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The brain’s white matter connections are thought to provide the structural basis for its functional
connections between distant brain regions but how our brain selects the best structural routes for
functional communications remains poorly understood. In this study, we propose a Unified Structural
and Functional Connectivity (USFC) model and use an “economical assumption” to create the brain’s
first “traffic map” reflecting how frequently each segment of the brain structural connection is used to
achieve the global functional communication system. The resulting USFC map highlights regions in
the subcortical, default-mode, and salience networks as the most heavily traversed nodes and a
midline frontal-caudate-thalamus-posterior cingulate-visual cortex corridor as the backbone of the
whole brain connectivity system. Our results further revealed a striking negative association between
structural and functional connectivity strengths in routes supporting negative functional connections,
as well as significantly higher efficiency metrics and better predictive performance for cognition in the
USFC connectome when compared to structural and functional ones alone. Overall, the proposed
USFCmodel opens up a newwindow for integrated brain connectomemodeling and provides amajor
leap forward in brain mapping efforts for a better understanding of the brain’s fundamental
communication mechanisms.

As of now, the two main non-invasive imaging approaches for character-
izing the brain’s connectome are: structural diffusion-weighted MRI1 and
resting state functional MRI (rs-fMRI)2. Structurally, diffusion-weighted
MRI-based tractography approach offers a global view of how distant brain
regions are connected throughwhitematterfiber tracts3. The humanbrain’s
structural connectome is remarkable for its highly organized and modular
architecture, facilitating efficient communication and functional
specialization4,5. Functionally, the resting-state fMRI approach offers a way
of measuring “functional connectivity (FC)” by quantifying the degree of
blood oxygen level dependent (BOLD) signal fluctuation synchronizations
between different brain regions6,7. Based on the “neurons firing together
wiring together” principle8, FC measures enable the characterization of the
human brain functional connectome9, which is typically organized into
distinct networks including the somatomotor6, visual10, auditory11, default
mode network (DMN)12,13, dorsal attention12, salience14, and executive
control ones15. These functional networks are generally believed to directly
underlie various primary, cognitive, and socioemotional functions16,17. Both
the structural and functional connectome feature a small-world network

topology, characterized by densely locally interconnected clusters of brain
regions and critical long-distance “short cuts” and hubs that bridge inter-
cluster communication18,19, providing supports for both segregated and
integrated information processing, essential for complex cognitive
processes20.

There are ongoing efforts to unveil the relationships between structural
and functional connectomes based on the idea that structural white matter
fiber bundles form the foundation for FC or communication21–28. Most
studies are correlational in nature and their findings support a moderate
positive relationship between structural and functional connections (via
globalmodulesmax (R2) ≈ 0.1, via localmodules R2 ranging between− 0.01
to 0.42)24,29,30. However, it is generally accepted that there is not a one-to-one
correspondence between these two types of connections since many func-
tional connections exist between brain regions without direct structural
connections31. Instead, FC could be mediated by multiple segments of
structural connections. Given the interconnected nature of the structural
connectome, it is likely that there are multiple structural pathways linking
each pair of regions with significant FC without a direct structural link.
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However, it remains unclear how our brain selects the best structural route
for a specific functional connection. New insights into this structural-
functional coupling mechanism would shed important light on how our
brain works in health and disease.

In this study, we liken the brain to a country with different brain
regions being different cities, the brain’s structural connectome corre-
sponding to the road system, and the functional connectivity strength
reflecting the amount of people traveling among different cities. Given that
there are different routes from one city to another, how people choose their
routes will determine the “traffic map” (i.e., the load of each road segment)
of the road system. Under this new framework, the goal of this work is to
characterize the “traffic map” and reveal the most heavily used structural
segments of the brain, which may bear significant implications for better
understanding of both normal brain functioning and diseased conditions.
To achieve this, we make one important economical assumption that dis-
tance and road condition (translating to anatomical distance and structural
connectivity (SC) strength in the brain) are the two most important factors
for route selection. Based on this principle, we aim to build the brain’s first
unified structural and functional connectome (USFC) to uncover its first
“traffic map”. Employing the model, we identified an asymmetric network
of brain “traffic”, characterized by a predominance of pathways originating
from the subcortical, default-mode, and salience networks as well as a
midline frontal-caudate-thalamus-posterior cingulate-visual cortex corri-
dor that acts as the backbone of the global brain communication system.
Our results also accentuate the critical role of stronger structural connec-
tions in underpinning significant negative FCs, offering fresh perspectives
on their functional relevance. Finally, the USFCmap exhibits elevated levels
of efficiency, modularity, and betweenness centrality, as well as better pre-
diction of cognitive performance in comparison to conventional structural
and FC maps, supporting its superiority in modeling the brain’s commu-
nication efficiency and efficacy. Overall, the USFC model provides a novel
framework for modeling the brain’s integrated structural and functional
pathway system and potentially opens up a new window uncovering the
brain’s working principles.

Results
The brain’s first “traffic map”
The USFC map, characterizing the accumulative “functional load” of
each structural connection segment (Fig. 1 and Supplementary Fig. 1a), is
visualized in the first column of Fig. 2a while the SC and FC maps were
presented in the first columns of Fig. 2b, and c, respectively. To better
quantify the global distribution of USFC, SC, and FC weights in each
brain region, we calculated the overall regional load of each connectivity
type and showed their distribution in middle column of Fig. 2. It is
immediately clear that USFC featured a long right tail with a set of
regions showing much higher values that the rest of the brain (second
column of Fig. 2a and Supplementary Table 1). Based on the interquartile
range (IQR) calculation32, we detected 11 outlier regions (out of the range
between the 25th and 75th percentile) with much higher regional USFC
values than the rest of the brain, indicating their heaviest involvement in
all USFC routes. These regions include the bilateral posterior cingulate
gyrus (PCG) in the DMN, thalamus/caudate/pallidum in the subcortical
network, dorsolateral cingulate gyrus in the salience network, and left
Heschl gyrus [median (IQR): USFC = 48.6 (21.07)] (second column of
Fig. 2a & Supplementary Table 1). Two of these outliers (i.e., bilateral
thalamus) were also highlighted by SC [median (IQR): SC = 19.3 (8.24)]
(second column of Fig. 2b, no other outliers were found for SC), while no
outlier was found in FC [median (IQR): FC = 6.69 (4.06)] (second col-
umn of Fig. 2c). Consistent with the regional loadings, when examined at
network level, the subcortical, the salience and the default-mode network
ranked as the top three with highest network-level USFC values (third
column of Fig. 2a).

The ten most heavily used structural pathways based on USFC were
shown in Fig. 3. Strikingly, the two hubs of the DMN (i.e., the right PCG
and orbital part of the superior medial frontal cortex), were involved in 7

out of the top-10 most heavily used USFC pathways (Fig. 3 & Supple-
mentary Table 2). The bilateral caudate and thalamus were involved in 6
out these top 10 pathways. Together with three connections between the
PCG and visual regions (i.e., left calcarine, superior occipital gyrus and
cuneus), one connection between the caudate and left superior orbital
frontal cortex, and another one between the right calcarine and inferior
occipital gyrus, the top 10 most heavily USFC pathways feature a clearly
defined, along-the-middle-line, anterior-to-posterior backbone corridor
connecting medial frontal to caudate to thalamus to medial parietal and
to visual regions (Fig. 3 & Supplementary Table 2). When we recon-
structed the USFC using the Destrieux atlas, the top ten heavily utilized
segments in the USFC retained a similar backbone of default mode,
subcortical, visual, and limbic regions, while also engaging additional
segments such as salience, dorsal attention, and ventral diencephalon (see
Supplementary Fig. 2).

Relationships between SC and FC strengths along the defined
USFC routes
To better understand the relationships between SC and FC strengths along
the defined USFC routes, correlation analysis was done for USFCs at each
step for negative (first column of Fig. 4) and positive FCs (third column of
Fig. 4) separately. There are 890/769/3 1-/2-/3-step USFCs supporting
positive FCs and 546/1334/42 1-/2-/3-stepUSFCs supporting negative FCs,
as shown in the middle column of Fig. 4, with images from top to bottom

Fig. 1 | “Traffic model” of unified structural and functional connectivity. The left
panel shows a glass brain view representing brain network communication. Our
approach, on the right magnified image, unifies structural and functional con-
nectivity to depict brain “traffic”, likening the brain to a country where each brain
region is a city connected by roads (structural connectivity). Passengers (functional
connectivity ‘cars’) choose themost efficient route based on road condition (strength
of structural connectivity) and distance. Thicker nude-colored edges between nodes
(regions) indicate stronger structural connectivity (better road condition). Black
dashed arrows represent Euclidean distances between cities. The right panel illus-
trates four scenarios with different passengers (functional connectivity ‘cars’). The
red car chooses a path with 4 steps (1-3-4-5-6) due to much better road conditions
over one with shorter distance but much poorer road condition at the last segment
(1-3-6). With similar distances, the blue car chooses a path with better road con-
dition (1-3-4) over one with poor road condition (1-2-4). The yellow car opts for a
direct/shorter connection with descent road condition (1–3) instead of a longer and
inferior route (1-2-4-3). The green car selects the shortest direct link with descent
road condition (2–6) rather than a longer route with similar road condition on
average (2-4-5-6). The thickness of the green line represents the sum of passengers
on each segment. Thicker green lines indicate routes used by more passengers.
Equation for the calculation the most “efficient” pathway is given on the bottom of
the panel, where EP is the most efficient pathway, D denotes the Euclidian distance
and SC reflects the structural connectivity between each pair of AAL connection. “i”
indicates the number of steps (up to 4) that are searched to calculate the least cost.
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corresponding to the 1-step, 2-step, and 3-step USFCs, respectively. No
common patterns (i.e., shared by >50% of subjects) emerged for 4-step
connections so they were not evaluated. For positive FCs, significantly
positive (for 1-step routes) (Fig. 4a, third column) or non-significant cor-
relations (for 2 and3-step routes) (Fig. 4b,c, third column)were observed for
routes, which is consistent with previous findings24. Intriguingly, more
negative FCs were associated stronger SCs for routes underlying negative
FCs for all routes raging from 1 to 3 steps (Fig. 4, first column), indicating
that stronger negative functional connectivity were supported by USFC
routes with stronger structural connectivity (i.e., higher FA). Moreover, the
interaction patterns between FCs and SCs, estimated using our novel eco-
nomical assumption with a different Destrieux atlas, closely reproduced
association patterns in our primary analysis—stronger SCs were associated
with stronger FCs inmagnitude (except for the one-step connections, which
became non-significant for negative FCs. However, this is consistent with
the weaker negative association observed for one-step connections com-
paredwith indirect two- and three-step connections in ourprimary analysis,
see Supplementary Fig. 3).

Information transferring efficiency of USFC
To examine the information transferring property of the USFC map, three
graph-theoretical metrics, namely global efficiency, betweenness centrality,

Fig. 2 | Regional and network characteristics of each connectivity type. Each row
in panel illustrates glass brain views of the average ‘traffic map’ weighted by unified
structural-functional connectivity (USFC) (a), structural connectivity (SC) (b), and
functional connectivity (FC) (c) matrices from top to bottom, respectively. The
histograms in the middle column show the frequency distribution of regional USFC
(a), SC (b), and FC (c) values. The x-axis indicates the sum of connectivity values of
each node, and the y-axis represents the count of regions within each bin, with bins
colored based on the regions’ corresponding network involvement. Outliers inUSFC
(11 regions; HES.L = left Heschl’s gyrus, PAL.R and PAL.L = bilateral pallidum,
DCG.R andDCG.L = bilateral dorsal cingulate gyrus, THA.R and THA.L = bilateral
thalamus, CAU.R and CAU.L = bilateral caudate, PCG.R and PCG.L = bilateral

posterior cingulate gyrus) on the histogram (first row of the middle column (a)) are
labeled based on the Interquartile Range (IQR) (out of the range between the 25th
and 75th percentile), with colors indicating the corresponding network. Likewise,
bilateral thalamus is labeled via its network color (magenta) as these were found as
outliers in regional SC values (second row of the middle column (b)). Network-level
comparisons are presented in the third column forUSFC (a), SC (b), and FC (c), with
asterisks denoting significant differences between the networks (*p < 0.05,
**p < 0.01, ***p < 0.001), and lines indicating standard deviation. Node colors
correspond to the respective network as defined by the Yeo Atlas, and bar colors
follow the same coding for brain networks. Maps were generated following group-
level FDR correction (p < 0.05).

Fig. 3 | Top ten most heavily used segments of an USFC “traffic map”. Node
colors indicate the relevant network defined by the Yeo Atlas. L = left, R = right,
ORBsupmed = orbital part of the superior medial frontal gyrus (blue; default
mode network), Orbsup = Orbital part of Superior Frontal Gyrus (orange;
limbic network), CAU = caudate (magenta; subcortical), THA = thalamus
(magenta; subcortical), PCG = posterior cingulate gyrus (blue: default mode
network), CAL = calcarine (red; visual network), CUN = cuneus (red; visual
network), IOG = inferior occipital gyrus (red; visual network), SOG = superior
occipital gyrus (red; visual network). Edges weighted by USFC values are seen
in black.
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and modularity were calculated and compared between SC, FC, and USFC
maps. As shown in Fig. 5, USFC demonstrated superior performances
across all three measures, as evidenced by significantly higher global effi-
ciency (p < 0.001) (Fig. 5a), betweenness centrality (p < 0.001) (Fig. 5b) and
modularity (p < 0.001) (Fig. 5c). In line with the global measures, sig-
nificantly superior local efficiency was observed across the entire brain in
USFC compared to SC and FC alone (Fig. 5d) (p < 0.001). Higher regional
betweenness centrality was observed in regions primarily involved in the
DMN, as well as in salience, frontoparietal, dorsal attention, limbic, visual
and somatomotor networks (Fig. 5e) (p < 0.001). Higher local modularity
was located in salience, frontoparietal, limbic and subcortical networks
(Fig. 5f) in USFC compared to FC and SC (p < 0.001). Global efficiency (see

Supplementary Fig. 4a) and modularity (see Supplementary Fig. 4b) esti-
matedusing theDestrieuxatlas remained superior in theUSFCcompared to
FC (p < 0.001) and SC (p < 0.001) alone. Global betweenness centrality was
higher in USFC compared to SC, but lower than FC (see Supplemen-
tary Fig. 4c).

Validation of unified structural-functional connectivity in cogni-
tive prediction
To assess the predictive power of USFC for cognitive outcomes, we
performed CCA between the top ten heavily utilized segments defined by
USFC and fifteen cognitive test scores. USFC demonstrated the highest
correlation coefficient compared to SC and FC alone (Fig. 6a). When

Fig. 4 | Structural and functional coupling in each step. Each row represents the
information about functional and structural connectivity within the steps of USFC
routes such as 1-Step (a), 2-Step (b) and 3-Step (c). The scatter plots in first column
illustrate the relationships between negative functional connectivity (FC) and
structural connectivity (SC) for Step 1 (a), Step 2 (b), and Step 3 (c). Similar

demonstrations are provided for the coupling between positive FC and SC
for each step (i.e., Step 1 (a), Step 2 (b), and Step 3 (c)) on the third column.
Distribution plots in the middle column indicate the number of negative (blue) and
positive (red) functional connections in each step, such as Step 1 (a), Step 2 (b), and
Step 3 (c).
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quantifying the variance explained by the different connectivity models
in relation to cognitive outcomes, the USFC model accounted for the
highest variance, with the first canonical component explaining ~14.95%
of the variance in cognitive scores. In contrast, the FC and SC models
explained 13.05% and 11.28% of the variance, respectively. Moreover,

when we conducted CCA for each cognitive test and performed a paired
t-test to examine the significant comparisons between each metric, USFC
showed significantly higher correlation coefficients than both FC
(p = 0.005) and SC (p = 0.006) (Fig. 6b). No significant difference was
found between SC and FC (p = 0.210) (Fig. 6b). These findings suggest

Fig. 5 | Comparative analysis of graph-theoretical metrics across
connectivity types. Violin plots depict the distribution of global efficiency (a),
betweenness centrality (b) and modularity (c) for unified structural-functional
connectivity (USFC, Green), functional connectivity (FC, Orange), and structural
connectivity (SC, Blue). Asterisk (***) corresponds to a significant difference
between connectivity types (t-test, p < 0.001). Dots indicate the mean of a specific
graph metric for each connectivity type. Lines represent the standard deviation.

Radar plot representing the nodal efficiency (d), betweenness centrality (e) and
modularity (f) across 90 brain regions for three different connectivity types: SC, FC,
and USFC. Each axis of the radar plot corresponds to a distinct brain region, and the
distance from the center to a point on a line represents the graph-theoretical metric
value for that region. The SC (blue), FC (orange), and USFC (green) connectivity
types are depicted as separate lines, allowing for a direct comparison of nodal effi-
ciency across different types of connectivity within each brain region.

Fig. 6 | Comparison of cognitive associations for structural connectivity (SC),
functional connectivity (FC), and unified structural and functional connectivity
(USFC) maps. a Bar plot illustrates the correlation coefficients obtained from
Canonical Correlation Analysis (CCA) between the top ten most heavily used seg-
ments and fifteen cognitive test scores for each metric: SC (blue), FC (orange), and
USFC (green). b Box plots demonstrate the pair-wise comparison of 15 CCA

correlation coefficients between the top ten most heavily used segments and 15
cognitive test scores (done individually) among the three metrics SC (blue), FC
(orange), andUSFC (green). P-values indicate the results of paired t-tests comparing
pairs of CCA coefficients between FC and SC (p = 0.210), between FC and USFC
(p = 0.005), and between SC and USFC (p = 0.006) with asterisks denoting sig-
nificant differences (*p < 0.05, **p < 0.01, ***p < 0.001).
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that USFC is more strongly associated with cognitive performance than
the other models.

Discussion
Based on an economical assumption, our new Unified Structural and
FunctionalConnectivity (USFC)modeling represents thefirst effort to build
the brain’s first “traffic map” highlighting the brain’s major structural
pathways that are most heavily used for efficient functional signal trans-
ferring. Based on this model, we revealed a highly skewed brain “traffic”
system featuring the subcortical, the default-mode, and the salience network
housing some of the brain’s most traversed nodes and a medial frontal-
caudate-thalamus-posterior cingulate-visual cortex midline “backbone”
corridor as the mostly heavily used structural pathways. Moreover, the
finding that stronger structural connections are underlying stronger nega-
tive functional connections further supports the functional roles of negative
FCs and provides a fresh perspective on the dynamic interactions among
brain regions. Finally, the significantly higher efficiency, modularity, and
betweenness centrality, as well as the better prediction of cognition
demonstrated in the USFC map when compared with structural and
functional connectomes,may support the superiority of this “trafficmap” in
potentially revealing the true working mechanism of the human brain.
Overall, the proposed USFC model potentially opens a new window for
brain connectome modeling by offering a more intricate depiction of the
brain’s connectivity landscape based on an inherently multi-modal and
integrated modeling of both structural and functional connections.

The Unified Structural and Functional Connectivity (USFC) model
presented in this study addresses a critical limitation in the field of brain
connectivitymodelingwith its uniquemulti-modeldesign and inherent FC-
SC integration in its formula of USFC derivation. In contrast, most tradi-
tional approaches, including betweenness centrality, k-shortest paths,
information efficient paths, aswell as others based on graph theory33–40, treat
structural and functional connectivity as separate entities, resulting in a
model-specific understanding of brain communicationmechanisms, which
is often then mitigated by post-hoc FC-SC correlation analysis to char-
acterize their relationships. By integrating these two modalities throughout
the process, the USFC model provides a more holistic view of the brain’s
combined functional and structural connectivity system, overcoming the
limitation of considering SC and FC in isolation. Specifically, the funda-
mental assumption ofUSFC is that functional communication between any
pair of regions is realized through selecting the most efficient (i.e., shortest
and strongest) structural pathways. Therefore, the calculation of USFC
starts from the FCmatrix which defines all pairs of regions with significant
functional connectivity. After finding the most efficient structural pathway
of each significant functional connection with a combined consideration of
both shorter anatomical distance and better signal transferring capacity (i.e.,
indexed by higher FA), the cumulative functional communication carried
by each structural segment across all functional connections is then calcu-
lated (i.e., the sum of all functional connection strengths passing through
this segment) as the USFC of that segment, representing its actual “traffic
load”. Therefore, the definition of USFC is inherently FC-driven andmulti-
modal by combining both structural connectivity and functional con-
nectivity in this well-defined formula. Overall, USFC provides a novel and
more integrated understanding of brain networks and allows for the
modeling of brain connectivity based on both the anatomical pathways and
the functional communication between regions. To the best of our knowl-
edge, no previous methods41,42 have combined SC and FC in such an inte-
grated manner to derive a combined index of brain connectivity depicting
the functional load of each structural connection.

Our analysis uncovered an striking pattern within the brain’s USFC
blueprint: the DMN regions collectively possess the third highest nodal
USFC values while more strikingly, seven of the top ten most heavily traf-
ficked pathways involve either the PCGormedial prefrontal cortex, the two
hub regions of the DMN43. Centrally located and occupy a large portion of
the brain, the DMN is known for being “active” during rest and its versatile
roles in self-reference, social cognition, episodic and autobiographical

memory, language, sematic memory, among others44–46. All these functions
involve complex communications within and between DMN and other
brain regions which likely underlies our finding of its central role in the
newly defined USFC system. Specifically, the prominent inter-network
connections between the DMN hubs and subcortical/visual regions as
shown in the top tenUSFCpathways likely underscore theDMN’s potential
integrative role across different domains, which is highly in line with find-
ings demonstrating DMN’s active and dynamic reorganization of its con-
nectivity patterns across a range of cognitive and socioemotional tasks47–50.
This finding provides another critical piece of evidence from a global brain
“traffic map” perspective that the DMN’s role likely goes beyond a passive
default state but rather globally contributes to the brain’s efficient signal
processing across task domains48,49. Overall, ourfinding of the central role of
the DMN in the newly defined USFC system provides new support/
explanation for its established importance in development49,51, normal adult
functioninXXX12g47–50,12,52,53, aging54,55 and various brain disorders56–59.

Beyond DMN connections, six of the top-ten most heavily trafficked
segments involve the thalamus/caudate while at a network level, the sub-
cortical and salience network regions collectively rank as the two mostly
traversed networks in the whole brain “traffic map” ranking (Fig. 2).
Regarding the salience network, although not highlighted in the top ten
mostly heavily used pathways, its regions collectively rank second in the
whole brain “traffic map” system and the middle cingulate cortex was
detected as one of the “outliers” with the highest USFC loadings. These
findings are consistent with its reported role of lying on the apex of the
brain’s global coordination system by performing a “switching” role among
large scale functional networks, especially between the DMN and dorsal
attention networks47,50,60,61.

The subcortical regions, inparticular the thalamus’s prominence in this
“traffic” system is consistentwithnotonly its known role as an “relay center”
connecting peripheral neural system with the brain cortices but also its
versatile involvement in modulating and refining sensory data, shaping
consciousness, and enhancing cognitive functions62–64. Its highly utilized
connectivity with the PCGmay be particularly indicative of a sophisticated
mechanism that merges external sensory inputs with internal states, an
essential process for coherent cognitive function65. Similarly, the caudate
nucleus not only plays a critical role in movement planning and execution
but also serves in amultitudeof essential brain functions, including learning,
memory, reward,motivation, emotional regulation, and aspects of romantic
interaction66,67. Structurally, frontal regions are known to be connected to
the caudate, which in turn is connected to the thalamus, and subsequently
projecting to PCG68,69, providing SC support for the observed medial
frontal-caudate-thalamus-posterior cingulate -visual pathway that leads the
most heavily USFC segments. The finding of a clearly defined midline
corridor connecting frontal to caudate to thalamus to posterior cingulate
and finally to visual cortices supporting the most “traffic” in the brain
through USFC modeling is striking and opens up new windows for better
understanding of the “backbone” structure of the brain’s global commu-
nication system. Consistent with our findings, Hagmann et al. have pre-
viously delineated the SC hubs of the human brain and similarly detected a
midline “structural core” linking precuneus to posterior, middle, anterior
cingulate cortexandfinally tomedial orbital frontal cortices4.However, their
examinations exclude subcortical areas so the potential “bridging”/ “dis-
seminating” (e.g., the thalamus) role of subcortical regionswere not counted
for. With combined consideration of both functional and structural con-
nections and including both cortical and subcortical regions, the midline
corridor delineated in this study featuring a frontal-subcortical-parietal-
occipital link may have better captured the “backbone” of the brain’s global
communication system and deserves attention in future search of its rele-
vance in health and disease.

The finding of moderate but significant positive correlations between
SC and FC strengths associated with positive FCs is in line with previous
reports24,70. However, the finding that routes underpinning negative FCs
show a robust negative relationship between SC and FC strengths across
one-to-three step connections is more intriguing. Ongoing debates
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regarding global signal regression and the consequent observation of
negative correlations underscore the lackof consensus on a singularmethod
for processing resting state data to uncover the ‘true’ nature of brain
functionality71. Contrary to the notion of negative FCs as a mere byproduct
of signal processing, emerging research posits it as a salient aspect of the
brain’s functional architecture definingmodularity of the resting-state fMRI
connectome, deeply linkedwith its structural framework12,72–77.Ourfindings
add to the evidence supporting the functional significance of negative FCs
after global signal regression and suggest that the brain utilizes a delicate
traffic system to choose the best routes (i.e., composed of segments with
stronger SCs) for negative FCs across different brain regions. Notably,
Skudlarski et al. indicated that regions with negative functional FCs are not
necessarily disconnected structurally78. Instead, there is an implication of a
complex relationship where structurally close regions can exhibit negative
FCs, suggesting an intricate coordination of brain dynamics. However, we
have to point out that the “one-step” route delineated in this study should
not be confused with “direct SC” or “connected by a single white matter
bundle” given the limitation of diffusion-weighted imaging-based tracto-
graphy. In otherwords, the one-step SCused in this studywas derivedbased
on probabilistic tractography and as long as there is a “connected structural
route” connecting two brain regions, we define these two regions are
“structurally connected” and treat them as “one-step” connections. It is
possible that multiple white matter fiber bundles are underlying each of
these “one-step” structural connectionand the accumulatedphase lag across
the multiple structural connections may have contributed to the observed
negative FCs79. Compared with the relationships associated with negative
FCs, where all three step groups (i.e., 1–3) show significant negative cor-
relations, the relationships associated with positive FCs only show positive
relationships for 1-step route. One potential explanation could be that
choices for multiple-step positive FCs are more abundant than those for
negative FCs, where SC is not necessarily a limiting factor and the choices
are not as tightly regulated, resulting in weaker SC-FC correlations.
Regardless, the finding that stronger structural routes are underlying
stronger negative FCs provides further support for the importance of
negative FCs in the brain’s integrated communication and functioning.

For all three measures of the brain system communication efficiency,
namely global efficiency,modularity, andbetweenness centrality, theUSFC-
based connectome demonstrates significantly higher performance than
both the FC and SC systems. These findings support the potential super-
iority of the USFC system in depicting the brain’s signal transferring effi-
ciency. Essentially, only looking at the “road system” (i.e., equivalent to the
brain’s SC system) or the final “number of people traveling between any two
cities” (i.e., equivalent to the brain’s FC system) could not provide a clear
picture of the brain’s underlying “traffic patterns” (since there are multiple
pathways linking eachpair of cities)while it is this trafficpattern that directly
unveils how the road system is used to support the between-city traveling
(i.e., signal transferring). The much higher global efficiency and between-
ness centrality is likely supportedby themostheavily utilized routesbetween
major functional nodes while the higher modularity may result from the
more densely connected local systems within USFC. Additionally, the
enhanced predictive performance for cognitive functions may indicate that
the USFCmodel integrates both structural and functional information in a
manner that better represents the underlying neuralmechanisms associated
with cognition.This novelwayof combinedmodeling of both structural and
functional connections likely allows for a more comprehensive under-
standing of how different brain regions communicate to support cognitive
processes.

Although this work provides a new perspective on brain connectome
modeling, there are a number of limitations associated with the current
version of USFC that deserve future considerations80,81. One important
limitation is that the currentUSFCmodel does not account for the potential
dynamic functional connectivity fluctuations. While the current formula
using static FCmeasures provides an integratedmodeling of functional and
structural connectivity patterns, it overlooks the potential temporal varia-
bility in functional interactions between brain regions82,83. Future

incorporation of time-dependent functional connectivity34,82,84, which is
known to fluctuate based on cognitive demands, tasks, and internal
states50,85,86 is an important next step so the selection of best structural
pathways can also incorporate considerations of the current “real-time”
traffic, which may result in better FC-SC modeling. Secondly, functional
connectivity as measured by Pearson correlation, reflects statistical asso-
ciations between brain regions, is prone to noise, common inputs, or
indirect connections87–89, and is inherently limited in its inability to infer
causality or directionality between nodes90. Therefore, in this manuscript,
we used theword “traffic” in quotationmarks to facilitate the understanding
of our model when we compared it to the real-world traffic system, but this
should not be interpreted as FC or USFC indicating direct communication
or directed signal flow. Future studies could employ causal modeling
approaches such as dynamic causalmodeling (DCM)or structural equation
modeling (SEM), to better look into the directional relationships between
brain regions81,90. A third limitation of the USFC model is the assumption
that communication always occurs via the shortest and most structurally
efficient pathways as previous studies suggested that communication may
also unfold through alternative or less economical routes80,81. This highlights
the need for future work to incorporate additional complexities such as
redundancy or probabilistic models in defining network paths to further
enhance our understanding of brain connectivity dynamics. Future
empirical comparisons with other brain network communication models
incorporating path ensembles, dynamic routings, or those beyond shortest
paths80,90 could also further evaluateUSFC’s relative performance and refine
its utility for both theoretical modeling and clinical applications. As men-
tioned above, direct structural connection in this studymight not represent
one single fiber bundle. Rather, one-step routes may consist of multiple
white matter fiber bundles, which bears critical implications on the
understanding of SC-FC relationships, particular those with the negative
FCs as detailed above. Moreover, we used average FA along the tracts to
index SC strength, but other metrics may also be considered in future
development of themodel. The FA-weighted connectivity used in this study
may not fully capture the complexity of fiber organization in regions with
crossing or branching fibers, where FA values can be significantly reduced91.
This represents a limitation and alternative diffusion metrics, such as
Neurite Orientation Dispersion and Density Imaging (NODDI)92 or sphe-
rical deconvolution techniques93, should be explored in future work to
improve structural connectivitymodeling in these regions. Finally, while the
current CCA analysis provides insights into the relationship betweenUSFC
and cognitive performance, future formal prediction analysis incorporating
cross-validations may better illustrate generalizability of the detected brain-
behavior relationships94,95.

Overall, by integrating structural pathway properties and functional
connectivity strength in a single connectome model, the proposed USFC
framework offers a new way of combined modeling of the brain’s con-
nectivity system. The end result of an integrated “traffic map” of the whole
brain highlighted the critical importance of the subcortical, default-mode,
and salience networks, as well as a midline frontal-caudate-thalamus-
posterior cingulate-visual cortex “backbone” structure in its global com-
munication system. The higher efficiency measures and better associations
with cognitive performances underscore the potential superiority of USFC
in modeling this complex and delicately wired system. Future efforts to
refine this model and navigate the resulting complex “traffic maps” in both
normal and diseased populations may have the potential to transform both
theoretical modeling of the brain’s connectome and clinical/intervention
approaches.

Methods
This study involved 394 subjects from the Human Connectome Project -
1200 Subjects Release (S1200) including behavioral and 3 T MRI data. All
research involvingHCP young adult data was conducted in accordance with
ethical standards established by the Institutional Review Board (IRB) at
WashingtonUniversity in St. Louis and at theUniversity ofMinnesota96. The
data collectionprotocolswere approvedby these institutions, ensuring that all
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participants provided informed consent prior to participation in the study.
This adherence to ethical guidelines guarantees the protection of participant
rights and the integrity of the research process. These subjectswere randomly
selected from the shuffled dataset, constituting one-third of the total sample.
We downloaded minimally processed diffusion tensor imaging, T1-
MPRAGE and rs-fMRI data to perform structural and FC analysis. Details
of the minimal image processing are provided in Glasser et al.97.

Structural connectivity
Individual structural networks were constructed through the utilization of
whole brain probabilistic fiber tracking with MRtrix3 (www.mrtrix.org)
within the subject’s space as described in Has Silemek et al.98. To generate
fractional anisotropy (FA) and mean diffusivity maps, we initially applied
diffusion tensorfitting to diffusion tensor imaging data, accounting for head
motion and eddy currents, and performed skull stripping procedures using
FSL’s diffusion toolbox99.

To obtain a precise estimation of the fiber orientation distribution
(FOD) during constrained spherical deconvolution, we determined the
multi-shell, multi-tissue response functions based on FODvalues exceeding
0.7 for white matter and lower that 0.2 for gray matter and cerebrospinal
fluid100. Subsequently, for fiber construction, we employed probabilistic
tractography algorithms, which generated a total of 150,000 fibers, with a
minimum length threshold set at 20mm. Default parameters included a
step size of 0.2mm, a minimum radius of curvature of 1mm, and an FOD
cut-off of 0.1. Seeds for tractography were specified using all voxels from
1mmdilated white mattermasks. The tracking of these seeds was confined
by the mask’s boundaries and predefined FA or FOD thresholds. Stream-
lines were mapped onto structural image which was labeled based on the
AALatlas (2009). Following this, we computed the average FA for eachfiber
tract after estimating the FA values at each point along the fiber’s trajectory
as an index of the SC strength for this fiber tract. For each pair of nodes, the
mean FAof the fibers that intersect both nodeswas calculated, ensuring that
the number of fibers in the selected vectors of the nodes matched the
number of fibers in the tract structure.

Functional connectivity
The preprocessing steps for FC involved several key procedures, including
skull stripping using FSL, segmentation of white matter, gray matter, and
cerebral spinal fluid via FSL FAST and motion correction with AFNI
(participants with framework displacement >0.3 mm and <1000 volumes
were excluded), bandpass filtering in the frequency range of 0.01 to 0.1 Hz
usingAFNI, and spatial smoothing via aGaussian kernel with a full width at
half-maximum of 6mm, non-linear registration of rs-fMRI images to the
MontrealNeurological Institute atlas usingANTs. Following preprocessing,
global signal regression was applied to remove the mean graymatter signal.
Subsequently, FC was computed by measuring the correlation between the
average signals of each pair of 90 regions in the AAL atlas (p < 0.05, false-
discovery rate (FDR)101 corrected).

Unified Structural and Functional Connectome (USFC)
construction
Construction of USFC was performed by a custom MATLAB script102

including the following procedures:

Template distance calculation
First, we defined a standard distance map based on the AAL template
extracting the anatomical coordinates for designated brain regions, which
were sequentially labeled from1 – 90. Then, the Euclidean distance between
the center of mass of each of the 90 region pairs was determined.

Identifying the most “efficient” pathway
The cost functionwasdefinedas theEuclideandistance ofAALatlas divided
by the strength of direct SC between a pair of regions along all potential
routes (up to 4 steps were searched). The most “efficient” pathway for each
FC in each subject was identified by summing the cost of each “step” and

choosing the one with the least “cost” as follows:

EP ¼ min
X4

i¼1

D
SC

nodei; nodeiþ1

� �
 !

ð1Þ

where EP is the most efficient pathway, D denotes the Euclidian distance
and SC reflects the structural connectivity between each pair of AAL con-
nection. Schematic demonstration of the most “efficient” pathway is
visualized in Fig. 1.

Unified structural and functional connectivity (USFC) value
calculation
AUSFC value for each “road segment”/direct SC was then calculated as the
sum of all FC values that use this segment in their respective routes,
essentially quantifying the amount of “traffic” on this “road segment” for
each subject (i.e., weighted by both the number and degree of “traffic”)
(Fig. 1). After calculating the mean USFC by averaging the values in each
pair of connections across the group, one-sample t-test and FDR correction
at a threshold p <0.05 were applied.

Structural-functional relationships across all USFC routes
Tobetterunderstand the relationships betweenSCandFCalong thedefined
USFC routes, we performed functional-structural strength correlation
analysis at the group level across all routes in four subgroups based the
number of steps of the corresponding route, focusing on those that are
consistent in over 50%of the subjects. The SC for each stepwas calculated by
averaging the SC values for every pair of nodes within the respective route.
Spearman correlationwas performed to test the relationship between the SC
and FC at each step and p < 0.05 was accepted as significant.

Graph-theoretical metrics
To examine the information transferring efficiency of the newly derived
USFC connectome, we utilized three principal graph-theoretical metrics
calculating via Networkx package in Python103 to assess weighted network
characteristics: efficiency104–106, modularity107, and betweenness centrality108.
Efficiency denotes the network’s capacity for swift and economical propa-
gation of information. Modularity quantifies the degree to which the net-
work is partitioned into cohesive communities or clusters with dense intra-
cluster connections. Betweenness centrality measures the nodes’ role in
facilitating information flow, thus reflecting their capacity to integrate data
across disparate functional regions. These metrics were computed for each
individual across the threemetrics, namelyFC, SC, andUSFC, and statistical
comparisons were made using t-tests.

Testing the robustness of the USFC
To demonstrate the robustness of the USFCmethodology, we repeated our
analysis using an alternative brain parcellation scheme, specifically the
Destrieux atlas with 164 regions (82 per hemisphere)109.

Association between USFC and cognition
To validate our novel framework, we conducted a USFC-cognition asso-
ciation analysis and compared the results with those obtained from func-
tional connectivity (FC) and structural connectivity (SC), respectively.
Specifically, we performed a Canonical Correlation Analysis (CCA)110

focusing on the brain’s key structural-functional pathways, defined as the
top ten most prominent segments identified by the USFCmodel, alongside
cognitive assessments available in the HCP dataset. The CCAwas executed
using the cancor function in R, which identifies pairs of canonical variables
that optimally represent the relationships between the top ten USFC mea-
sures and cognitive performance scores. A total of fifteen cognitive tests
from theNIHToolbox and the PennComputerizedNeurocognitive Battery
(CNB) were included, covering a diverse range of cognitive domains:

Memory: Picture Sequence Memory Test (PicSeq_AgeAdj), Penn
Word Memory Test (IWRD_TOT).
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Executive Function and Cognitive Flexibility: Dimensional Change
Card Sort (CardSort_AgeAdj), Flanker Inhibitory Control and Attention
Test (Flanker_AgeAdj).

Language and Vocabulary: Oral Reading Recognition (Read-
Eng_AgeAdj), Picture Vocabulary Test (PicVocab_AgeAdj).

Processing Speed: Pattern Comparison Processing Speed Test
(ProcSpeed_AgeAdj).

Working Memory: List Sorting Working Memory Test
(ListSort_AgeAdj).

Composite Cognition Scores: Fluid Composite (Cog-
FluidComp_AgeAdj),CrystallizedComposite (CogCrystalComp_AgeAdj),
Total Composite (CogTotalComp_AgeAdj), Early Childhood Composite
(CogEarlyComp_AgeAdj).

Self-Regulation and Impulsivity: Delay Discounting for $200 at
1month (DDisc_SV_1mo_200).

Spatial Orientation: Variable Short Penn Line Orientation Test
(VSPLOT_TC).

Sustained Attention: Short Penn Continuous Performance Test
(SCPT_TPRT).

This analysis was carried out separately for each metric, including SC,
FC, and USFC. Furthermore, we repeated the CCA analysis for each cog-
nitive test and applied paired t-tests to determine significant differences in
the predictive performance of USFC, FC, and SC.

Statistics and reproducibility
In this study, we conducted a series of statistical analyses to explore the
relationships between connectivity types and cognitive performance. Initi-
ally, we calculated the mean USFC by averaging the values of each pair of
connections across the entire sample.Aone-sample t-testwas performedon
these averages, with FDR correction applied at a threshold of p < 0.05 to
account for multiple comparisons.

To examine the relationships between SC and FC, Spearman correla-
tion analyses were conducted at each step, with p < 0.05 considered statis-
tically significant. Graph theoretical metrics were computed for each
individual across the three metrics: FC, SC, and USFC, allowing for statis-
tical comparisons via t-tests. To ensure the robustness and replicability of
our model, all measurements were repeated using an alternative atlas
(Destrieux).

Additionally, we performedCCA, focusing on the top tenmost heavily
used segments identified through the USFC model, alongside cognitive
assessments available in the HCP dataset. The CCAwas executed using the
cancor function in R, which identifies pairs of canonical variables that
optimally represent the relationships between the top ten USFC measures
and cognitive performance scores. We repeated the CCA analysis for each
cognitive test and applied paired t-tests to determine significant differences
in the predictive performance among USFC, FC, and SC.

Finally, while the current CCA analysis provides valuable insights into
the relationships between USFC and cognitive performance, future formal
predictive analyses incorporating cross-validation methods may enhance
our understanding of the generalizability of the detected brain-behavior
relationships.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The HCP data, including MRI and cognitive assessments analyzed in the
current study, are publicly available at http://www.humanconnectome.org.

Code availability
A custom MATLAB code for construction of unified structural and func-
tional connectivity is available online102 (https://github.com/ArzuHas/
USFC.git).
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