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Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive and safe technique
that transiently enhances brain GABA and noradrenaline levels. Although tVNS has been
used mainly to treat clinical disorders such as epilepsy, recent studies indicate it is also
an effective tool to investigate and potentially enhance the neuromodulation of action
control. Given the key roles of GABA and noradrenaline in neural plasticity and cortical
excitability, we investigated whether tVNS, through a presumed increase in level of these
neurotransmitters, modulates sequential behavior in terms of response selection and
sequence learning components. To this end we assessed the effect of single-session
tVNS in healthy young adults (N = 40) on performance on a serial reaction time task,
using a single-blind, sham-controlled between-subject design. Active as compared to
sham tVNS did not differ in terms of acquisition of an embedded response sequence and
in terms of performance under randomized response schedules. However, active tVNS
did enhance response selection processes. Specifically, the group receiving active tVNS
did not exhibit inhibition of return during response reversals (i.e., when trial N requires
the same response as trial N−2, e.g., 1-2-1) on trials with an embedded response
sequence. This finding indicates that tVNS enhances response selection processes
when selection demands are particularly high. More generally, these results add to
converging evidence that tVNS enhances action control performance.

Keywords: tVNS, implicit motor sequence learning, response selection, GABA, cognitive enhancement

INTRODUCTION

Non-invasive methods of brain stimulation have become an increasingly popular approach
to probing the relationship between neurochemistry and cognitive-behavioral performance.
Although transcranial direct current stimulation (tDCS) is currently the subject of great scientific
interest (Plewnia et al., 2015), it has recently been suggested that transcutaneous (through the skin)
vagus nerve stimulation (tVNS) may be a novel technique to investigate and potentially enhance the
neuromodulation of action control (van Leusden et al., 2015). Converging evidence from animal
and clinical studies suggests that tVNS increases levels of GABA (Ben-Menachem et al., 1995;
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Marrosu et al., 2003) and noradrenaline (NA) in the brain
(Roosevelt et al., 2006; Raedt et al., 2011). Consistent with
this literature, tVNS has been shown to increase intracortical
inhibition in healthy adults (Capone et al., 2015), supporting the
idea that tVNS might alter and potentially enhance performance
related to the GABAergic and noradrenergic systems. Given
the crucial role for GABA in the neuromodulation of response
selection (Bar-Gad et al., 2003; Munakata et al., 2011; de la Vega
et al., 2014) and motor learning (Floyer-Lea et al., 2006; Stagg
et al., 2011), we investigated the effects of tVNS on implicit
sequence learning and response selection processes underlying
sequential action.

The neurochemical effects of tVNS have the potential to
alter cortical excitability and synaptic plasticity, which are
shaped by brain GABA concentration (Nakamura et al., 1997;
Werhahn et al., 1999; Floyer-Lea et al., 2006; Boy et al., 2010;
Stagg et al., 2011; Ziemann et al., 2015). Consistent with this
neuromodulatory role, individual differences in GABA level have
been related to response selection and inhibition (Snyder et al.,
2010; Munakata et al., 2011; de la Vega et al., 2014), impulsivity
(Boy et al., 2011), error detection, and conflict monitoring (van
Veen and Carter, 2006), as well as implicit motor learning (Stagg
et al., 2011; de Beaumont et al., 2012). The effects of GABA
on response selection and inhibition are commonly explained
by its role in a “winner-takes-all” mechanism, in which GABA
enhances the mutual inhibition of competing response options
(Bar-Gad et al., 2003; Plenz, 2003). This is thought to facilitate
the suppression of incorrect response alternatives and aid in
selection of the appropriate response (Munakata et al., 2011; de
la Vega et al., 2014). Given this facilitatory effect of GABA on
action control, it is possible that tVNS, via a transient increase
in GABA concentration, modulates, and potentially enhances
response selection processes (c.f. van Leusden et al., 2015).

Recent studies support this hypothesis by showing that tVNS
can indeed improve cognitive-behavioral performance. These
effects of tVNS were not related to sequenced action specifically,
defined here as a sequence of movements that are serially
ordered to achieve a task goal (Sakai et al., 2004; Abrahamse
et al., 2013). However, previous work has demonstrated that
tVNS can enhance processes thought to underlie motor sequence
performance and learning. For example, Beste et al. (2016)
demonstrated improved inhibitory control from tVNS. As robust
response selection is crucial to sequenced actions (Deroost
and Soetens, 2006), enhanced inhibition from tVNS might
facilitate selection of the target response through suppression of
competing non-target alternatives (Munakata et al., 2011; de la
Vega et al., 2014; Colzato et al., 2018). Consistent with this notion,
Steenbergen et al. (2015) reported that tVNS enhanced response
selection when two responses were executed in succession.

Importantly, tVNS affects not only GABA but the NA system
as well (Roosevelt et al., 2006; Raedt et al., 2011). In line with
this finding, tVNS has been reported to enhance processes that
(i) are associated with the acquisition of sequenced movements,
and (ii) are thought to be mediated by NA transmission. For
example, tVNS has been shown to enhance the formation
of associative memory (Jacobs et al., 2015). When responses
follow an implicit sequential structure, associative memory

allows for development of an integrated representation of the
sequence or sequence elements based on formed associations
between responses (Hommel, 1996). Consistent with this notion,
tVNS has been argued to improve associative memory via a
presumed increase in NA transmission from the locus coeruleus
to hippocampal areas (and the amygdala in the case of emotional
memory formation) (Jacobs et al., 2015). Furthermore, increased
post-error slowing is thought to be an important component of
sequence learning (Ruitenberg et al., 2014) as it reflects upon
rule-based performance (Tam et al., 2013). Sellaro et al. (2015)
demonstrated that tVNS increased post-error slowing, which
depends on catecholamine activity, i.e., dopamine (Moeller et al.,
2012; Wardle et al., 2012) and NA (Ullsperger et al., 2010;
Colzato et al., 2013). Taken together, the aforementioned findings
support the hypothesis that tVNS can enhance response selection
processes during sequential action.

In contrast to these expectations, there is also the possibility
that tVNS results in suppression of sequential learning. Sequence
acquisition is typically associated with an increase rather than
a decrease in cortical excitability (Lin et al., 2011), and indeed,
some have demonstrated that increased GABA predicts reduced
implicit motor sequence learning (Stagg et al., 2011; de Beaumont
et al., 2012). In light of these previous studies, the effect of
tVNS on sequence acquisition remains uncertain. Therefore, the
present study set out to clarify the effect of tVNS on sequence
acquisition and response selection during sequential action.

The Present Study
In more general terms, with the present study we set out to extend
the literature on tVNS enhancement of cognitive-behavioral
performance by investigating its potential to improve sequential
action control. Given that tVNS increases brain GABA, which
is crucial to the modulation of action control processes (Bar-
Gad et al., 2003; Floyer-Lea et al., 2006; Munakata et al., 2011;
Stagg et al., 2011; de la Vega et al., 2014), we tested the
hypothesis that tVNS might enhance sequential action as assessed
on a serial reaction time (SRT) task (Nissen and Bullemer,
1987). The SRT task is a 4-choice reaction time task that
involves response selection, inhibition of non-target responses
and implicit formation of response sequence structures, each of
which may be sensitive to GABA and NA changes from tVNS.
Typically, a second-order conditional (SOC) response sequence
is embedded in the task unbeknownst to the participants. Implicit
acquisition of the sequence structure results in increasingly
shorter response latencies and less response errors as the
task progresses (Nissen and Bullemer, 1987; Abrahamse and
Noordzij, 2011; Schwarb and Schumacher, 2012). However,
there is potential difficulty in disentangling the nature of
these improvements (Jongkees et al., 2017a) as performance
improvements might not necessarily be due to implicit learning
processes but rather reflect general practice effects (Abrahamse
and Noordzij, 2011). For this reason, a transfer approach is
used to judge the extent by which performance improvements
rely on the practiced sequence (Willingham, 1999; Robertson,
2007; Abrahamse and Noordzij, 2011). In the SRT task variation
employed in the present experiment, each block of trials included
both an embedded SOC sequence as well as a transfer sequence
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based on a pseudo-random stimulus presentation schedule. In
addition to evaluating performance improvement across practice,
this approach allowed for comparisons between sequenced trials
and randomized trials as an index of sequence learning. Post-
error slowing was also evaluated for trials under sequenced and
random schedules to investigate the effects of tVNS on sequence
learning processes. As tVNS might not enhance sequence
learning but rather improve response selection processes, overall
task accuracy and reaction time (RT) performance was assessed
under the view that increased accuracy or reduced response
latency under tVNS reflects efficiency of selecting the target
response. To probe inhibitory processes that are relied upon to
select target responses, we applied the concept of inhibition of
return (Posner and Cohen, 1984; Lupiáñez et al., 1999 for reviews;
see Klein, 2000) to the SRT paradigm to further investigate
response selection processes under tVNS. In the SRT task,
inhibition of return is evaluated by comparing RT on reversal
trials to non-reversal trials (Vaquero et al., 2006). A reversal
trial is defined as occurring when the target response location
for trial N is a repetition of the target response location for
trial N−2 (e.g., 1-2-1; Vaquero et al., 2006). Longer response
latencies for reversal trials as compared to non-reversal trials
reflect inhibition of an action that has been recently performed
(Klein, 2000). Increased GABA levels due to tVNS might result
in suppression of inhibition of return as well as the inhibition of
competing response options, thereby allowing efficient selection
of a response even when it has been recently performed.

MATERIALS AND METHODS

Participants
Forty undergraduate students from Leiden University were
offered partial course credit for participation in a study on
tVNS. Participants were randomly assigned to either the active
(N = 20) or sham (N = 20) tVNS group. The groups were
comparable with respect to age (M = 22.3 vs. 22.5 years,
SD = 2.7 vs. 2.5, respectively), t(38) = 0.244, p = 0.809,
and gender distribution, (F:M = 14:6 vs. 18:2, respectively),
X2(1, N = 40) = 2.50, p = 0.114. Participants were screened
individually using the Mini International Neuropsychiatric
Interview (MINI), a short, structured interview of approximately
15 min that screens for several psychiatric disorders and drug
use (Sheehan et al., 1998), and has been used previously in
neuromodulation research (Jongkees et al., 2017a,b). Participants
were included if they met the following criteria: (i) between
18 and 30 years; (ii) no history of neurological or psychiatric
disorders; (iii) no history of substance abuse or dependence;
(iv) no chronic or acute medication; and (v) no implants
or cardiac disorders for safety reasons concerning the tVNS.
Before the start of the study, participants were informed of the
procedure and potential side-effects of the tVNS (i.e., itching,
stinging, or burning sensation from the electrodes, reddening
of the skin and head ache). None of the participants reported
major side-effects. The study conformed to the ethical standards
of the declaration of Helsinki with written informed consent
from all subjects and the protocol was approved by the local

ethical committee (Leiden University, Institute for Psychological
Research).

Transcutaneous Vagus Nerve Stimulation
tVNS stimulates the afferent auricular branch of the vagus nerve,
which is located medial of the tragus at the entry of the acoustic
meatus (Kreuzer et al., 2012). In order to avoid stimulation of
fibers to the heart, tVNS is safe to be applied to the left but
not the right ear (Sperling et al., 2010; Kreuzer et al., 2012).
The tVNS device consisted of two titan electrodes mounted on
a gel frame and connected to a wired neurostimulating device
(CMO2, Cerbomed, Erlangen, Germany), see Figure 1. Following
the suggestions by Dietrich et al. (2008) for optimal stimulation,
the tVNS R© device was programmed to a stimulation intensity of
0.5 mA, delivered with a pulse width of 200–300 µs at 25 Hz. Both
active and sham stimulation constantly alternated between active
stimulation for 30 s, followed by a break of 30 s. Consistent with
Kraus et al. (2007), sham stimulation was applied by placing the
electrodes over the center of the left ear lobe instead of the outer
auditory canal, as the ear lobe is free of vagus innervation (Peuker
and Filler, 2002) and its stimulation produces no activation in the
cortex and brain stem (Kraus et al., 2013).

Serial Reaction Time Task
To assess response selection and sequence learning, participants
performed an adapted SRT task (Vaquero et al., 2006) presented
using E-Prime 2.0 software (Psychology Software Tools, Inc.,
Pittsburgh, PA, United States). In this task four horizontally
aligned empty squares are presented in the center of the screen.
On each trial one of the squares turns red and the participant
must press a corresponding button on the QWERTY keyboard
(from left to right: V, B, N, M) using the index and middle fingers
of the left (V, B) and right (N, M) hand. An error sound is
presented if the wrong button is pressed, along with the Dutch
words “Verkeerde toets!” (“Wrong button!”). RT is measured
in milliseconds as the latency in the key press to the stimulus
and if RT exceeds 3,000 ms, the Dutch words “Te langzaam!”
(“Too slow!”) are presented. Following the response, the four

FIGURE 1 | Positioning of the tVNS electrodes in the active (left) and in the
sham (right) condition.
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empty squares appear for a 50 ms response-stimulus interval
before the next stimulus is presented. Participants were instructed
that accuracy and response speed were equally important in the
task.

Participants completed 3 task familiarization blocks of 120
randomly sequenced trials prior to stimulation, and then
performed 15 experimental blocks each consisting of 10 cycles
of 12 trials while stimulation was applied. Each experimental
block alternated between a cycle of random trials and two
cycles of SOC trials (R-SOC-SOC-R-SOC-SOC-R-SOC-SOC-R),
with each SOC cycle containing the same 12-item response
sequence (VBVNMBNVMNBM) (Reed and Johnson, 1994).
Whereas performance gradually improves on SOC trials as the
response sequence is implicitly learned, the random response
sequence prevents anticipation of responses and thus requires
stimulus-oriented control. Hence RT and response errors are
expected to be higher on random cycles (Willingham et al., 1989)
but performance is expected to recover on SOC trials. After
completion of each block, performance feedback indicated the
number of errors and mean RT followed by a 30 s rest interval.
The task took approximately 30 min to complete.

The random response sequences were generated prior to
the study and held constant across all participants, to avoid
chance-based group differences in the structure of the random
cycles. For example, performance artifacts may occur due to
differences in the number of reversal trials (Reed and Johnson,
1994; Vaquero et al., 2006). A reversal trial occurs when the
third trial of any three consecutive trials involves the same
target response as the first trial (e.g., V-B-V). Random cycles
were generated to match SOC cycles on the number of reversals
and hand switches (left-to-right and right-to-left) across trials
(Jongkees et al., 2017a) and immediate response repetitions were
not allowed within a random cycle nor at the transition between
a random and SOC cycle. As such, any group difference in
performance is not confounded by chance-based differences in
the structure of random cycles.

Procedure
Upon entering the lab, informed consent was obtained and
participants practiced the SRT task to familiarize themselves with
the task. Subsequently tVNS was applied and after 15 min of
stimulation the experimental SRT task was started. Stimulation
was applied throughout the entire task, which took on average
30 min. After the task participants were asked to rate, on
a five-point (1–5) scale, to what extent they experienced (i)
headache, (ii) neck pain, (iii) nausea, (iv) muscle contraction in
the face and/or neck, (v) stinging sensation under the electrodes,
(vi) burning sensation under the electrodes, (vii) uncomfortable
(non-specific) feelings, and (viii) other sensations or adverse
effects. None of the participants reported major side-effects.

Statistical Analyses
The percentage of response accuracy (ACC) and mean RT
for SRT task familiarization performance was calculated for
each individual participant. RT calculation was based on
correct trials only. ACC and RT for task familiarization were

submitted separately to univariate analysis to test for any Group
performance differences prior to stimulation conditions.

For performance in SRT task experimental blocks, ACC was
calculated for each individual according to Sequence Type (SOC,
random) and Trial Type (non-reversal, reversal) factors and
submitted to a 2 (Group: active, sham) × 2 (Sequence Type:
SOC, random) × 2 (Trial Type: non-reversal, reversal) analysis
of variance (ANOVA) with repeated measures on the last two
factors. RT was calculated based on correct trials according to
Sequence Type, Trial Type and Block (1–15) factors. RT was
then submitted to a 2 (Group) × 2 (Sequence Type) × 2
(Trial Type) × 15 (Block) ANOVA with repeated measures
on the last three factors. For the purpose of the present
experiment, a significant Group × Sequence Type × Block
interaction was identified as being a critical test of enhanced
sequence learning during active stimulation. A significant main
effect of Group or a significant Group × Sequence Type
interaction represented key identifiers of response selection
efficacy. Enhanced response selection during active stimulation
based on suppression of inhibition of return was expected to be
revealed either as a significant Group × Trial Type interaction
or a Group × Sequence Type × Trial Type interaction. Analysis
for inspection of post-error slowing involved aggregating correct
trial RT separately for post-error trials (a correct trial that was
preceded by an error trial), post-correct trials (a correct trial
succeeding a correct trial) under SOC and random sequence
types. RT was then submitted to a 2 (Group) × 2 (Preceding
Error) × 2 (Sequence Type) ANOVA with repeated measures
on the last two factors. A significant Group × Preceding Error
or Group × Preceding Error × Sequence Type interaction was
identified as reflecting active and sham stimulation differences on
post-error slowing.

Mauchly’s test was used to test the sphericity assumption for
repeated measures ANOVA. Where sphericity was violated,
a Huynh–Feldt correction was applied to the p-value.
Significant interactions were further analyzed using Fisher’s
LSD post hoc comparisons. For all analyses, a criterion of
p < 0.05 was used to infer significant effects, interactions and
differences.

RESULTS

Accuracy and RT performance during familiarization of the
SRT task did not significantly differ between active and sham
stimulation groups; p = 0.12 and p = 0.64, respectively. ACC
performance was very high during experimental blocks (97%)
and did not significantly differ between stimulation groups
(p = 0.57), and there were no significant interactions between
the Group factor and Sequence Type and Trial Type factors
(p’s > 0.39).

For experimental block RT performance, a significant
Sequence Type × Block interaction (F[14,532] = 5.45, p < 0.0001,
η2

p = 0.125) provides support for sequence learning within the
SRT task, see Figure 2. With the exception of Block 2 (p = 0.19),
RT was significantly lower on SOC sequence trials than random
trials (p’s < 0.05). However, the Group × Block interaction
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FIGURE 2 | Mean reaction time in the SRT task as a function of block, sequence type, and tVNS group. Error bars reflect standard error of the means.

(p = 0.89) was not significant. Important for the evaluation of
sequence learning differences between stimulation groups, the
Group × Sequence Type × Block interaction was not significant
(p = 0.76). Further inspection of sequence learning based on
assessment of post-error slowing did not reveal significant
Group × Preceding Error (p = 0.27) or Group × Preceding
Error × Sequence Type (p = 0.64) interactions, see Table 1 for
mean RTs. Thus, these results do not indicate that active tVNS
stimulation enhanced sequence learning.

With respect to the evaluation of response selection
enhancement, neither the Group effect (p = 0.93) or the
Group × Sequence Type interaction (p = 0.07) for RT were
significant. In terms of inhibition of return as an index of
response selection efficacy, the stimulation groups did not
significantly differ between non-reversal trials and reversal
trials (p = 0.16). However, a significant Group × Sequence
Type × Trial type interaction (F[1,38] = 5.05, p < 0.05,
η2

p = 0.117) indicated that enhancement of response selection
through suppression of inhibition of return depended on the

TABLE 1 | Mean reaction time in ms as a function of stimulation group and trial
type in the SRT task.

Stimulation group

Trial type Sham Active

Random order trials (overall) 392 (8) 398 (8)

Reversal trials 426 (9) 434 (9)

Non-reversal trials 389 (8) 395 (8)

Post-correct trials 387 (8) 395 (8)

Post-error trials 513 (18) 504 (18)

SOC trials (overall) 373 (9) 373 (9)

Reversal trials 406 (11) 386 (11)

Non-reversal trials 370 (9) 372 (9)

Post-correct trials 369 (9) 371 (9)

Post-error trials 511 (19) 489 (19)

Standard error of the mean presented in parentheses. SOC, second order
conditional sequenced trials.

nature of the sequence structure that the reversal trial was
performed in, see Figure 3 and Table 1. Specifically, under active
stimulation and in SOC sequence trials, RT was not significantly
different between non-reversal (M = 372, SE = 9 ms) and reversal
trials (M = 386, SE = 11 ms; p = 0.10). In contrast, under sham
stimulation, RT for SOC sequence trials was significantly longer
for reversal trials (M = 406, SE = 11 ms) than non-reversal trials
(M = 370, SE = 9 ms; p < 0.0001). For random trials, both active
and sham stimulation groups demonstrated significantly longer

FIGURE 3 | Mean reaction time in the SRT task as a function of trial type,
sequence type, and tVNS group. Error bars reflect standard error of the
means. Whereas both groups demonstrate a typical increase in reaction time
on reversal trials during random response sequences, this increase is
eliminated in the active tVNS group on trials with an embedded (SOC)
response sequence. ∗p < 0.001.
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RT for reversal trials and non-reversal trials (both comparisons,
p < 0.001). Nevertheless, under active stimulation, there were
no significant differences between SOC sequence reversal trials
and random sequence non-reversal trials (p = 0.42). In sum,
these results indicate active tVNS eliminated inhibition of return
during SOC sequenced response schedules.

DISCUSSION

The present study demonstrates that single-session tVNS
improves response selection during sequential action. Whereas
individuals tend to slow their responses when a response
sequence contains an immediate reversal (e.g., 1-2-1 instead
of 1-2-3) (Vaquero et al., 2006), this inhibition-of-return-like
effect was eliminated under active tVNS while participants
carried out an implicitly learned response sequence. The
effect of tVNS was exclusive to response latency and did
not extend to response errors, suggesting that the results
are not attributable to a change in the speed-accuracy
trade-off. This finding provides convergent evidence for the
potential of tVNS to enhance action control in healthy
adults.

In particular, this beneficial effect of tVNS on response
selection is consistent with a wide range of studies demonstrating
that increased GABA concentration facilitates action control
(van Veen and Carter, 2006; Snyder et al., 2010; Boy et al.,
2011; Munakata et al., 2011; de la Vega et al., 2014). Consistent
with a winner-takes-all mechanism of response selection (Bar-
Gad et al., 2003; Plenz, 2003), a higher GABA concentration
promotes intracortical inhibition, leading to a suppression of
incorrect response alternatives and thereby facilitating selection
of the correct response (Munakata et al., 2011; de la Vega et al.,
2014). It is conceivable, then, that a tVNS-induced increase in
GABA is most beneficial when it is particularly challenging for
the target response to successfully inhibit incorrect response
alternatives.

This notion converges on the present results. In the SRT task
the target response on reversal trials matches the response on
trial N-2, which appears to be suppressed as evidenced by slower
responses on reversal as compared to non-reversal trials (Vaquero
et al., 2006). This possibly reflects the fact that on reversal trials
it takes longer for the target response to successfully inhibit
the incorrect response alternatives. In this case, a tVNS-induced
enhancement of GABA could potentially aid in the inhibition of
these response alternatives. The consequent facilitatory effect on
selecting the target response accounts for the lack of RT slowing
on reversal trials in SOC sequences.

The stimulation did not enhance or diminish implicit motor
sequence learning. However, of note was the low rate of
implicit learning in both groups. The task structure might have
limited the opportunity to acquire the SOC sequence due to
alternation of random and SOC response cycles within each
block. Although this structure served to offer a more balanced
inspection of performance on randomly sequenced versus SOC
sequenced trials, the high prevalence of and frequent switching
towards random response sequences might have interfered with

participants’ ability to acquire the SOC sequence by predisposing
them to a stimulus-based rather than a plan-based action control
style (c.f. Tubau et al., 2007). A reduced tendency for plan-based
control might have then limited the potential for implicit
learning to be modulated by tVNS. Therefore, we recommend the
null-finding regarding tVNS and motor sequence learning to be
examined in future studies that employ a more classic SRT task
in which experimental blocks are strongly dominated by SOC
cycles.

Notwithstanding the observed null-findings for sequence
learning, the fact that tVNS selectively enhanced performance
when response selection demands were high, is of potential
theoretical interest and is reminiscent of a previous finding that
tVNS enhanced inhibitory control only when working memory
was also involved (Beste et al., 2016). In the present study
tVNS selectively enhanced response selection on reversal trials
during SOC cycles. From a neurobiological perspective, it is
plausible that GABA’s inhibitory effects on response selection
have greatest behavioral impact, and are more sensitive to
manipulation, during conditions of response conflict when
several response alternatives are strongly activated and when
it is particularly challenging for the target response to be
selected, such as on reversal trials in the SRT task. This
might also explain the lack of an effect of tVNS on the
majority of SOC trials (i.e., non-reversal trials), as these trials
might have led to insufficient competition between responses
alternatives for a manipulation of GABA to be behaviorally
detectable.

Before concluding, the present study gives rise to some
theoretical questions that need to be addressed in follow-up
studies: (i) Considering that the SRT task version used in this
study had a one-to-one mapping of stimuli to responses, the
results cannot disentangle whether tVNS affected stimulus-based
versus response-based mechanisms (c.f. van Veen et al., 2001).
That is, it is not clear whether tVNS on reversal trials facilitated
in particular responding to the same stimulus as on trial N−2,
or whether the same facilitation would be observed when not the
stimulus but only the response was repeated. (ii) In a similar vein,
repetition of the N−2 trial has been associated with the backward
inhibition effect, where response slowing on trial N is attributed
to inhibition of the task-set required on trial N−2 (Mayr and
Keele, 2000). Considering that the present SRT task did not
involve multiple task-sets, it remains to be determined whether
the influence of tVNS on trial N−2 repetition is exclusive to
response activation or extends to task-set activation as well. (iii)
It is also uncertain whether tVNS affected specifically inhibition
of return versus more general biases that promote an alternating
pattern of responses (e.g., Cho et al., 2002; Jones et al., 2002). As
such, it is necessary for future studies to consider these issues,
starting for example with mapping responses to multiple stimuli
in order to disambiguate these effects.

Furthermore, it is important to acknowledge that aside from
GABA also the noradrenergic system can be affected by tVNS
(Roosevelt et al., 2006; Raedt et al., 2011). A shortcoming of the
present study is that its behavioral findings cannot unequivocally
distinguish between effects on these different neurotransmitter
systems. Although tVNS did not affect the components of SRT
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task performance linked with NA activity—i.e., sequence learning
as supported by associative memory formation (Jacobs et al.,
2015) and post-error slowing (Sellaro et al., 2015)—we cannot
definitively conclude that NA did not contribute to our results.
As such, future studies should provide clarity on this issue by
for example including physiological markers of GABAergic and
noradrenergic activity in an attempt to relate baseline differences
and changes in these markers to tVNS-induced changes in SRT
task performance.

To conclude, the present study extends the previous literature
on tVNS and action control performance by showing that tVNS
enhanced response selection processes during sequential action.
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