2018.03.023
http://doi.org/10.1002/stem.3279
http://doi.org/10.7150/thno.45178
http://www.ncbi.nlm.nih.gov/pubmed/32802173
http://doi.org/10.1038/s41590-020-0650-4
http://www.ncbi.nlm.nih.gov/pubmed/32284591
http://doi.org/10.1093/annonc/mdw217
http://www.ncbi.nlm.nih.gov/pubmed/27207108
http://doi.org/10.1007/s00018-017-2686-7
http://www.ncbi.nlm.nih.gov/pubmed/29032503
http://doi.org/10.3389/fimmu.2021.632581
http://www.ncbi.nlm.nih.gov/pubmed/34135885
http://doi.org/10.1093/bioinformatics/btq170
http://doi.org/10.1016/S0140-6736(16)00561-4
http://doi.org/10.1186/s13059-016-1092-z
http://doi.org/10.1016/j.celrep.2016.12.019

	Introduction 
	Results 
	The Landscape of m6A Regulators in Pan-Cancer 
	m6A Regulator-Mediated Methylation Modification Patterns in Pan-Cancer 
	Correlation between m6A Modification Patterns and Cell Infiltration Characteristics of TMEin Pan-Cancer 
	m6A Gene Signature Subtypes 
	m6Ascore and Performance Validation 

	Discussion 
	Materials and Methods 
	Data 
	Unsupervised Clustering of 20 m6A Regulators 
	Gene Set Variation Analysis (GSVA) 
	Estimation of TME Cell Infiltration 
	Generation of m6A Gene Signature 
	Statistical Analysis 

	Conclusions 
	References

