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Abstract
Purpose To implement and validate an existing algorithm for automatic delineation of white matter lesions on magnetic
resonance imaging (MRI) in patients with multiple sclerosis (MS) on a local single-center dataset.
Methods We implemented a white matter hyperintensity segmentation model, based on a 2D convolutional neural network,
using the conventional T2-weighted fluid attenuated inversion recovery (FLAIR) MRI sequence as input. The model was
adapted for delineation of MS lesions by further training on a local dataset of 93 MS patients with a total of 3040
lesions. A quantitative evaluation was performed on ten test patients, in which model-generated masks were compared to
manually delineated masks from two expert delineators. A subsequent qualitative evaluation of the implemented model
was performed by two expert delineators, in which generated delineation masks on a clinical dataset of 53 patients were
rated acceptable (<10% errors) or unacceptable (>10% errors) based on the total number of true lesions.
Results The quantitative evaluation resulted in an average accuracy score (F1) of 0.71, recall of 0.77 and dice similarity
coefficient of 0.62. Our implemented model obtained the highest scores in all three metrics, when compared to three out of
the box lesion segmentation models. In the clinical evaluation an average of 94% of our 53 model-generated masks were
rated acceptable.
Conclusion After adaptation to our local dataset, the implemented segmentation model was able to delineate MS lesions
with a high clinical value as rated by delineation experts while outperforming popular out of the box applications. This
serves as a promising step towards implementation of automatic lesion delineation in our MS clinic.
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Introduction

Multiple sclerosis (MS) is a neuroinflammatory disease
of the central nervous system (CNS) affecting more than
2.3 million people worldwide. The disease manifests as
areas of neuronal demyelination, causing axonal injury
and loss, which is visible as hyperintense lesions on T2-
weighted magnetic resonance images (MRI). Registration
of these lesions is today an important part of diagnosis and
monitoring of the disease. During diagnosis, lesion dis-
semination in time and space is qualitatively determined as
part of the McDonald criteria, while lesion growth and the
disappearance or appearance of new lesions is monitored
during follow-up examinations to assess disease develop-
ment [1]. Full delineation of MS lesions is not feasible in
clinical routine and is thus not part of the assessment [2].
In recent years MR biomarkers, such as the total lesion
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load of a patient (e.g., number and volume of lesions) has
proved prognostic for long-term disability and can thus be
used to stratify MS patients [3–6], increasing the need for
MS delineation as part of clinical routine.

Manual lesion delineation is a difficult and laborious pro-
cess, prone to high interrater and intrarater variability due
to the heterogeneous nature of MS lesions [7, 8]. To this
end, fully automatic lesion delineation models have been
researched for many years [9]. Recently, models based on
a subgroup of machine learning called deep learning have
dominated the field, with models based on convolutional
neural networks (CNN) massively represented in the top tier
of all international MS lesion segmentation challenges [8,
10, 11]. The best performing methods evaluated on various
MS challenge datasets [12–18] achieve mean dice scores in
the range of 0.52–0.68 [9].

Only some of these methods have been evaluated on local
datasets, which often include MRI protocols, scanner types
and MS diagnoses not well-represented in the challenge
datasets. This poses a challenge, since deep learning meth-
ods tend to not generalize well across domains, preventing
currently available deep learning techniques from transla-
tion into clinical practice. One strategy to increase gener-
alization is to apply transfer learning of the original model
to a subset of the patients in the local dataset, as demon-
strated by Ghafoorian et al. who achieved a dice score of
0.76 on the local dataset, compared to 0.05 when not using
any transfer learning [19]. Valverde et al. proposed transfer
learning to local unseen data by updating only the weights
in the last three fully connected layers of their deep learn-
ing framework, denoted nicMSlesions, which was origi-
nally trained on two public challenge datasets [20]. They
found that retraining on as little as one patient could im-
prove segmentation performance between scanner domains
and reported a dice score of 0.52 when tested on a clinical
dataset and retrained on a subset of 30 patients. While di-
rect comparison of such studies is not straightforward as the
performance is highly dependent on the evaluation cohort,
it is apparent that retraining the models trained on chal-
lenge datasets is a requirement for acceptable MS lesion
delineation.

We aimed at the introduction and validation of an exist-
ing pretrained algorithm for automated white matter hyper-
intensity (WMH) segmentation on our local clinical dataset
acquired with a single scanner. The dataset employed in this
study consisted of patients with a high ratio of dirty white
matter and includes stages of disease progression which
are generally not well-represented in challenge datasets.
We adapted the algorithm through transfer learning and pa-
rameter optimization for optimal performance on the local
dataset consisting of patients with early signs of MS as well
as confirmed MS. Two experienced delineators examined

the clinical value of the automatic delineations to assess
feasibility of automatic lesion delineation in clinical use.

Material andMethods

Subjects

The dataset of this study is comprised of data from two
separate clinical research studies and one retrospective col-
lection of patients from routine MS investigations. The two
clinical studies were not directed at optimizing lesion seg-
mentation. The first research study, RS1 (protocol no. H-1-
2014-132) investigated changes in the permeability of the
blood brain barrier (BBB) before and after treatment with
one of the two types of second line medication: natalizumab
and fingolimod. We included 50 patients diagnosed with re-
lapsing remitting MS (RRMS) enrolled between April 2015
and April 2018, from the ongoing study. The second study,
RS2 (protocol no H-D-2008-002), was published in Brain
by Cramer et al. in 2015 [21] and investigated the abil-
ity to predict conversion from optic neuritis (ON) to MS
by the permeability of the BBB. A total of 43 patients
enrolled in the study between June 2011 and December
2012 and diagnosed with ON, were included in our analysis.
Both studies were single center single scanner studies, per-
formed at the same department, and both studies involved
manually drawn WM lesion masks, which were also used
in this study. The retrospective clinical dataset consisted
of patients diagnosed with RRMS who were referred for
a clinical MRI evaluation at the same department as the
two clinical studies. We randomly selected 53 consecutive
patients examined between February and May 2019 from
a larger collection. Scanner parameters for all three datasets
are presented in Sect. “MR Imaging Protocol”. All RRMS
patients were diagnosed according to the revised McDonald
criteria from 2017 [1].

Table 1 presents the demographic characteristics of the
three datasets. No score on the expanded disability status
scale (EDSS) was estimated regarding the patients from
RS2. The EDSS information of the clinical dataset was not
disclosed.

Table 1 Summary of patient demographics

Patient characteristics RS1 RS2 Clinical

No. of patients 50 43 53

Sex (% female) 83% 77% 72%

Mean age in years
(range)

29
(24–39)

36
(29–46)

45
(22–77)

Mean EDSS 1.6 – –

Diagnosis RRMS ON RRMS

EDSS expanded disability status scale, ON optic neuritis, RRMS re-
lapsing remitting multiple sclerosis
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Table 2 MRI acquisition parameters: imaging protocol parameters for all three datasets: RS1, RS2 and Clinical. The RS2 dataset was acquired at
two different settings, so that 8/43 of the patients have different acquisition settings than the rest. The dataset is therefore split into two columns.
All T1-w images were acquired in 3D, all FLAIR images in 2D

Parameter RS1 RS2 Clinical

Patients (no.) 50 35 8 53

Scanner Philips Achieva dStream
(Philips Healthcare, Best,
The Netherlands)

Philips Achieva (Philips
Healthcare, Best, The
Netherlands)

Philips Achieva
(Philips Healthcare,
Best, The Nether-
lands)

Philips Achieva dStream
(Philips Healthcare, Best,
The Netherlands)

FLAIR

Voxel dim. (mm) 0.59× 0.59× 3.84 0.49× 0.49× 3.85 0.93× 0.93× 3 0.59× 0.59× 3.84

TR/TE (ms) 11,000/125 11,000/125 10,000/80 11,000/125

TI (ms) 2800 2800 2600 2800

Matrix size (voxels) 384× 384× 35 512× 512× 35 256× 256× 44 384× 384× 35

Flip angle (°) 90 90 90 90

T1

Voxel dim. (mm3) 0.7× 0.7× 0.7 1× 1× 1 0.97× 1× 0.97 –

TR/TE (ms) 11/5 8.15/3.73 8.06/3.69 –

Matrix size (voxels) 384× 257× 384 240× 160× 240 256× 260× 256 –

Flip angle (°) 8 8 8 –

TR repetition time, TE echo time, TI inversion time, FLAIR fluid attenuated inversion recovery

MR Imaging Protocol

Acquisition parameters of the three datasets are presented
in Table 2. The same scanner and protocol were used for
acquiring RS1 and the clinical dataset. RS2 was acquired
using a different scanner as well as two different MRI pro-
tocols. Field strength across all datasets was 3T.

Data Security

All patient specific data were handled in compliance with
the Danish Data Protection Agency Act no. 502; thus, all
patient data were completely anonymized. RS1 and RS2
were approved by the Ethics Committee of Copenhagen
County according to the standards of The National Com-
mittee on Health Research Ethics and The Danish Data
Protection Agency. All experiments were conducted in ac-
cordance with the Declaration of Helsinki of 1975 and all
subjects gave written informed consent.

Automatic SegmentationModel

Initially we implemented a state-of-the-art segmentation
model, developed by Li et al. [22], which was declared the
winner of the Medical Image Computing and Computer As-
sisted Intervention (MICCAI) White Matter Hyperintensity
Segmentation Challenge [23]. The model was originally
trained on the publicly available WMH dataset from the
challenge, which was acquired on three separate scanners
[23]. The model takes either a 2-channel input of 2D axial
slices of T1-w and T2-w FLAIR MRI or just a 1-channel

input of only T2-w FLAIR. The output is a binary 2D lesion
mask for each slice. In short, the model is a standard U-net
[24] with four down-sampling and four up-sampling blocks
and skip connections in-between the two paths. Each block
is comprised of two convolutional layers followed by ei-
ther max-pooling or up-sampling and a rectified linear unit
(ReLU) activation function. A schematic overview of the
network structure is displayed in supplementary Table A.1.
Preprocessing consists of Gaussian intensity normalization
and standardization of the input image size by cropping or
zero-padding. Data augmentation is applied through scal-
ing, rotation, and shear mapping. For a thorough explana-
tion of the methodology see [22].

Implementation

We tested the 2-channel variation of the model by Li et al.
on our local validation dataset, which was resampled to
the same resolution as the MICCAI data. Subsequently,
we implemented the following changes in the network to
make it applicable to our clinical set-up and to fine-tune
the model to MS lesion delineation: 1) we extended the
standardization size of input images (from 200× 200 to
384× 384voxels) to accommodate the higher in-plane reso-
lution of our data, 2) since we hypothesized an importance
of having spatial information, we added the neighboring
slice on either side of each relevant axial slice input thereby
extending the network input to three channels, and 3) to re-
duce over-fitting when training, we added a drop-out layer
after each convolutional layer in the U-net, with a drop-out
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Table 3 Distribution of patients from each dataset

Dataset MICCAI RS1 RS2 Clinical

Training (pts) 60 35 38 0

Validation (pts) 0 5 5 0

Quantitative test (pts) 0 10 0 0

Qualitative test (pts) 0 0 0 53

Pts patients, MICCAI Medical Image Computing and Computer
Assisted Intervention

fraction of 20% and 4) the model was retrained on our local
MS dataset in original resolution.

A one-sequence input was chosen as high-quality T1-w
images are not necessarily part of our clinical MS MRI
protocol and broad applicability of the model was a priority.

Training the Network

The network was retrained on the local RS1/RS2 dataset
while applying transfer learning from the original model
pretrained on MICCAI data. We used Adam as optimizer
[25] with the dice similarity coefficient (DSC) as loss func-
tion and trained for 1000 epochs. The learning rate was set
to 10–5 and batch size to 6. These values differ from the
original training parameters by Li et al. [22]. The dataset
of n= 93 was randomly split into training, validation, and
testing, so that 73 patients were used for training the net-
work, 10 patients (split 5/5 between RS1 and RS2) were
used for validation and 10 patients (only RS1) were used
for independent quantitative testing of the final segmenta-
tion model (Table 3). Input slices were randomly sampled
during training.

The four datasets were used for various aspects of model
development and evaluation. Pretraining was performed us-
ing the MICCAI dataset, further training and evaluation was
performed using RS1 and RS2 and an independent test us-
ing the clinical dataset.

Manual LesionMasks

All lesions in RS1 and RS2 were manually identified and
delineated by one of three delineation experts following the
guidelines from appendix A in [8] as part of their respective
studies. Two of the experts had >10 years of experience
reading MS MRI, and the third was recently trained. All
delineations were performed manually without using any
computer assistance for guidance using the FSLeyes soft-
ware [26]. A total of 3040 lesions were delineated in RS1
and RS2, averaging to approximately 32 lesions per patient.
The manual delineations were used as reference masks dur-
ing method development and training of our final model.

The reference masks of the test dataset were created in
two steps to increase robustness. First, each of the two ex-
perienced delineators was asked to delineate the lesions in-

dividually, without any computer assistance. Second, each
of them was presented with a dot-mask including the center
of mass (CoM) marked in each lesion delineated by either
one of the two experts or one of the automatic delineation
tools, including our own. Each expert was then asked to de-
lineate all lesions at the CoMs they agreed with. The second
step was introduced to force the experts into deciding on
all potential lesions, including areas that were difficult to
differentiate from dirty-appearing white matter (DAWM) in
an effort to increase interrater variability.

The time between step one and two was more than 6
months.

To comply with manual delineation standards, in which
lesions with a maximum dimension below 3mm are dis-
carded [27], all lesions with a 3D volume below 10.7mm3

were removed from all automatically and manually created
lesion masks.

Evaluation

Comparison to Other Available Segmentation Tools

We compared the performance of our adapted model to the
performance of three available out of the box segmentation
methods, to make sure the best model at hand was used
for the clinical evaluation of automatic segmentation maps.
The methods were ready for direct application but further
trained on our local data in two instances. Each method was
implemented and executed on the local test dataset, using
default parameters as instructed by the respective authors.
Our model only requires an input of T2-w FLAIR images,
and our dataset therefore does not contain all requested
MRI sequences in all patients. In case of missing input
sequences, the patient was omitted as explained below.

nicMSlesions The nicMSlesions is a recent deep learning
segmentation framework, based on a cascaded 3D CNN
with T1-w and T2-w FLAIR as input [18, 20]. The model is
validated and used for reference in several publications [17,
28, 29]. We tested the model in two variants: 1) using the
pretrained model directly, 2) using the pretrained model for
transfer learning while retraining on our local dataset. The
dataset was limited to a subset of RS1/RS2 of 53 patients
for training and 9 patients for testing, which included all 3
MRI sequences.

LST The Lesion Segmentation Toolbox (LST) (version
3.0.0, www.statistical-modelling.de/lst.html) part of the
software Statistical Parametric Mapping (SPM) includes
two methods for lesion segmentation; an unsupervised le-
sion growth algorithm (LGA) [30] and a lesion prediction
algorithm (LPA) based on logistic regression [31]. LGA
requires T1-w and T2-w FLAIR, LPA requires only T2-w
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FLAIR. The LGA dataset was therefore limited to a subset
of RS1/RS2 of 9 patients for testing which included all 3
MRI sequences.

BIANCA The Brain Intensity Abnormality Classification Al-
gorithm (BIANCA) [32] is a k-nearest neighbor algorithm,
which was fully trained on our local dataset, given T2-w
and T2-w FLAIR modalities as input. The dataset was lim-
ited to a subset of RS1/RS2 of 72 patients for training and
9 patients for testing which included all 3 MRI sequences.

Quantitative Evaluation

Quantitative evaluation involved comparing the generated
lesion maps with manual delineations, by computing three
standard evaluation metrics described in Li et al. [22]. The
metrics included assessment of lesion-delineation accuracy
by calculation of the dice similarity coefficient (DSC), and
measurements of lesion detection accuracy by F1 score and
recall. The metrics were computed as follows:

DSC = 1 −
2 � TP

2 � TP + FP + FN

recall =
TP

TP + FN

Fig. 1 Example lesion delineations of all tested models including our implementation on an axial T2-w FLAIR slice from a single patient. a T2-w
FLAIR, b expert 1, c adapted model (ours), d original model by Li et al., e nicMSlesions baseline, f nicMSlesions retrained, g LST-LGA,
h LST_LPA, i BIANCA

F1 = 2 � precision � recall
precisiom + recall

; with precision =
TP

TP + FP

where TP, FP and FN are the number of true positives,
false positives and false negatives, respectively. The first
metric was calculated at voxel-level, while the latter two
were calculated at lesion-level. A lesion was counted as
a true positive if one voxel of a lesion in the generated
mask is also part of a lesion in the reference mask.

Quantitative evaluation was performed on both the orig-
inal model by Li et al., our adaptation of the model and
the three public segmentation tools for comparison. We
then investigated delineated volume differences between
our model and the expert delineators by comparing total
delineated volume of each patient. To compare the differ-
ence in delineated lesion volume between our model and
the expert delineations with the difference between the two
manual expert masks, we created a union mask. The union
mask was created by merging the two manual delineations,
while accepting all voxels delineated by both or just one of
the experts. We then created two Bland-Altman plots: one
presenting the difference between the two experts and one
presenting the difference between our model and the union
mask.
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Qualitative Evaluation

To get an estimate of the value of the generated lesion masks
by clinical specialists, we performed a qualitative clinical
evaluation of our model delineations. We presented 2 expe-
rienced delineators with 53 generated masks from a local
clinical dataset, displayed together with their corresponding
MRI. Each patient and corresponding mask was displayed
twice in a blinded, random fashion. The two experts com-
pared the lesion masks to the original MRI and noted the
number of false positive and false negative lesions for each
mask. The mask was then categorized as either acceptable
or unacceptable. The criteria for the two categories were
designed by the two experts from their assessment of how
many errors are expected due to delineation disagreements:

� Acceptable: more than 90% of the total amount of de-
lineated lesions must be true positive, furthermore more
than 90% of all true T2 lesions must be delineated.

� Unacceptable: more than 10% of all delineated lesions
are false positive and/or more than 10% of all true T2
lesions are false negatives.

Fig. 2 Two axial slices of T2-w FLAIR images of two representative
patients A and B. Delineations by our adapted segmentation model and
clinical expert 1 are marked in red and blue, respectively. A good corre-
spondence between the generated masks and manual reference masks
is observed

Results

Quantitative Evaluation

The lowest mean dice scores were obtained by the three
machine learning-based models BIANCA, LST-LGA and
LST-LPA as well as the out-of-the-box implementation
of the deep learning-based nicMSlesions. nicMSlesions
achieved a large increase in mean DSC when retrained on
part of our local dataset, rising from 0.41 to the second-best
delineation score of 0.55. Similarly, the U-net originally
proposed by Li et al. increased performance from DSC 0.52
to 0.62 following our adaptation and retraining on our local
dataset, outperforming the other models. The two retrained

Table 4 The presented metrics were averaged across the two manual
delineation masks and all 10 test patients. Standard deviation is pre-
sented in brackets. The best performance for each metric is highlighted
in italics

Method DSC F1-score Recall

BIANCA 0.34
(0.18)

0.30
(0.13)

0.56
(0.14)

LST-LGA 0.38
(0.13)

0.34
(0.10)

0.27
(0.18)

LST-LPA 0.42
(0.14)

0.39
(0.10)

0.32
(0.16)

nicMSlesions—baseline only 0.44
(0.12)

0.50
(0.15)

0.52
(0.16)

nicMSlesions—retrained on
all patients

0.55
(0.12)

0.68
(0.19)

0.74
(0.11)

Original U-net by Li et al 0.52
(0.12)

0.68
(0.15)

0.61
(0.14)

Adapted U-net (ours) 0.62
(0.12)

0.71
(0.18)

0.77
(0.10)

DSC dice similarity coefficient, BIANCA Brain Intensity Abnormality
Classification Algorithm, LST-LGA Lesion Segmentation Toolbox-le-
sion growth algorithm, LST-LPA Lesion Segmentation toolbox-lesion
prediction algorithm

Fig. 3 Delineated lesion volume per patient estimated by our model
and expert 1 versus expert 2

K



Assessment of Artificial Intelligence Automatic Multiple Sclerosis Lesion Delineation Tool for Clinical Use 649

Fig. 4 Bland-Altman plot of
delineated lesion volume per
patient of our adapted model
and a union mask of the two
delineators. a Expert 2 vs. ex-
pert 1. b Model vs. union mask
(Expert1, Expert2)

deep learning models also outperformed their out-of-the-
box implementations when measured with F1 score and
recall, with our adapted model achieving the highest mean
performance metrics (Tab. 4). Examples of segmentation
performance from each tested model compared to expert 1
are displayed in Fig. 1. Our adapted model exceeded inter-
rater performance between the two delineators in the three
categories (DSC: 0.57, F1: 0.68, recall: 0.58). Examples of
the adapted model delineations compared to expert 1 are
displayed in Fig. 2.

Fig. 5 Three examples of masks evaluated by the clinical delineators.
aWas rated as a perfect delineation mask. bWas rated as an acceptable
delineation mask with some imperfections. These include a false neg-
ative lesion in the cerebellum marked by a purple arrow, a small false
positive lesion in cortex marked with green and an area of DAWM,
which is marked with yellow. c Was rated unacceptable. In the second
slice large false positive delineations are drawn in plexus choroideus

We compared the total detected lesion volume per patient
by our model against that of the two delineators. The results
are presented in Fig. 3. The total lesion volume correlated to
a high degree with the second expert delineator (R2= 0.994),
and to a lesser degree the first expert delineator (R2= 0.899).
The correlation between the two delineators was R2= 0.899.

Fig. 4 presents a Bland-Altman plot of the difference in
delineated volume between the two experts as well as a plot
of the difference between our adapted model and a union
mask of the two delineators. The difference between our
adapted model and the union mask is well in between the
confidence interval of the interrater difference.

Qualitative Evaluation

The clinical evaluation of our produced lesion maps on our
local clinical dataset resulted in 95.3% acceptable delin-
eations and 4.7% unacceptable delineations as assessed by
expert 1, as well as 93.4% acceptable and 6.6% unaccept-
able delineations as assessed by expert 2. This corresponds
to the experts on average accepting 50 out of 53 segmen-
tation masks. Slices of one of the rejected masks and two
accepted are shown in Fig. 5.

Discussion

In this study we implemented an automatic segmentation
model with proven state-of-the-art performance on public
challenge datasets and adapted it to our local MS dataset by
updating the network structure and parameters, followed by
a retraining to local data while transfer learning the original
network parameters. The adapted automatic segmentation
model produced lesion segmentation masks with a 94% ac-
ceptance rate in a clinical evaluation on our local dataset,
suggesting a high possibility for implementation of auto-
matically generated lesion masks in our clinical workflow.
The model obtained segmentation scores above the inter-
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rater variability of two expert delineators, underlining the
need for an automatic delineation procedure.

The out-of-the-box application of the model by Li
et al., pretrained on the publicly available MICCAI, dataset
achieved a DSC (0.52) within the previously reported range
[9, 12, 17, 33], and outperformed the other out-of-the-box
methods when evaluated on our dataset. After adapting
the model we saw a significant increase in performance,
achieving the highest DSC (0.62) across all evaluated
methods, well above the interrater variability DSC (0.55),
surpassing a frequently used segmentation framework [20].
These results confirmed previous findings [19, 20], high-
lighting the need for model adaptation to local data when
implementing a pretrained segmentation method.

The quantitative evaluation is based on a test dataset of
10 subjects from a single scanner with a heterogenic num-
ber of MS lesions, ranging from 2 to 121 as counted by
expert 1. The heterogeneity of the dataset appears to in-
fluence the metrics, as the lesion-wise metrics are relative
to the number of total lesions, and results in a relatively
high variance between the 10 test patients, which compli-
cates generalization of the averaged metric scores to a larger
cohort. Our implemented model generally segmented more
and larger areas than the manual delineators, which resulted
in a high recall score (most of the manual lesions were
identified by the model) but lower f1 score (overall seg-
mentation performance). False positive segmentation can
be problematic during monitoring of MS patients, as new
or enlarged lesions on an MRI can result in a change in
treatment plans. Radiologists should therefore be aware of
false positive segmentations, when examining the masks in
the clinical setting. In both the lesion volume plot and the
metric scores our implemented model had a higher agree-
ment with expert 2 than expert 1, who generally delineated
smaller and fewer volumes. Interestingly, the lesion volume
analysis showed that the delineated volume by expert 2 was
closer to the automatic delineations than to expert 1, which
indicates that part of the disagreement between expert 1
and the model can be attributed to differences in delineation
style. When inspecting the Bland-Altman plots of total vol-
ume per patient, the differences between our adapted model
and the union mask are well within the confidence interval
of the two experts, indicating that the automatically delin-
eated lesion volume is within interrater variability.

We found that a large part of the false positive delin-
eations of the model were areas of DAWM, which is com-
mon in clinical MS data. DAWM are hyperintense areas
of white matter which have an intensity between that of
normal-appearing white matter and lesions [34]. DAWM
can be difficult to separate from the MS lesions due to
their diffuse boundaries, which increases the complexity of
the segmentation task. They further complicate evaluation
against a manual reference, since differentiation between

lesions and DAWM is difficult to standardize. To the best
of our knowledge, at the time of this paper, there is no
universally adopted method to tackle DAWM in lesion seg-
mentation [35] An approach for future research could be to
either mask out areas of DAWM or to consistently include
these areas in manual delineation, and to include a clear
statement on which approach was selected.

Since the original model by Li et al. was developed to
delineate WMH of presumed vascular origin and not MS le-
sions, the model might be biased towards delineating WMH
as well as DAWM, which can be located in the same areas
as vascular WMH; however, when delineating WM lesions
in MS patients, it is common consensus to also include sub-
cortical lesions (above a certain size and shape threshold),
disregarding the fact that some of these lesions might po-
tentially be of vascular age-related origin. For this reason,
we find it appropriate that the algorithm is able to detect
this lesion type as well.

We sought to adapt the model to delineation of MS le-
sions instead of general WMH by retraining the model on
MS data and optimizing model parameters. The increase in
performance between our adapted model and the model by
Li et al. indicates that the model has been optimized for
MS lesion segmentation; however, we have not tested the
models’ ability to differentiate between, e.g. vascular and
MS lesions.

There is a discrepancy between our model’s recall score
at 77% in the limited test dataset and the fact that 94%
(average) of the clinical masks were rated acceptable in
clinical practice when an acceptable mask should allow a
maximum of 10% incorrect delineations. This discrepancy
could be partially due to differences in reference. In the
quantitative evaluation, we created the dot-masks from all
delineations to force the experts to classify any possible
lesion. In the qualitative evaluation, only delineations from
our model were presented. This difference in set-up might
bias the delineators into delineating more lesions in the for-
mer than in the latter. The interrater recall score of 0.50 also
points to a large uncertainty regarding lesion delineation in
the small test dataset.

The aim of this study was to implement and evaluate
a model to tackle delineation of MS patients routinely ex-
amined at our institution. Two patient cohorts were included
in the dataset: optic neuritis (ON) and recurrent remitting
MS (RRMS). Both cohorts are in the early stages of MS,
and the dataset could therefore be biased towards low le-
sion counts. The RRMS cohort made up the largest part of
the training data and the entire part of both testing datasets.
Since approximately 85% of all MS patients are RRMS
patients, robust delineation of these patients in a clinical
setting is of great importance [36]; however, because of
the relative homogeneity of the dataset, the adapted and
retrained model is not generalizable to other more diverse
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patient cohorts, e.g. patients examined on other scanners
or diagnosed with progressive forms of MS. This would,
again, require retraining of the model.

The high acceptance rate in the clinical evaluation (94%)
suggests that our implemented model could assist in both
clinical routines today and in future applications. As le-
sion delineation is not part of clinical routine today, current
application of the model would be to lighten the lesion reg-
istration burden for radiologists during diagnosis and mon-
itoring of MS patients. Through delineation the model can
produce default lesion registration immediately after MRI
acquisition, which can be subsequently edited as needed
by the radiologist. Although unusual cases might require
a more thorough editing, in most cases (94%) the use of
the automatic segmentation tool will considerably speed up
the segmentation process, while also decreasing registration
variance. A future application could be in implementation
of new research, such as MS prognostics and early strati-
fication [6, 37], which require either full lesion delineation
masks or total lesion load as an input.

Conclusion

In this study we have implemented an artificial intelligence
(AI) state-of-the-art deep learning model for automatic
WMH delineation in MS and adapted it for optimal perfor-
mance on our local single-center MS dataset. The model
was quantitatively evaluated on a small test dataset and
qualitatively evaluated on a larger clinical dataset, aimed to
explore the clinical value of automatic MS lesion segmen-
tation in our clinic.

Our adapted model obtained a segmentation performance
exceeding both out-of-the-box lesion segmentation as well
as manual interrater performance across most assessed met-
rics, underlining the need for automatic delineation mod-
els retrained on local data. A clinical evaluation performed
by two experienced MS lesion delineators, resulted in an
acceptance of 94% of the generated lesion masks on our
local clinical dataset. The high clinical acceptance rate is
a promising step towards implementation of automatic de-
lineation models in our clinical routine, although special
attention should be given to false positive delineations.
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