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Abstract
Objective  The aim of this study was to examine, after 
setting several restorations, the influence of adjusted 
occlusal interference during gum chewing on blood flow 
in the prefrontal area as determined using near-infrared 
spectroscopy.

Material and methods  The physiological rate was 
assessed using a visual analog scale (VAS) questionnaire. 
We selected 16 patients who desired prosthetic restor-
ative treatment on the lateral dentition, and eight healthy 
volunteers. Subjects were divided into three eight-person 
groups. One group received restorations on the premo-
lar area (PA), another group received restorations on the 
molar area (MA), and the control group (CT) received no 
prosthetic restorations. The spectroscope was fastened to 
the frontal region of the head after placement of the final 
restoration, but before adjustment.

Results  Pre-adjustment (first gum chewing for CT) 
blood flow in the prefrontal cortex was measured dur-
ing gum chewing. Blood flow was again measured during 
gum chewing after the restoration (second gum chewing 
for CT) had been adjusted in accordance with the subjec-
tive assessment of the patient while wearing the device. 
The VAS provided quantification of comfort during gum 
chewing before and after restoration adjustment. For 
the PA and MA groups, adjusting restorations decreased 
discomfort significantly during gum chewing. Moreover, 
in the MA group, prefrontal blood flow was significantly 
reduced, and blood flow correlated with discomfort.

Conclusions  Activation of the prefrontal area may 
provide an objective criterion for judging the functional-
ity of occlusion after prosthetic occlusal reconstruction 
and/or orthodontics.

Keywords  Chewing  · Occlusal adjustment  · Prefrontal 
cortex · Restorations · Stress

 Introduction

Various prosthetic restorations are fabricated and fitted 
in clinical dentistry with the aim of restoring occlusal 
function. Once the restoration is attached, however, final 
occlusal adjustments are typically made based on subjec-
tive feedback from the patient, rather than on the basis of 
objective evidence gathered by dental technicians.

Some studies have reported that many patients with 
malocclusion complaints experience comorbid men-
tal stress and somatic symptoms [1–3]. Additional stud-
ies have suggested that malocclusion may be linked to 
higher brain function [4–6]. An experimental animal 
study induced occlusal disharmony in rats by attach-
ing metal wires to the biting surfaces of both maxillary 
molar teeth with resin cement to artificially raise the ver-
tical dimension of occlusion (VDO). This experimental 
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occlusal interference in rats caused chronic stress and 
altered long-term potentiation (LTP) of the hippocampus 
by triggering significant increases in plasma concentra-
tions of the stress hormones corticosterone and norepi-
nephrine [7]. Another study investigated the effects of 
experimental malocclusion in humans using functional 
magnetic resonance imaging (fMRI). That study found 
that changes in malocclusion were promptly recognized 
by the upper central nervous system as afferent informa-
tion, subsequently activating the amygdala, anterior cin-
gulate cortex, insula, and prefrontal cortex (PFC), all of 
which are involved in emotional processing and regula-
tion. This resulted in feelings of discomfort as indicated 
by visual analog scale (VAS) scores [5]. Another fMRI 
study revealed that the severity of malocclusion corre-
lates to PFC activity, which is involved in emotion [6]. 
These findings suggest that, if not performed properly, 
irreversible occlusal treatment (such as prosthodontic 
and orthodontic treatments) may act on higher brain 
function to produce chronic stress and other adverse 
somatic effects.

The PFC has been reported not only to be involved 
in various cognitive functions and emotions, but also to 
play important roles in controlling the autonomic ner-
vous system and endocrine system involved in stress 
responses [8]. Neuroimaging studies have revealed that 
the medial prefrontal cortex (mPFC) is involved in emo-
tional processing of stress [9, 10].

Current methods used to measure human brain func-
tion in medical and clinic research include positron 
emission tomography (PET), magnetoencephalography 
(MEG), fMRI, and near-infrared spectroscopy (NIRS). 
These neuroimaging techniques have also been used in 
the field of dentistry to study the effects of various oral 
functions on the brain [4, 5, 11–20]. However, the results 
of this research have yet to be translated into clinical den-
tal applications, since the aforementioned systems are 
often expensive and difficult to operate, while fMRI and 
MEG require the patient’s head to be secured and the 
patient’s posture to be limited. NIRS, on the other hand, 
is a noninvasive technique that can be used to measure 
brain activity via changes in cerebral blood flow (mainly 
in the cerebral cortex) by monitoring hemoglobin con-
centrations using near-infrared light [21]. NIRS devices 
can also be miniaturized to suit specific purposes, allow-
ing brain activity to be assessed with the subject in any 
body position and without having to remain perfectly 
still.

The present study used a compact NIRS model (Opti-
cal Encephalography Spectratech OEG-16; Spectrat-
ech, Kanagawa, Japan) with the aim of collecting data 
for development of a system to provide straightforward, 
objective feedback on occlusal treatment and brain func-
tion that can be used during treatment in clinical den-
tal settings. Changes in mPFC activity were measured 
by having patients chew gum before (i.e., baseline) and 
after final occlusal adjustment of the prosthetic restora-
tion while wearing the OEG-16 head module. We also 
attempted to identify areas of brain activity representing 

useful, objective occlusal indicators by examining corre-
lations with subjective assessment of masticatory func-
tion using a VAS.

Material and methods

Subjects

Subjects comprised 16 patients attending a general den-
tal clinic (seven7 men, mean age, 52.4 ± 20.1 years, range, 
32–85  years; nine women, mean age, 42.7 ± 12.3  years, 
range, 24–70  years; total mean age, 46.9 ± 16.3  years, 
range, 24–85 years) who were scheduled to undergo final 
fitting of a prosthetic appliance to a molar or premo-
lar tooth and eight healthy volunteers (four men, mean 
age, 31.75 ± 2.36 years, range, 30–35 years; four women, 
mean age, 28 ± 1.2 years, range, 27–29 years; total mean 
age, 29.88 ± 2.6 years, range, 27–35 years) without previ-
ous history of orthodontic or prosthodontic treatment. 
Written informed consent was obtained from all patients 
and volunteers after explaining the details of the study, 
including the aims, contents, and potential risks. Sub-
jects were divided into a molar group (n = 8), a premo-
lar group (n = 8), and a control group (n = 8) according to 
the restoration site. Table 1 shows patient sex and age, in 
addition to the site and type of restoration. This study was 
conducted with the approval of the ethics review board at 
Kanagawa Dental University (Approval no. 158).

Measurement of cerebral blood flow

The aim of the present study was to identify a method 
by which the quality of clinical dental treatment can be 
determined by focusing on brain activity in the pres-
ence or absence of an experience. Therefore, the OEG-
16 unit was chosen from among various NIRS devices 
based on its ability to selectively measure PFC activity, 
in addition to the compact design and simple operation 
(Fig. 1a). To measure changes in cerebral blood flow in 
the PFC, we applied probes using the International 10/20 
system commonly used in electroencephalography [22]. 
The sagittal line was determined by drawing a line from 
the nasion to the inion. Next, a point 10 % superior to the 
nasion on this line was taken as the front polar position 
(Fpz). A line passing through the nasion, pre-auricular 
point, and inion was then drawn as a horizontal refer-
ence line. The OEG-16 head unit was attached so that the 
bottom lines of the probe were parallel to the horizontal 
reference line, and the probe of the center of the bottom 
line was located at the Fpz.

Study design

After final fitting of the restoration but before adjust-
ment, the OEG-16 unit was attached and the patient was 
instructed to remain still in a dental chair with eyes closed 
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ration was set with resin-modified glass-ionomer cement 
(GC Fuji Luting, Tokyo, Japan). Postadjustment measure-
ment was then performed with the OEG-16 unit attached 
based on the sequence described above. The mean 
(± standard deviation) interval between pre- and postad-
justment measurements was 17.4 ± 6.2  min. Exactly the 
same experimental protocol was applied for the control 
group except no prosthetic restoration was performed. 
Instead of adjustment, control group subjects remained 
seated in the dental chair for the mean adjustment time 
(17.4 min) between the first gum-chewing measurement 
(as surrogate for preadjustment) and the second gum-
chewing measurement (as surrogate for postadjustment).

(Fig.  1b). Baseline preadjustment measurement con-
sisted of a 30-s rest phase during which the patient was 
instructed not to move, followed by a 20-s chewing phase 
in which the patient was required to chew a piece of gum 
(1.5 g, Free Zone; Lotte, Tokyo, Japan) in order to quantify 
mastication-induced blood flow in the PFC. The patient 
was required to chew at about 1 Hz, representing a nor-
mal adult chewing rate as determined by reference to a 
previous study [23]. Finally, after stopping gum chewing, 
another 30-s rest phase was provided. This measurement 
sequence was repeated a total of three times (Fig.  1c). 
After the restoration had been adjusted in accordance 
with the subjective assessment of the patient, the resto-

Table 1  Sex, age, and restoration type ([.e., inlay with vital pulp or full cast crown (FCC) with dead pulp] for each patient, ac-
cording to restoration site (i.e., molar or premolar)

Molar Sex Age Restration site/

type

Premolar Sex Age Restration site/

type

M1 Male 32 Upper right 7/
inlay

P1 Male 75 Upper left 4/FCC

M2 Male 85 Lower right 7/
FCC

P2 Male 38 Upper left 5/inlay

M3 Male 46 Lower right 6/
FCC

P3 Male 52 Lower left 5/FCC

M4 Male 39 Lower left 7/FCC P4 Female 24 Upper right 5/
FCC

M5 Female 40 Upper right 6/
inlay

P5 Female 34 Lower left 5/inlay

M6 Female 41 Lower right 7/
FCC

P6 Female 70 Lower left 5/inlay

M7 Female 41 Lower left 6/FCC P7 Female 44 Upper left 5/FCC

M8 Female 47 Lower right 7/
inlay

P8 Female 43 Upper left 5/FCC

Fig. 1  Attachment of the near-
infrared spectroscopy system 
(OEG-16). a Optical encepha-
lography was performed using 
the OEG-16. b The compact 
design and simple attachment 
and removal of the device 
enabled simple measure-
ment even during treatment. 
c This block design task was 
repeated three times each 
before and after adjustment of 
the restoration. Patients were 
instructed to remain still for 
the first 30 s and to chew a 
piece of gum for the next 20 s. 
d Patients were also asked to 
assess the level of discomfort 
when chewing a piece of gum 
before and after adjustment 
by selecting a score of 0–10 
on a visual analog scale (VAS)
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Results

Figure  2 shows results for patient M3 before and after 
adjustment of the restoration. Data from all channels 
were included in the study results, except for channels 
1–3 and 14–16, which were deemed to show interference 
in the NIRS signal due to temporalis muscle activity from 
gum chewing. Patients were divided into the molar and 
premolar groups, after which group analyses were per-
formed using data obtained from channels 4–13 before 
and after occlusal adjustment. These results showed that, 
compared with baseline, brain activity declined signifi-
cantly in channel 10 of the molar group after adjustment, 
whereas no significant changes were seen in the pre-
molar group. Intergroup comparison of brain activity in 
channel 10 revealed a significantly higher level of brain 
activity in the molar group compared with the premolar 
and control groups (Fig. 3a), both before and after adjust-
ment. Two-way ANOVA revealed a significant difference 
(p < 0.05) among the molar group and the premolar and 
control groups.

Meanwhile, intragroup comparison of subjective 
patient assessments for mastication (i.e., VAS scores) 
indicated a significantly higher level of discomfort at 
baseline compared with postadjustment in both the 
molar and premolar groups, while intergroup compari-
son failed to reveal any significant differences (Fig. 3b). 
Two-way ANOVA did not detect any difference between 
the molar and premolar groups. No significant differ-
ences were seen in the control group between the first 
and second gum chewing.

Moreover, the correlation between PFC activity and 
VAS score after fitting the restoration was significantly 
positive only in the molar group (molar group: r = 0.73, 

Subjective assessment

Subjective patient assessment of mastication before and 
after occlusal adjustment was achieved by assigning a 
VAS score of 0–10, with 0 indicating “very comfortable” 
and 10 denoting “very uncomfortable” (Fig.  1d). The 
resulting data were subjected to one-way or two-way 
repeated measure analysis of variance (ANOVA) using 
grouping as the key variable when appropriate, and mul-
tiple comparison testing using Fisher’s protected least-
significant difference (PLSD). The significance level was 
set at 5 %.

Analysis of correlation between brain activity data 
and VAS scores

Oxygenated hemoglobin (oxy-Hb) was used as an indi-
cator of brain activity owing to its strong correlation 
with neural activity [24, 25]. Oxy-Hb values recorded in 
all NIRS channels during chewing phases before and 
after occlusal adjustment were averaged and subjected 
to one- or two-way repeated-measures ANOVA using 
grouping as the key variable when appropriate, and 
multiple comparison testing with Fisher’s PLSD (< 5 % 
significance level). The correlation between VAS score 
and brain activity was then statistically analyzed using 
Pearson’s product moment correlation coefficient (r; 
< 5 % significance level). All statistical analyses were per-
formed using the Statcel statistical package (Statcel 3; 
OMS, Tokorozawa, Japan).

Fig. 2  Example of patient 
brain activity before and after 
adjustment of fitted restora-
tion. This figure shows brain 
activity data for patient M3 
while chewing gum before 
and after adjustment of the 
restoration. Analysis was per-
formed using data from chan-
nel 10 (red boxes), indicating 
brain activity in the medial 
prefrontal cortex, which is 
considered to be closely as-
sociated with stress response. 
The green line in each graph 
represents total hemoglobin 
(total-Hb), while the red line 
represents oxygenated hemo-
globin (oxy-Hb) and the blue 
line represents deoxygenated 
hemoglobin (deoxy-Hb)
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16 head unit was easy to attach to the PFC and could be 
worn while the patient chewed gum and when occlu-
sal adjustment was being performed, suggesting that it 
could be used to develop an instantaneous feedback sys-
tem capable of real-time assessment of brain activity in 
clinical settings.

A previous study evaluated changes in global brain 
activity during clenching using fMRI and discomfort 
using VAS with an unmodified control splint or a cus-
tom-made splint to force the mandible into a retrusive 
position [6]. As a result, we traced the sensory perception 
of discomfort associated with retrusion of the mandible 
to the amygdala and PFC. Located in the cortical region 
at the rostral end of the frontal lobe, the PFC is respon-
sible for higher cognitive abilities [26] in addition to the 
perception of stress. When we perceive stress, sensory 
gating (which is partly mediated by the PFC) plays an 
important role in filtering effects [27]. Furthermore, the 
mPFC, located in the frontal pole of the PFC, is believed 
to be involved in regulating body response to stress by 
receiving input from the limbic system, including the 

p < 0.01; premolar group: r = 0.23, p = 0.3753; control 
group: r = 0.024, p = 0.969) (Fig. 4).

Discussion

Modern prosthetic restorations are fabricated, fitted, 
and adjusted with the aim of restoring occlusal function. 
However, in most cases, the ultimate goal of occlusal ther-
apy is comfort as determined by the subjective assess-
ment of the patient. The present study therefore sought 
to gather basic data for the development of an objective 
chair-side occlusal therapy feedback system. Gum chew-
ing was used to examine the effects that changes in VDO 
before and after occlusal adjustment of a fitted prosthetic 
restoration had on both PFC activity and questionnaire-
based psychological assessments.

All patients were studied at a general dentistry clinic 
using the OEG-16, which was deemed to be more ver-
satile and portable than other functional neuroimaging 
systems, in order to assess clinical feasibility. The OEG-

Fig. 4  Correlation between brain activity and VAS score. Scattergrams show correlations between medial prefrontal cortex brain 
activity and VAS assessment of discomfort in the molar group (a; n = 8), premolar group (b; n = 8), and control group (c; n = 8)

 

Fig. 3  Brain activity and VAS scores before and after adjust-
ment of fitted restoration. a Results of near-infrared spec-
troscopy monitoring of medial prefrontal cortex brain activity 
while chewing gum before and after adjustment or first gum 
chewing or second gum chewing. b Subjective patient as-

sessment of discomfort while chewing gum before and after 
adjustment, for the molar group (n = 8), premolar group (n = 8), 
and control group (n = 8). Values are expressed as mean ± 
standard deviation
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morphology, maxillomandibular relationship, and arch 
form is essential.

The present findings suggest that monitoring PFC 
activity using NIRS may enable objective assessment of 
discomfort for occlusal treatment involving the molar 
regions.
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