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Abstract
Modeling is a useful tool for investigating various biophysical characteristics of neurons. Recent simulation
studies of propagating action potentials (spike conduction) along axons include the investigation of neuronal
activity evoked by electrical stimulation from implantable prosthetic devices. In contrast to point-neuron simu-
lations, where a large variety of models are readily available, Hodgkin–Huxley-type conductance-based models
have been almost the only option for simulating axonal spike conduction, as simpler models cannot faithfully
replicate the waveforms of propagating spikes. Since the amount of available physiological data, especially in
humans, is usually limited, calibration, and justification of the large number of parameters of a complex model is
generally difficult. In addition, not all simulation studies of axons require detailed descriptions of nonlinear ionic
dynamics. In this study, we construct a simple model of spike generation and conduction based on the
exponential integrate-and-fire model, which can simulate the rapid growth of the membrane potential at spike
initiation. In terms of the number of parameters and equations, this model is much more compact than
conventional models, but can still reliably simulate spike conduction along myelinated and unmyelinated axons
that are stimulated intracellularly or extracellularly. Our simulations of auditory nerve fibers with this new model
suggest that, because of the difference in intrinsic membrane properties, the axonal spike conduction of
high-frequency nerve fibers is faster than that of low-frequency fibers. The simple model developed in this study
can serve as a computationally efficient alternative to more complex models for future studies, including
simulations of neuroprosthetic devices.
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Significance Statement

Conduction of electrical impulses (action potentials) along the axon is essential for information transfer
between neurons. Simulation studies of propagating action potentials, which earlier focused on the
biophysical mechanisms of conduction, have progressed to investigations of pathologic malfunctions of
nerves and electrical stimulations via prostheses. In contrast to dimensionless, single-neuron modeling, for
which a number of different approaches are available, simulation of nerve conduction generally requires a
complex model of ionic conductances to reproduce propagating action potentials. In this study, we present
a simplified phenomenological model of axonal conduction with increased computational efficiency and a
reduced number of parameters. This simple model can be used as an alternative to conventional models,
especially for applications including prosthetic simulations of nerve conduction.
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Introduction
Since Louis Lapicque (Lapicque, 1907) first introduced

its underlying idea of parallel capacitor and leak resistor in
combination with threshold crossing, the integrate-and-
fire (IF) model has served as a useful tool to simulate
spiking activity of neuronal membranes. Even after the
detailed ionic dynamics underlying spike generation were
discovered and modeled with a more complex con-
ductance-based description (Hodgkin and Huxley, 1952),
the IF model and its variations are still frequently used as
a convenient alternative to Hodgkin–Huxley (HH)-type
models, especially when computational efficiency and
mathematical transparency are required. Applications of
the IF model include large-scale simulations of a neuronal
network, and rigorous analysis of neuronal spiking re-
sponses driven by random synaptic inputs (for represen-
tative examples, see Koch, 1999; Gerstner et al., 2014).

Within the family of IF-type models, various nonlinear
versions have been created (Gerstner et al., 2014). For
instance, the exponential IF (EIF) model was introduced to
describe the exponential growth of the membrane poten-
tial at spike initiation (Fourcaud-Trocmé et al., 2003). Its
subthreshold response properties to stimulus current in-
jections remain largely unchanged from the Wang–Buz-
sáki (WB) model, which itself is a modification of the HH
model (Wang and Buzsáki, 1996). In the category of
single-compartment models, a modified version of the EIF
model was shown to replicate the rapid initiation of action
potentials even better than more detailed HH-type models
(Brette, 2015). Although the EIF model was originally cre-
ated to simulate the spiking activity of cortical neurons, its
variations are now used to simulate a wider range of cells
[auditory nerve (AN) fibers: Rutherford et al., 2012; Joshi
et al., 2017; visuomotor system: Morén et al., 2013; cer-
ebellar Purkinje cell: Ostojic et al., 2015; optic nerves:
Arancibia-Cárcamo et al., 2017].

In the domain of single-compartment models, several lev-
els of abstraction are possible: from biophysical con-
ductance-based descriptions equipped with a variety of ion
channels, via IF-type models with intermediate complexity,
to more phenomenological “black-box” approaches that
focus solely on the input-output functions (Herz et al., 2006).
This gradient of biological plausibility and computational
efficiency enables a user to select an appropriate single-
compartment model depending on the specific purpose of
modeling (Ashida et al., 2017). In contrast, for multicompart-
ment neuronal modeling, in which multiple nonlinear excit-
able units are connected with each other, HH-type models

are normally the only options, since the abrupt reset of the
membrane potential in an IF-type model is generally incom-
patible with spatially propagating electrical activity over the
modeled membrane. Earlier studies using multicompart-
ment spiking neuron models simulated the conduction of
action potentials along the axon. For myelinated axons, for
example, each node of Ranvier was modeled as a HH-type
excitable compartment that was interconnected with an ax-
ial resistance (FitzHugh, 1962; Brill et al., 1977; Moore et al.,
1978). For unmyelinated axons, the HH model was com-
bined with the cable equation to account for the spatial
extension of the axon (Cooley and Dodge, 1966). Compart-
mental models of spike conduction were later applied to
simulate, for example, pathologic changes of axons (Cog-
gan et al., 2010; Brown and Hamann, 2014) and the inter-
action between nerves and prosthetic devices (for a review,
see Rattay et al., 2003).

Despite the general success of HH-type models in re-
producing axonal spike conduction, not all simulation
studies actually require the detailed descriptions of ion
channel dynamics. Moreover, neurophysiological data
from humans, in particular for single-cell properties, are
usually sparse, making it difficult to calibrate or justify the
parameters of a model used for prosthetic nerve simula-
tions. Recent prosthetic modeling aims to simulate tens of
nodes in thousands of nerves distributed three-dimen-
sionally (Nogueira et al., 2016), which requires the efficient
model representation of excitable units. In this study, we
propose a simple model of action-potential propagation
along the axon based on the EIF model of spike gen-
eration. The model has much fewer parameters than the
HH model but still faithfully reproduces axonal spike
conduction. As an example application, we fit the
model to known physiological data from ANs. Our sim-
ulated conduction velocities match the experimentally
measured range in AN fibers, confirming the applicabil-
ity of the model. We expect that the model introduced
in this study will serve as a simpler replacement for the
HH model especially when computational performance
and structural simplicity are preferred over the biophys-
ical details of spike generation.

Materials and Methods
Overview of the three models

In this article, we compare three types of spiking mem-
brane models: (1) the WB model, a variation of the HH
model, having nonlinear sodium and potassium conduc-
tances (Wang and Buzsáki, 1996); (2) the original version
of the EIF model (Fourcaud-Trocmé et al., 2003), which
we refer to as the standard EIF (sEIF) model; and (3) a
modified version of the EIF model, called the bounded EIF
(bEIF) model, with a “ceiling” for the spike-generating,
depolarizing current. The sEIF model was originally cre-
ated (and fitted) to study the spike generation of the WB
model (Fourcaud-Trocmé et al., 2003), and we here intro-
duce the bEIF model as a modification of the sEIF model
to account for axonal spike conduction.
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All these models share an equation of the form:

Cm
d
dt

V(t) � GL(EL � V) � �(V) � Iinj, (1)

where Cm is the membrane capacitance, GL is the time-
and voltage-independent (linear) leak conductance, EL is
the leak reversal potential, Iinj is the intracellularly injected
current, and �(V) is a nonlinear function of the membrane
potential V responsible for spike generation. In the WB
model, �(V) is a sum of sodium INa and potassium IK
currents:

�(V) � INa � IK. (2a)

The activation/inactivation kinetics of these currents are
described by three additional differential equations
(Table 1). In the sEIF model, �(V) is equal to the depolar-
izing current Idep:

�(V) � Idep , (2b)

which is an exponential function of the membrane poten-
tial V describing the exponential growth of the membrane
potential at spike initiation (Table 2). The after-spike re-
polarization in the sEIF model is simply a reset of V to the
resting membrane potential. In the bEIF model, �(V) is a
sum of depolarizing Idep and repolarizing Irep currents:

�(V) � Idep � Irep. (2c)

The depolarizing current Idep represents the exponen-
tially growing, inward current for spike initiation, while the
repolarizing current Irep corresponds to the outward cur-
rent responsible for after-spike repolarization (Table 3).
More detailed descriptions of each model are provided
below. As in the previous work, in which the sEIF model
was first introduced (Fourcaud-Trocmé et al., 2003), we

Table 1. Equations and parameters for the single-compartment WB model

Variable Equation
Membrane potential V Cm dV�t�/dt � IL � IK � INa � Iinj

Leak current IL � GL·�EL � V�
Delayed rectifier K current IK � GK·n4·�EK � V�
Fast (transient) Na current INa � GNa·m3h·�ENa � V�
Intracellularly injected current Iinj � 0 (default)
Kinetic equations for channel variables
(y � m, h, or n)

dy�t�/dt � �y�V��1 � y� � �y�V�·y

Rate functions for K activation n �n�V� � 0.05 �V � 34� / �1 � exp���V � 34�/10��
�n�V� � 0.625 exp���V � 44�/80�

Rate functions for Na activation m �m�V� � 0.50 �V � 35� / �1 � exp���V � 35�/10��
�m�V� � 20.0 exp���V � 60�/18�

Rate functions for Na inactivation h �h�V� � 0.35 exp���V � 58�/20�
�h�V� � 5.0 / �1 � exp���V � 28�/10��

Parameter Value
Membrane capacitance density Cm 1.0 �F/cm2

Leak conductance density GL 0.1 mS/cm2

K conductance density GK 15.0 mS/cm2

Na conductance density GNa 35.0 mS/cm2

Leak reversal potential EL -65 mV
K reversal potential EK -90 mV
Na reversal potential ENa �55 mV

Table 2. Equations and parameters for the single-compartment sEIF model

Variable Equation
Membrane potential V Cm dV�t�/dt � IL � Idep � Iinj

Leak current IL � GL·�EL � V�
Spike-generating (depolarizing) current Idep � GLKT exp��V � VT�/KT�
Potential reset after spiking V�t�� ¡ Vreset when V�t�� 	 Vspike

Intracellularly injected current Iinj � 0 (default)

Parameter Value
Membrane capacitance density Cm 1.0 �F/cm2

Leak conductance density GL 0.1 mS/cm2

Leak reversal potential EL -65.3 mV
Threshold for spike-generating current VT -60.2 mV
Slope factor of the spike-generating current KT 3.5 mV
Spike-detecting threshold Vspike �15 mV
Reset potential Vreset -65.3 mV (same as EL)
Refractory period 
ref 2.8 ms
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use the WB model as a reference and compare its re-
sponses with those of the EIF models.

Wang-Buzsáki model
The WB model is a set of nonlinear differential equa-

tions that describe the dynamics of the membrane poten-
tial V(t), the activation m(t) and inactivation h(t) of sodium
channels, and the activation n(t) of potassium channels
(Table 1). While in the original work of Wang and Buzsáki
(1996), the sodium activation was assumed to be instan-
taneous, here we adopted a voltage-dependent time con-
stant for sodium activation as in the original HH model
(Hodgkin and Huxley, 1952). The resulting differences
between instantaneous and time-delayed sodium activa-
tions are generally minor and limited to high-frequency
sinusoidal input currents (Fourcaud-Trocmé et al., 2003).
The membrane parameters we used (Table 1) were taken
from Wang and Buzsáki (1996).

The single-compartment WB model has seven mem-
brane parameters: one membrane capacitance (Cm), three
conductances (GL, GK, GNa), and three reversal potentials
(EL, EK, ENa). In addition, each rate function for channel
activation and inactivation (�m, �m, �h, �h, �n, �n) requires
three parameters (amplitude, reference voltage, and slope
factor). In total, the WB model needs 25 parameters to be
calibrated to fit physiological data.

Standard exponential integrate-and-fire model
The sEIF model, which is a nonlinear modification of the

leaky (linear) IF model, phenomenologically describes the
exponentially increasing sodium inward current at spike
initiation (Fourcaud-Trocmé et al., 2003). Its spike-
generating depolarizing current,

Idep � GLKT exp((V � VT)/KT) , (3)

is characterized by the (soft) threshold VT and the slope
factor KT, which determine the excitability of the model
neuron. Once the membrane potential V crosses the
spike-detection threshold Vspike, it is reset to and held at
the resting potential Vreset for the refractory period 
ref.

The single-compartment sEIF model has eight param-
eters (Table 2). Since the spiking voltage of the sEIF
model quickly diverges to infinity in a finite amount of
time, the spike-detection threshold Vspike does not play a
major role in determining the response property of the
model (Touboul, 2009), thus reducing the effective num-
ber of unconstrained parameters to seven. As in the orig-
inal sEIF study (Fourcaud-Trocmé et al., 2003), the
parameters of the sEIF model in our study were selected
so that the initial part of its spike waveform, including the
subthreshold response (Fig. 1A), its spiking threshold, and
its frequency-current (f-I) relationship resembled those of
the WB model (Fig. 1B).

Bounded exponential integrate-and-fire model
As we will see in the Results, the behavior of the sEIF

membrane potential diverging to infinity (Fig. 1A) is incom-
patible with spike propagation along the axon. Hence, we
replaced the exponential growth term exp((V-VT)/KT) in the
sEIF model (Eq. 3) with AT/(1�AT exp(-(V-VT)/KT)) to set a
ceiling AT for the inward current (Fig. 1C). Thus, in this
modified model, named the bEIF here, the spike-
generating current is written as:

Idep � GLKTAT/(1 � ATexp(� (V � VT)/KT)), (4)

and is bounded as: max(Idep) � GLKTAT. This modification
resulted in a slower (and probably more realistic) voltage
increase near the peak of an action potential while keep-
ing the sub- and near-threshold responses almost identi-
cal to the sEIF model (Fig. 1A).

In contrast to the instantaneous potential reset of the
sEIF model, the bEIF model has an additional repolarizing
current Irep to mimic the downward trajectory of the mem-
brane potential after each spike (Fig 1A; for the equations,
see Table 3). This current is initiated when the potential V
reaches the preset starting voltage Vrep, rapidly over-
whelming the depolarization current (Fig. 1D) to bring the
membrane potential back to the resting level (Fig. 1A). We
used an alpha function for the repolarizing conductance,
since it allows fast and exact calculation at each time step

Table 3. Equations and parameters for the single-compartment bEIF model

Variable Equation
Membrane potential V Cm dV�t�/dt � IL � Idep � Irep � Iinj

Leak current IL � GL·�EL � V�
Spike-generating (depolarizing) current Idep � GLKT AT / �1 � AT exp���V � VT�/KT��
Repolarizing current Irep � Grep�t�·�EL � V�
Starting time of repolarizing current Trep: � t when V�t� 	 Vrep

Repolarizing conductance (for t 	 Trep) Grep�t� � GLArep� �t � Trep� / 
rep�exp�1 � �t � Trep� / 
rep�
Intracellularly injected current Iinj � 0 (default)

Parameter Value
Membrane capacitance density Cm 1.0 �F/cm2

Leak conductance density GL 0.1 mS/cm2

Leak reversal potential EL -65.3 mV
Threshold for spike-generating current VT -60.2 mV
Slope factor of the spike-generating current KT 3.5 mV
Ceiling factor of the spike-generating current AT 520 (no unit)
Starting voltage of repolarization current Vrep �10 mV
Time constant of repolarizing conductance 
rep 0.60 ms
Amplitude factor of repolarizing conductance Arep 90 (no unit)

Theory/New Concepts 4 of 16

July/August 2018, 5(4) e0112-18.2018 eNeuro.org



(Rotter and Diesmann, 1999). Simulated spike shapes
were similar between the single-compartment WB and
bEIF models, except for the slightly narrower spike width
and the lack of after-spike hyperpolarization in the bEIF
model (Fig. 1E). The total membrane currents during a
spike are also comparable between these two models,
both in amplitude and time course (Fig. 1F).

The bEIF model has nine parameters (Table 3): three for
subthreshold responses (Cm, GL, and EL), another three
for spiking (VT, KT, and AT), and the remaining three for
repolarization (Vrep, 
rep, and Arep). In this study, the ceiling
factor AT and three repolarization parameters of the bEIF
model were adjusted to mimic the spike shape (Fig. 1A)
and f-I curve (Fig. 1B) of the WB model, while the other
five parameters were unchanged from the sEIF model. It
should be noted that, unlike the sEIF model, the bEIF
model does not have an explicit refractory period as a
model parameter, because the repolarizing current Irep,
which rapidly overcomes the spike current Idep, effectively
suppresses spike generation for a certain time period. The
length of this “dead time” is determined by the shape
(amplitude and time scale) of the repolarizing current.

Simulating myelinated axons
Myelinated axons were modeled as a series of excitable

units interconnected with an axial resistance (Table 4).
The excitability of each nodal compartment is described
either by the WB model or the bEIF model. For simplicity,

we considered the ideal situation, in which the myelinated
internodes are perfectly insulated (i.e., with negligible ca-
pacitance and transmembrane conductance; McNeal,
1976; Keener and Sneyd, 2009), although simulations
suggested imperfect insulation might affect both excit-
ability and conduction (McIntyre et al., 2002; Young et al.,
2013). Furthermore, we also simply assumed that all ion
channels (of the WB model) are located at the nodes of
Ranvier, despite the accumulating evidence of non-
uniform distribution of ion channels at and around the
node (Hossain et al., 2005; Yi et al., 2010; Kim and
Rutherford, 2016; for reviews, see Salzer et al., 2008;
Debanne et al., 2011; Freeman et al., 2016). The default
parameter values of our myelinated axon model are
shown in Table 4. For each excitable node, we used the
same WB (Table 1) or bEIF (Table 3) description as for the
single-compartment model.

We simulated 141 nodes along a one-dimensional (non-
branching) axon. Stimulus currents (amplitude Iinj � 100
pA, duration T � 1 ms) were injected intracellularly into
the node #20 to evoke action potentials. In simulations
where the axonal diameter D (�m) was changed, the
current amplitude was linearly adjusted with the diameter
as Iinj � (D/2) � 100 pA to securely initiate spikes. To
estimate the conduction velocity, we measured the travel
time between nodes #40 and #90 by calculating the dif-
ference of the times at which the membrane potential
reached its peak at these nodes. Then we divided the
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Figure 1. Response properties of single-compartment models. A, Spike responses of the sEIF (green), bEIF (blue), and WB (gray)
models driven by a step current input. B, f-I curves of the models. Step currents of varied amplitudes were injected and the numbers
of spikes in 1000 ms were calculated. C, Voltage dependence of the exponential growth factors of the sEIF and bEIF models. D,
Depolarizing and repolarizing spike currents of the bEIF model. The horizontal corresponds to the expanded time in A. E, Spike
shapes of the bEIF and WB models. F, Membrane currents of the bEIF and WB models. In E, F, traces are aligned such that time 0
corresponds to the peak timings of the action potentials shown in A.
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distance between the two nodes by the travel time to
obtain the conduction velocity.

Simulating unmyelinated axons
Unmyelinated axons were simulated as a series of ex-

citable elements combined with the cable model (Koch,
1999). While a partial differential equation is used for the
mathematical formulation, the simulated axon is actually
divided into compartments when the propagation of an
action potential is numerically calculated (Cooley and
Dodge, 1966). Table 5 summarizes the equations and
default parameters of the unmyelinated axon model. Sim-
ilarly to the myelinated axon model, we used either the
WB model (Table 1) or bEIF model (Table 3) for each
compartment to simulate the spikes traveling along un-
myelinated axons.

We simulated 301 compartments along a one-
dimensional (non-branching) axon. The length of each
compartment was set to 20 �m, which is sufficiently small
compared to the length constant � � 1.1 mm of this
model axon (calculated as �2 � D/(4GLRax) � 1.25 mm2).
Stimulus currents (amplitude Iinj � 10 nA, duration T � 1
ms) were injected intracellularly into the compartment #50
to evoke action potentials. In simulations where the ax-
onal diameter D (�m) was changed, the current amplitude
was linearly adjusted with the diameter as Iinj � (D/10) �
10 nA, to securely initiate spikes. To estimate the conduc-
tion velocity, we measured the travel time between nodes

#100 and #200 by calculating the difference of the times
at which the membrane potential reached its peak at
these nodes. Then we divided the distance between the
two nodes by the travel time to obtain the conduction
velocity.

Simulating extracellular stimulation
Extracellular stimulation of myelinated nerves can be

simulated similarly to intracellular stimulation by introduc-
ing an additional variable of extracellular potential Uex

(Table 6), which is inversely proportional to the distance r
from the current source (i.e., dimensionless, point elec-
trode) as: Uex � �exIex/(4r), with �ex being the extracel-
lular resistivity and Iex the amount of injected current
(Abzug et al., 1974; McNeal, 1976; Rattay, 1986). The
intracellular axonal current Iaxon is determined by the gra-
dient of intracellular potential Uin, which is the sum of the
membrane potential V and the extracellular potential Uex

(Table 6). The equations for the active and passive mem-
brane currents that depend on the membrane potential
are unchanged from the case of intracellular stimulation
(Table 4).

We simulated 141 nodes along a one-dimensional,
straight axon. To evoke action potentials, stimulus cur-
rents (amplitude Iex � -1 mA, duration T � 0.1 ms) were
injected into the extracellular space located 1 mm away
from the node #20. We tested both the WB and the bEIF
model.

Table 4. Equations and parameters for myelinated axon models

Variable Equation
Membrane potential V (of j-th node) cm

j dVj�t�/dt � ILj � Iactive
j � Iaxon

j � Iinj
j

Leak current ILj � gL
j �EL � Vj�

Active current (for WB model) Iactive
j � INa

j � IKj

Active current (for bEIF model) Iactive
j � Idep

j � Irep
j

Axonal current Iaxon
j � gaxon

j�1 �Vj�1 � Vj� � gaxon
j �Vj�1 � Vj�

Intracellularly injected current Iinj
j � 0 (default)

Membrane capacitance cm
j � DLnCm

Leak conductance gL
j � DLnGL

Axonal resistance raxon
j � 4LiRax / D2

Axonal conductance gaxon
j � 1/Raxon

j � D2 / 4LiRax

Parameter Value
Axon diameter D 2 �m
Nodal length Ln 2 �m
Internodal length Li 200 �m
Axial resistivity Rax 100 � cm

Parameters not listed in this table are unchanged from the single-compartment models (Tables 1, 3).

Table 5. Equations and parameters for unmyelinated axon models

Variable Equation
Membrane potential V Cm�V�t, x�/�t � IL � Iactive � �D / 4Rax���2V / �x2� � Iinj

Leak current IL�x� � GL�EL � V�t, x��
Active current (for WB model) Iactive�x� � INa�x� � IK�x�
Active current (for bEIF model) Iactive�x� � Idep�x� � Irep�x�
Intracellularly injected current Iinj�x� � 0 (default)

Parameter Value
Axon diameter D 10 �m
Axial resistivity Rax 100 � cm

Parameters not listed in this table are unchanged from the single-compartment models (Tables 1, 3).
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Simulating AN axons
As an application of the bEIF model, we simulated spike

conduction along the central axon of the mammalian AN.
The model equations are the same as those for the my-
elinated bEIF axon (Table 4). Here we consider AN fibers
that are tuned to either low frequency (located in the apex
of the cochlea) or high frequency (located in the base of
the cochlea). Table 7 lists the parameters for the low- and
high-frequency AN models, and Table 8 summarizes rel-
evant anatomic and physiological data used for calibrat-
ing the models. Since no physiological data were
available for AN axons, we used values measured in cell
bodies of spiral ganglion (AN) neurons.

From the reported capacitance of 10 pF (Table 8) and a
standard capacitance density of 1.0 �F/cm2, the effective
surface area of the cell body is estimated as 1000 �m2.
Using the leak conductance densities of 0.2 mS/cm2 (low

frequency AN model) and 0.4 mS/cm2 (high-frequency AN
model), the membrane resistance of a 1000 �m2 mem-
brane patch is calculated as 500 M� (low frequency) and
250 M� (high frequency), matching the measured physi-
ologic values of mammalian spiral ganglion neurons
(Table 8). The adopted leak reversal potential of -65.3 mV
was unchanged from the single-compartment bEIF model
(Table 3), as it matched the measured resting potential
(Table 8). The (soft) threshold VT for the spike-generating
current of the EIF model is not directly related to mea-
sured spike thresholds, because of the fundamental dif-
ferences in their definitions. We selected the value of VT to
roughly mimic the recorded spike waveforms of ANs (Ad-
amson et al., 2002).

Reported internodal lengths of cat AN axons (Liberman
and Oliver, 1984) were larger in the high-frequency region
than in the low-frequency region, while the diameters of

Table 6. Equations and parameters for extracellular stimulation of myelinated axon models

Variable Equation
Membrane potential V (of j-th node) cm

j dVj�t�/dt � ILj � Iactive
j � Iaxon

j

Axonal current Iaxon
j � gaxon

j�1 �Uin
j�1 � Uin

j � � gaxon
j �Uin

j�1 � Uin
j �

Intracellular potential Uin (at j-th node) Uin
j � Vj � Uex

j

Extracellular potential Uex (at j-th node) Uex
j � �exIex / 4rj

Distance between electrode and j-th node rj (see legend)
Extracellularly injected current Iex � 0 (default)

Parameter Value
Extracellular resistivity �ex 3.0 � m

Equations and parameters not listed in this table are unchanged from the case of intracellular current stimulation (Table 4). Note that the distance rj between
the electrode and the node is determined by the location of the extracellular stimulus electrode and the geometry of the axon.

Table 7. Parameters for low- and high-frequency AN models

Parameter Low-frequency AN model High-frequency AN model
Leak conductance density GL 0.2 mS/cm2 0.4 mS/cm2

Threshold for spike-generating current VT -50.0 mV -50.0 mV
Axon diameter D 2.5 �m 2.5 �m
Nodal length Ln 2.0 �m 2.0 �m
Internodal length Li 350 �m 450 �m

The following parameters are unchanged from the single-compartment bEIF model (Table 3): membrane capacitance density Cm, leak reversal potential EL,
slope factor of the spike-generating current KT, ceiling factor of the spike-generating current at, starting voltage of repolarization current Vrep, time constant of
repolarizing conductance 
rep, amplitude factor of repolarizing conductance Arep. The axial resistivity Rax is unchanged from the myelinated axon model
(Table 4).

Table 8. Anatomic and physiologic data used for calibrating the AN models

Item Value Animal Reference
Membrane capacitance 10.14 � 1.68 pF

9 � 2 pF
6.0 � 1.7 pF

Guinea pig
Guinea pig
Rat

Santos-Sacchi (1993)
Szabó et al. (2002)
Jagger and Housley (2002)

Membrane resistance 200–800 M� (all CFs)
499 � 290 M� (all CFs)

Guinea pig
Rat

Santos-Sacchi (1993)
Jagger and Housley (2002)

Membrane resistance 474 � 230 M� (low CF)
285 � 215 M� (high CF)

Mouse culture Adamson et al. (2002)

Resting potential -67.3 � 5.7 mV
-62 � 9 mV
-61.1 � 7.0 mV

Guinea pig
Guinea pig
Rat

Santos-Sacchi (1993)
Szabó et al. (2002)
Jagger and Housley (2002)

Axonal diameter 2–3 �m (all CFs) Cat Liberman and Oliver (1984)
Internodal length 200–500 �m (low CF)

300–600 �m (high CF)
Cat Liberman and Oliver (1984)

Physiologic data were measured in the cell body of spiral ganglion neurons. Reported standard errors were converted into standard deviations. CF: charac-
teristic frequency.
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axons were similar between these regions (summarized in
Table 8). As there were no systematic measurements
available for the length of the node of Ranvier, we simply
assumed that both low- and high-frequency AN fibers
share the same nodal length of 2 �m. Previous simula-
tions showed that the effect of nodal length of conduction
velocity is relatively minor (Arancibia-Cárcamo et al.,
2017). We simulated 40 nodes along a one-dimensional
(non-branching) axon. The total length of the modeled
axon roughly corresponds to the length of the cat AN fiber
innervating the cochlear nuclei (Ryugo and Rouiller, 1988).
Stimulus currents (amplitude Iinj � 60 pA, duration T � 1
ms) were injected intracellularly to the node #1 to evoke
action potentials. The conduction velocity of a propagat-
ing spike was calculated as the distance between nodes
#10 and #30 divided by the travel time between these
nodes.

Simulation environment
Numerical integration of the model equations was per-

formed with the explicit (forward) Euler method, in com-
bination with the Crank-Nicolson method for axonal
current propagation (Moore et al., 1978). The time step we
used was fixed to 4 �s, unless otherwise stated. To obtain
an f-I curve for the single-compartment models, we in-
jected a step current of varied amplitudes with a duration
of 1000 ms to calculate the output spike rate of the model.
Code was implemented with MATLAB R2015b (Math-
Works).

To evaluate the computational costs of calculating ax-
onal spike conductions with different models, we com-
puted the integration time of voltage traces of an axon
with 141 nodes, using identical configurations of the mod-
eled axon to those described above in Simulating myelin-
ated axons. Each trial was 400 ms long, and we repeated
the computation 50 times to obtain an average integration
time. In addition to MATLAB, numerical algorithms were
also implemented in D (Alexandrescu, 2010), which is
compiled into native machine code and is expected to run
faster. Simulations were conducted on a desktop com-
puter (Dell 1398 Precision T1700) with a 64-bit Windows 7
Professional Operating System, Intel Xeon CPU E3-1270
1399 v3 (4 core, 3.5 GHz) and 16 GB memory.

Code accessibility
MATLAB implementation of the models is publicly avail-

able online at https://github.com/pinkbox-models.

Results
Responses the bEIF model

The main goal of this study was to construct a simple
model of spike conduction along the axon. To this end, we
first modified the sEIF model by limiting the exponentially
growing inward current (Fig. 1C) and introducing a repo-
larizing current after spikes (Fig. 1D; see Materials and
Methods). With these modifications, the resulting single-
compartment bEIF model showed spike waveforms that
were more similar to those of the HH-type WB model than
the sEIF model (Fig. 1A,E), while keeping its f-I relation-

ship largely comparable to those of both the WB and sEIF
models (Fig. 1B).

Spike conduction in myelinated axons
We simulated spike conduction along a myelinated

axon by connecting excitable compartments with an axial
resistance (Fig. 2A; Materials and Methods). The voltage
dynamics of each compartment was simulated by either
the WB or bEIF model. As in earlier studies with the HH
model (FitzHugh, 1962; Brill et al., 1977; Rattay et al.,
2003), stable propagation of an action potential was ob-
served for the WB model (Fig. 2B). With the bEIF model,
simulated spike propagation was also stable (Fig. 2C) and
the estimated conduction velocity was comparable to that
of the WB model. The relative insensitivity of the conduc-
tion velocity to the detailed spike-generating mechanisms
was reported in an earlier study that compared the
conductance-based HH model with the permeability-
based Frankenhaeuser–Huxley model (Moore et al.,
1978).

In contrast to the single-compartment setting (Fig. 1E),
the simulated propagating spike waveform was wider for
the bEIF model than for the WB model (Fig. 2D). This is
because the repolarizing conductance of the bEIF model
is static (i.e., independent of the additional axial current),
whereas the ionic conductances in the WB model are
more dynamically regulated by the membrane potential.
The overall dependences of the conduction velocity on
the internodal length (Fig. 2E) and the axonal diameter
(Fig. 2F) were very similar between the WB and bEIF
model, both well fitted by a square root curve. Assuming
that the internodal length and the axonal diameter vary in
proportion to each other (Hursh, 1939), the combined
effect of these square root relationships results in the
conduction velocity changing linearly with the size of the
myelinated axon (Waxman, 1980).

Both the ceiling for the depolarizing conductance (Fig.
1C) and the after-spike repolarizing conductance in the
bEIF model (Fig. 1D) are necessary for simulating stable
spike propagation. Because of the exponential depen-
dence of the depolarizing current on the membrane po-
tential (Eq. 3), the membrane potential of the sEIF model
quickly blows up to infinity once a spike is initiated
(Touboul, 2009). Due to this instantaneous divergence of
the membrane potential, the simulated action potential
did not properly propagate along the axon when the sEIF
model was used instead of the bEIF model (Fig. 2G). The
ceiling of the depolarizing conductance in the bEIF model
slows down the voltage change near the peak of the
action potential, resulting in a more realistic spike shape
and stable spike conduction than the sEIF model.

When the repolarization current of the bEIF model was
replaced by an abrupt potential reset, propagation of
electrical activity was observed, but the simulated wave-
forms were not uniform across the axonal compartments
(Fig. 2H). This is because the potential reset (as in the sEIF
model) is equivalent to injecting an enormous negative
current within a small time step, which leads to discon-
tinuous changes of the membrane potential. In contrast,
the spike-mimicking repolarizing current in the bEIF
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Figure 2. Response properties of myelinated axon models. A, Schematic drawing (top) and modeled electric circuit (bottom) of a
myelinated axon with a diameter D, nodal length Ln and internodal length Li. Each nodal compartment has a capacitance cm and
(voltage-dependent) resistance rm and is interconnected with neighboring nodes with an axial resistance ra. See Table 4 for the default
parameter values. In panels B, C, G, H, voltage responses at every 10th node (i.e., each 2 mm apart) are shown. Currents were
injected intracellularly into the node #20 (gray traces). B, Spike conduction along the modeled myelinated axon simulated with the WB
model. C, Spike conduction along the modeled myelinated axon simulated with the bEIF model. D, Shapes of conducted spikes of
the bEIF and WB models. The peaks of both traces are aligned at time 0. E, Dependence of simulated conduction velocity u (m/s) on
the axon diameter D (�m). The dotted curve shows a square root fit by u � 4.1�D. F, Dependence of conduction velocity u (m/s) on
the internodal length Li (�m). The dotted curve shows a square root fit by u � 0.395�Li. G, Spike conduction along the modeled
myelinated axon simulated with the sEIF model. Inset, Expanded traces around the spike generation. In panel G, we used a time step
of 0.2 �s to faithfully simulate the rapidly increasing membrane potentials. H, Spike conduction along the modeled myelinated axon
simulated with the bEIF model, with an instantaneous potential reset instead of the repolarizing current. I, Dependence of conduction
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model does not cause such discontinuous, unstable
changes. As suggested by the simulation results for the
sEIF model (Fig. 2G), the level of the depolarization ceiling
factor (value of AT; Table 3; Fig. 1C) in the bEIF model
affects the conduction velocity (Fig. 2I).

Spike conduction in unmyelinated axons
By connecting excitable units (Fig. 3A), spike conduc-

tion along an unmyelinated axon can also be simulated
(Fig. 3B, for the WB model, Fig. 3C, for the bEIF model).
As in myelinated axons, the simulated waveform was
slightly wider for the bEIF model than for the WB model.
Both models, however, showed similar conduction veloc-
ities. Furthermore, the dependence of the simulated con-
duction velocity on the axon diameter was largely
comparable between these two models (Fig. 3D), display-
ing a square root relationship typical for unmyelinated

axons (Waxman, 1980). These simulation results demon-
strate that the bEIF model can be used for simulating
propagation of action potentials in both myelinated and
unmyelinated axons.

Extracellular stimulation
Neuroprosthetic devices usually use extracellular

stimulation (Rattay et al., 2003). To test the applicability
of the model to prosthetic stimulation, we simulated the
responses of the modeled axon to extracellular current
injection (Fig. 4A). In contrast to the case of intracellular
stimulation, where the extracellular space was as-
sumed to be isopotential, extracellular injection of cur-
rent produces a gradient of extracellular potential,
which is the source of the intracellular axial current
along the modeled axon. For both the WB (Fig. 4B) and
the bEIF (Fig. 4C) models, an extracellularly injected

continued
velocity u on the ceiling value AT of the bEIF model (blue). Conduction velocity of the WB model (5.7 m/s) is also shown as a reference
(thicker gray line). When necessary (typically for large and small values of AT), the starting voltage for repolarization current Vrep was
readjusted (down to -20 mV from the default value of �15 mV using a step of 5 mV) to make sure the membrane potential returned
to rest after spiking.
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Figure 3. Response properties of unmyelinated axon models. A, Schematic drawing (top) and modeled electric circuit (bottom) of an
unmyelinated axon with a diameter d. Each nodal compartment of length l has a capacitance cm and (voltage-dependent) resistance
rm and is interconnected with neighboring nodes with an axial resistance ra. See Table 5 for the default parameter values. In panels
B, C, voltage responses at every 25th node (i.e., each 0.5 mm apart) are shown. Currents were injected intracellularly into the node
#50 (gray traces). D, Dependence of simulated conduction velocity u (m/s) on the axon diameter D (�m). The dotted curve shows a
square root fit by u � 0.42�D.
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negative current induced positive responses at the
closest node (Fig. 4B,C, small arrows) that lead to spike
initiation. Depending on the relative location between
the node and the electrode, the response of each node
to the extracellular current is either depolarization or
hyperpolarization (Fig. 4D), as was demonstrated in
earlier modeling studies (Rattay, 1986; Warman et al.,
1992). The overall responses, including spike genera-
tion and conduction, were largely similar between the
two models (Fig. 4B,C), confirming that the bEIF model
can be used not only with intracellular current injection,
but also with extracellular stimulation.

Application to ANs
As an application of the bEIF model, we simulated the

spike initiation and conduction of AN fibers. First, we
constructed a single-compartment model of low- and
high-frequency ANs (see Materials and Methods for de-
tails). Previous physiological measurements showed
tonotopic (frequency-dependent) variations of membrane
properties in spiral ganglion neurons (AN cells; see

Rusznák and Szú́cs, 2009; Davis and Crozier, 2015 for
reviews). The difference in input resistance between low-
and high-frequency ANs was simply represented as the
difference in the leak conductance density GL of the bEIF
model (Tables 7, 8), while other physiological parameters
were identical between low- and high-frequency AN mod-
els. This modification led to a delayed spike initiation for
the low-frequency model (Fig. 5A), although the overall
voltage trajectory after scaling the time axis was largely
indistinguishable between these two models (Fig. 5B).
These simulation results are supported by physiological
measurements reporting that low- and high-frequency
neurons in mice had similar spiking thresholds but that the
spike response latency was larger for low-frequency neu-
rons (Adamson et al., 2002). As shown in Figure 1B, the
bEIF (and WB) model expresses a Type I spiking behavior
(i.e., zero spiking frequency at threshold), contrasting to
the standard HH model that is Type II (non-zero spiking
frequency at threshold). This Type I response property of
the bEIF model enabled us to simulate the observed
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Figure 4. Responses of myelinated axon models to extracellular stimulation. A, Schematic drawing of a myelinated axon stimulated with
extracellular current injection. The extracellular voltage at each node is determined by the distance between the node and the stimulus
electrode (see Materials and Methods for the equations). B, Spike conduction along the modeled myelinated axon simulated with the WB
model. C, Spike conduction along the modeled myelinated axon simulated with the bEIF model. In panels B, C, voltage responses at every
10th node (i.e., each 2 mm apart) are shown. Gray arrows indicate the intracellular responses caused by the extracellular negative current
injection. D, Location-dependent voltage responses to extracellular stimulation. Simulated membrane potentials at the offset of extracellular
current stimulation (-1 mA, 0.1 ms) are plotted as a function of the distance from the node #20 (gray traces in B, C), which is the closest
node to the stimulus electrode, with a separation of 1 mm (see inset for a schematic drawing).
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delayed spike generation in AN cells, which is generally
inconceivable with Type II models.

Next, we adopted the same parameter sets to simulate
spike conduction along the central part of myelinated AN
fibers (Materials and Methods). The axonal diameter and
internodal length were determined from previous ana-
tomic measurements in cats (Liberman and Oliver, 1984).
The simulated propagating spike waveform was wider for
the low-frequency model (Fig. 5C) than for the high-
frequency model (Fig. 5D), reflecting the difference in
response latency (Fig. 5A). Calculated conduction veloc-
ities were 9.1 and 14.3 m/s for low- and high-frequency
models, respectively. These values correspond to the
measured velocities in cats (11.6 � 1.6 m/s, Nguyen et al.,
1999; �10 m/s, Miller et al., 2004). Our simulation results
predict that high-frequency AN fibers should have higher
conduction velocity than low-frequency fibers, because of
the shorter response latency in the former. Testing this
prediction will be a subject of future physiological studies
in the field.

Computational time
To compare the computational performances of the

models, we calculated the average integration time for a
modeled axon (Table 9). In agreement with the reduced
number of equations and parameters, the bEIF model was
several times faster than the WB model. In addition, the
implementation with a compiled language led to a com-
putation several times faster than the MATLAB code,
while the computational advantage of the bEIF model was

consistent between these implementations. These results
roughly correspond to previous reports that compared the
computational costs between HH-type and IF-type mod-
els (Destexhe, 1997; Ashida et al., 2015) and between C
and MATLAB implementations (Goodman and Brette,
2008).

Discussion
In this study, we introduced a simple model of nerve

spike conduction based on the EIF model (Fig. 1). In
comparison to the conventional HH-type model, our bEIF
model has much fewer parameters (9 vs 25) and better
computational performance (Table 9), but still retains fun-
damental functions for reproducing action potential prop-
agation along the modeled axon (Figs. 2–4). Application of
the model to ANs replicated measured conduction veloc-
ity in cats, and predicted that the velocity varies along the
tonotopic axis (Fig. 5).
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Figure 5. Response properties of AN axon models. See Table 7 for the default parameter values. A, Spike responses of the
low-frequency (red) and high-frequency (blue) single-compartment AN models driven by step current inputs. B, Same traces as in A
but with a rescaled time axis. C, Spike conduction along the modeled low-frequency myelinated AN axon. D, Spike conduction along
the modeled high-frequency myelinated AN axon. In panels C, D, voltage responses at every five nodes are shown.

Table 9. Computational time for calculating axonal spike
conduction

Model MATLAB D (compiled into native code)
WB 6.62 s 3.82 s
bEIF 2.36 s 1.09 s

A 400-ms membrane potential trace of an axon with 141 nodes was simu-
lated (see Materials and Methods for more details). Average computational
times of 50 trials are shown.
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Advantages of simple models
Simple phenomenological models can serve as a prac-

tical substitute for complex, conductance-based models,
especially when descriptions of detailed ion channels dy-
namics are not required, when computational simplicity
and mathematical transparency are desired, or when only
insufficient empirical data are available for constraining a
complex model. A simple neuron model was recently
adopted, for instance, for a real-time simulation combined
with an artificial fingertip (Oddo et al., 2016).

Fundamental lack of relevant biophysical data is a fre-
quent impediment to the development of neural models
for prosthetic simulation. To systematically tune the pa-
rameters of a neuron model (either IF or HH), measure-
ments of intracellular membrane potentials are generally
required (Badel et al., 2008; Rossant et al., 2010; Meliza
et al., 2014). Because of ethical and technical limitations,
however, measured data from human nerves are usually
sparse (if not totally unavailable). Furthermore, a number
of studies demonstrated that anatomical and physiologi-
cal properties of human neurons may differ considerably
from those of other animals (Felix, 2002; Angelino and
Brenner, 2007; Eyal et al., 2016; Zhang et al., 2017). This
makes it even more difficult to extrapolate non-human
data to humans (see discussion below for related limita-
tions in prosthetic simulations). Known as the “curse of
dimensionality” (Almog and Korngreen, 2016), fitting
model parameters of a nonlinear system becomes in-
creasingly troublesome with an increase in the number of
unconstrained parameters. Moreover, the geometry of
“good” parameter sets may be highly skewed in the high-
dimensional parameter space (Marder and Taylor, 2011),
leading to a general difficulty in justifying the selection of
parameters of complex models with a limited amount of
data. The reduced number of parameters in the bEIF
model may help mitigate these difficulties, at least when
compared to complex HH-type models.

Because of its mathematical simplicity, the IF model
and its variations have been used widely in theoretical and
computational neuroscience (Koch, 1999; Gerstner et al.,
2014, and references therein). Bifurcation analyses, for
example, allow direct examination of spiking mechanisms
of the EIF model (Touboul and Brette, 2008). Occasion-
ally, IF-type models have also been used in multi-
compartment simulations (Rospars and Lánský, 1993;
Clopath et al., 2007; Saparov and Schwemmer, 2015;
Aspart et al., 2016). However, these models normally have
only one spike initiation site to avoid the problem with the
instantaneous potential reset (see related discussion by
Cessac and Viéville, 2008). In the bEIF model, the poten-
tial reset, which led to unstable waveforms of conducting
spikes (Fig. 2H), was replaced with repolarizing conduc-
tance to replicate the downward trajectory of the spike
waveform. Introduction of spike-mimicking current to IF-
type models had already been suggested in prior studies
(Ashida et al., 2015; Saparov and Schwemmer, 2015).

In early mathematical analyses of spike propagation,
FitzHugh–Nagumo-type models were preferred, be-
cause they have fewer variables and are thus much
easier to analyze than the HH model (Rinzel and Keller,

1973). The FitzHugh–Nagumo model, however, has ma-
jor drawbacks: its fast activation variable (usually writ-
ten as V) does not directly correspond to the membrane
potential of a real neuron, and the parameters of the
model have no clear biological interpretations. Our EIF
model-based approach may be useful in alleviating
these problems, as its parameters and variables have
more intuitive biophysical meanings (e.g., membrane
potential, conductances, spike-generating currents, etc.)
while keeping a similar level of mathematical complexity as
the FitzHugh–Nagumo model.

Disadvantages and limitations
Previous studies have revealed a number of anatomical

and physiological specializations in axons, which are nev-
ertheless not always considered in existing axon models,
including ours. For example, Nav1, Kv3, and Kv7 chan-
nels are clustered at the nodes of Ranvier, while Kv1
channels are distributed at juxtaparanodes under the my-
elin sheath (Debanne et al., 2011; Freeman et al., 2016;
Kim and Rutherford, 2016). With some rare exceptions
(McIntyre et al., 2002; Brown and Hamann, 2014), how-
ever, models of myelinated axons do not take the detailed
distributions of ion channels into account. In our simula-
tions (Fig. 2), spike-generating ionic currents were simply
decomposed into depolarizing and repolarizing compo-
nents without considering their actual ionic compositions.
Moreover, histological studies suggested that ion chan-
nels are distributed unevenly along the actual AN fiber
(Hossain et al., 2005; Yi et al., 2010; Kim and Rutherford,
2016). Hence our naive assumption that the axonal prop-
erties match the somatic properties (used in Fig. 5) is likely
to be violated. Further refinement of the model would
require detailed physiological characterization along each
AN fiber and across the tonotopic axis.

The simulated voltage of the bEIF model does not
undershoot after an action potential, since its repolarizing
current is driven by the leak reversal potential EL. Intro-
ducing a different reversal potential (such as EK) could
make the simulated spike waveform more realistic and
closer to that of the WB model (Fig. 1A), but at the cost of
adding another unconstrained parameter to tune. To cal-
culate the repolarization conductance, we used an alpha
function solely because of its simplicity, which neverthe-
less might have to be revised with a different function
when a fine tuning of the depolarization phase is impor-
tant. Moreover, spike shapes can significantly differ be-
tween the cell body and the axon (Kole et al., 2007).
Further modifications and tuning of the model currents
would thus be necessary to improve the physiological
plausibility of simulated spikes propagating along the
axon.

Possible expansions and applications
To better account for the nonlinear membrane dynam-

ics of a real neuron, a number of modifications of IF-type
models have been proposed. Examples include bursting
with T-type calcium current (Smith et al., 2000) or with
persistent sodium current (Breen et al., 2003); spike-rate
accommodation with slowly adapting current (Brette and
Gerstner, 2005; Barranca et al., 2014) or with an after-
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hyperpolarization current (Zhou and Colburn, 2010; Bar-
ranca et al., 2014); subthreshold nonlinearity with low-
voltage-activated potassium current (Svirskis and Rinzel,
2003; Ashida et al., 2015); and adaptation and stochastic
fluctuation of the threshold (Takanen et al., 2016). Similar
modifications can be incorporated into the bEIF model.
We note, however, that the bEIF model would not fully
replace HH-type models, but these two model types
should rather complement each other. A user can and
should choose an appropriate model according to the
intended goals of modeling (Ashida et al., 2017): HH-type
models for simulating the detailed ionic dynamics, and
IF-type models for more phenomenological, handy de-
scription of neuronal spiking behavior.

Random opening of ion channels is suggested to affect
neuronal coding properties (Ashida and Kubo, 2010;
White et al., 2000; Negm and Bruce, 2014; Moezzi et al.,
2016), including nerve conduction (Faisal and Laughlin,
2007). The utility of channel noise in cochlear implants has
also been suggested (Rubinstein et al., 1999; White et al.,
2000). To fully account for the ion channel stochasticity,
Markov channel models in combination with an HH-type
membrane equation would be required (Goldwyn and
Shea-Brown, 2011). In practice, adding an adequate
amount of artificial noise in a model can, at least in part,
mimic the stochastic activity of electrically stimulated
nerves (Joshi et al., 2017). Similarly, the addition of a noise
term to the bEIF model would be necessary for simulating
non-deterministic responses of the modeled nerve.

Earlier simulations of myelinated (FitzHugh, 1962; Brill
et al., 1977; Moore et al., 1978) or unmyelinated (Cooley
and Dodge, 1966) axons focused primarily on the bio-
physical mechanisms of nerve conduction. More recent
modeling approaches aimed to gain clinical and engineer-
ing implications. Examination of degraded spike conduc-
tions caused by demyelination is one such example
(Coggan et al., 2010; Brown and Hamann, 2014; Resnick
et al., 2018). Moreover, driven by the rapid development
of implantable devices that use electrical pulses to restore
the functions of peripheral and central nerves (for reviews,
see Masani and Popovic, 2011; Eiber et al., 2013), mod-
eling approaches to simulate the activity patterns of elec-
trically stimulated nerves have become an important tool
for evaluating and predicting the performance of these
prostheses (Rattay et al., 2003; also see Craver, 2010 for
related philosophical considerations).

Recent prosthetic simulations using conductance-
based (or other related) models include electrical stimu-
lation of the retina (Barriga-Rivera et al., 2017), ANs
(Briaire and Frijns, 2005; Negm and Bruce, 2014; O’Brien
and Rubinstein, 2016; Joshi et al., 2017; Nogueira and
Ashida, 2018), motor nerves (ElBasiouny and Mushahwar,
2007), and spinal and other peripheral nerves (Laden-
bauer et al., 2010; Raspopovic et al., 2011; Capogrosso
et al., 2013; Kent and Grill, 2013). A modeling approach in
the cochlear implant study, for example, simulated sev-
eral tens of thousands of excitable nodes distributed in
three-dimensional space to predict the aggregated elec-
trical response of the tissue (Nogueira et al., 2016). Such
large-scale modeling studies generally require efficient

phenomenological descriptions of neuronal spiking ac-
tivity. Furthermore, as discussed above, simulations of
human nerves often suffer from the lack of relevant phys-
iological data. Our bEIF model thus offers a computation-
ally efficient alternative to more complex (e.g., HH-type)
models to be used in future prosthetic simulations.
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