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Abstract

Protein Structure Comparison (PSC) is a well developed field of computational proteomics

with active interest from the research community, since it is widely used in structural biology

and drug discovery. With new PSC methods continuously emerging and no clear method of

choice, Multi-Criteria Protein Structure Comparison (MCPSC) is commonly employed to

combine methods and generate consensus structural similarity scores. We present

pyMCPSC, a Python based utility we developed to allow users to perform MCPSC effi-

ciently, by exploiting the parallelism afforded by the multi-core CPUs of today’s desktop

computers. We show how pyMCPSC facilitates the analysis of similarities in protein domain

datasets and how it can be extended to incorporate new PSC methods as they are becom-

ing available. We exemplify the power of pyMCPSC using a case study based on the Pro-

teus_300 dataset. Results generated using pyMCPSC show that MCPSC scores form a

reliable basis for identifying the true classification of a domain, as evidenced both by the

ROC analysis as well as the Nearest-Neighbor analysis. Structure similarity based “Phylo-

genetic Trees” representation generated by pyMCPSC provide insight into functional group-

ing within the dataset of domains. Furthermore, scatter plots generated by pyMCPSC show

the existence of strong correlation between protein domains belonging to SCOP Class C

and loose correlation between those of SCOP Class D. Such analyses and corresponding

visualizations help users quickly gain insights about their datasets. The source code of

pyMCPSC is available under the GPLv3.0 license through a GitHub repository (https://

github.com/xulesc/pymcpsc).

Introduction

Protein Structure Comparison (PSC) allows the transfer of knowledge about known proteins

to a novel protein. Novel protein structures are routinely compared against databases of

known proteins to establish functional similarities using “guilt by association” [1]. Conserva-

tion of proteins is known to be much higher at the structure than at the sequence level, there-

fore structural similarity is essential in assigning functional annotations to proteins [2].
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Function assignment is typically achieved by developing a template of the functional residues

of the proteins and then aligning the template with complete known structures [3]. Structural

comparison approaches are also increasingly employed in drug repositioning [4]. PSC meth-

ods are used to identify proteins with similar binding sites all of which then become potential

targets for the same ligand [5, 6]. All these important applications require the structure of one

or more proteins (queries) to be compared against a large number of known protein structures

(one-to-all or many-to-many type comparison) to identify protein pairs with high structural

similarity.

Performing large-scale PSC experiments (with thousands of protein structures) is time con-

suming due to three factors: a) the time complexity of the individual pairwise problem, b) the

trend towards providing consensus results using multiple methods and c) the exponential

growth of structural databases. The problem of aligning two protein structures is known to be

NP-hard [7]. Over the years, many heuristic methods have been proposed for pairwise PSC.

They vary in terms of algorithms and similarity metrics used, yielding different but biologically

relevant results. Thus, no single method is currently considered superior for PSC [8]. So, it is

common to generate consensus results by combining different methods, a trend known as

Multi-criteria Protein Structure Comparison (MCPSC) [9]. With the advances in high-through-

put technologies, the number of known protein structures is growing very rapidly [10]. This is

reflected in the size of the Protein Data Bank (PDB) [11] is increasing exponentially (Fig B in

S1 File). Given the great importance of PSC in diverse fields, there is a need for efficient

MCPSC techniques and software to identify structurally similar protein pairs within a large

dataset.

To this end, a useful cluster computing shared resource available to the community is the

ProCKSI server [12]. Given a dataset of protein domains, it supports all-to-allMCPSC experi-

ments, returning to the user individual PSC method scores as well as a consensus average

score. While ProCKSI is an one-stop resource, it is limited in the size of the data that a user is

allowed to submit (upto 250 protein domains). Moreover, the users cannot add new PSC or

MCPSC methods of their choice. In general, distributed solutions, implemented using shared

resources, suffer from limitations such as extensibility and maintainability.

In order to exploit modern processor architectures (CPUs) we have ported in [13] a popular

PSC method (TM-align [14]) to an experimental many-cores CPU architecture, namely Intel’s

Single-chip Cloud Computer (SCC) [15], a processor having 48 cores interconnected via a

mesh-type Network-on-Chip. We extended this work to support efficient MCPSC on the SCC

processor in [16]. However, to the best of our knowledge, there is currently no software utility

available to the community for flexible and parallel MCPSC that can exploit the ubiquitous

multi-core CPUs of today’s PCs and can be extended with new PSC methods to provide sys-

tematic MCPSC similarity analysis of large protein datasets.

In this work, we introduce such a utility, called pyMCPSC,which we have created using the

popular Python programming language [17] and make available to the community. pyMCPSC
generates pairwise structure comparison and consensus scores using multiple PSC and

MCPSC methods. In addition, the resulting similarity scores are used to generate multiple

insightful visualizations that can help a) compare and contrast the structure comparison meth-

ods, and b) assess structural relationships in the analyzed dataset. Such comprehensive analysis

allows researchers to gain quick visual insights about structural similarities existing in their

protein datasets, simply by exploiting the power of multi-core CPUs of their computers.

pyMCPSC allows pairwise structure comparison tasks to be distributed over the multiple

cores of the CPU and provides a simple Command Line Interface (CLI) for setting up and run-

ning all-to-all MCPSC experiments in a standard PC. Our utility wraps available executable

PSC method binaries with a user specified class, thus making it easy to incorporate new PSC
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methods in MCPSC analysis while hiding the details of parallel job distribution from the user.

As distributed today, pyMCPSC contains wrappers for the executable binaries of five well

known PSC methods: CE [18], TM-align [14], FAST [19], GRALIGN [20] and USM [21]. These

implementations can also serve as examples of how to quickly extend the utility with new PSC

methods as soon as their binaries become available to the community. In addition, pyMCPSC
generates consensus (MCPSC) scores using multiple (five) alternative schemes. Finally,

pyMCPSC uses the computed similarity scores (PSC and MCPSC) to generate several insightful

visualizations.

As a use case, we employed pyMCPSC to analyze the Proteus_300 dataset [22] and compare

the performance of the PSC methods and consensus schemes (MCPSC) currently supported.

The dataset consists of 300 unique protein domains. We were able to match N = 270 of them

to SCOP [23] classifications using Astral v1.75 [24]. A total of P = N2 −N domain pairs were

then generated. We used this dataset because it is of a reasonable size and has also been used in

previous PSC work [20] to compare PSC methods on speed and classification accuracy. We

show that the generated consensus scores achieve a very high Area Under the Curve (AUC)

and domain auto-classification accuracy (using Nearest-Neighbor classification) matching or

exceeding that of the best component PSC method which in practice is not known for any

given dataset. Our analysis shows that MCPSC methods provide consistent performance for

structure-based protein classification. Moreover, scatter plots, heatmaps and “Phylogenetic

Trees” generated by pyMCPSC in structural space reveal novel information about the presence

of strongly associated domains within the dataset. Moreover, to demonstrate the capabilities of

the utility to handle very large datasets we have processed the SCOPCATH dataset [25]. The

results of the analysis are summarized in S2 File.

Methods

Design and implementation

As a software architecture, pyMCPSC is organized into several modules called in sequence by

the main entry point. An overview of the processing sequence is shown in Fig 1. The modules

are functionally independent and the interface between them is via files. Each module receives

a set of parameters, including the files used to read data and write the output results. In a typi-

cal scenario, the user sets up an experiment, using command line parameters for supplying

information such as the location of protein domain structures data and ground-truth classifi-

cation (if available). The ground-truth data required by pyMCPSC to perform the analysis

steps is the SCOP/CATH [26] classification of the domains in the dataset being analysed. The

information is expected to be provided to the utility in a specific format. pyMCPSC first gener-

ates pairwise similarity scores for all domain pairs, using the supplied PSC methods and the

implemented MCPSC methods, and then generates results to facilitate structure based com-

parison and analysis.

Consensus scores calculation

Given a set of protein domains, pyMCPSC generates similarity scores using the supported PSC

methods, for all protein pairs (all-to-all) that can be formed using the dataset. One-to-many,

many-to-many and all-to-all PSC jobs with one or more PSC methods can be distributed in

multiple ways depending on the unit of work sent to the processing elements [27]. If there are

P pairwise comparisons to be made andM PSC methods to be used, the total number of fine

grained pairwise PSC jobs is P×M. By default pyMCPSC creates a list of pairwise comparisons

(P) corresponding to the all-to-all setup (all pairs of domains in the specified dataset). Pairwise

similarity scores are then generated by calling third party external binaries for each of the
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supported PSC methods. The pairwise PSC processing is distributed over p threads (a config-

urable parameter), equal to the number of cores in the processor. The user may include spe-

cific pairs of interest in the ground-truth data (one-to-many or many-to-many setups) to limit

the pairwise comparison results used in consensus calculations and performance analysis.

Once all the pairwise similarity scores have been generated, the MCPSC consensus scores are

also computed for the domain pairs. The consensus scores calculation involves several steps, as

indicated in Fig 1.

Data imputation

A “local average fill” scheme is used to compensate for potentially missing data for each PSC

method. Missing PSC score for pairs of domains can be a result of PSC method executable or

PDB file errors and can be problematic for classification/clustering analysis that rely on these

values. Assuming that pairwise PSC scores were successfully generated for s domain pairs (out

of the total P pairs in a dataset), the number of missing pairwise scores is P − s, with the value

of s being different for different PSC methods. To impute the missing data for each PSC

method, the following steps are repeated for all domain pairs (di, dj) with a missing score:

• find the set of PSC scores where di is the first domain in the pair

• find the set of PSC scores where dj is the second domain in the pair

• merge the two sets and use the mean value of scores in the set union as the PSC score for that

domain pair

• if the two aforementioned sets are empty then use the global average of scores for that PSC

method to supply the missing score’s value.

Fig 1. Schematic overview of the architecture of pyMCPSC. pyMCPSC is organized into several modules, each one

implementing a specific functionality. The main entry point of the utility drives the sequence of activities shown.

Similarity scores are generated for all protein pairs using the executable binaries of the included PSC methods.

Subsequently the scores are scaled, missing data (similarity scores) are imputed and consensus MCPSC scores are

calculated for all domain pairs. If the user has supplied ground-truth domain classification information, then

comparative analysis results are also generated based on the similarity scores. The modules where the respective

functionalities are implemented are specified in parenthesis.

https://doi.org/10.1371/journal.pone.0204587.g001
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PSC scores. Base PSC scores calculation Pairwise scores for all PSC methods are first

converted to dissimilarities (with value higher when domains in the pair are more different).

PSC scores scaling A Logistic Sigmoid scheme is used to scale scores to ensure equal con-

tribution of PSC methods towards the consensus MCPSC scores calculation. Given the base

dissimilarity score (X) for a PSC method, its scaled version (S) is obtained using Eq (1) below,

where μ and σ are the mean and standard deviation respectively over all scores X for that

method. Effectively, the dissimilarity scores are first autoscaled (to make the different PSC

method scores comparable) and then the logistic sigmoid is applied. As a result, at the end we

obtain similarity scores (S) in the range 0 to 1.

S ¼ 1 �
1

1þ e� X� m
s

ð1Þ

MCPSC consensus scores calculation. pyMCPSC produces five alternative MCPSC con-

sensus scores as discussed below:

• M1—It is the Generalized Mean of the available PSC scores and is computed as shown in Eq

(2) below, wherem is the number of non-null PSC method scores available for a given

domains pair. In the current implementation q = 1, henceM1 is essentially the average of the

available PSC scores for the pair.

M1 ¼ ð
1

m

Xm

i¼1

Si
qÞ

1
q ð2Þ

• M2—It is a weighted average of the PSC scores of the different methods. For each domain

pair we weight the available PSC method scores by the percentage of pairs successfully pro-

cessed by each PSC method in the whole dataset (coverage based weighting).

• M3—Similar to M2, but here we also allow domain expert knowledge to play a role in the

method’s relative weighting e.g. we lower USM method’s weight to one half since it is a

domain agnostic method (domain expert knowledge based weighting).

• M4—For each domain pair, we weight each PSC method by the mean RMS distance of its

scores from those of the other PSC method scores, as shown in Eqs (3), (4) and (5) below,

where Sik is the scaled PSC score for the kth domain pair (k = 1, 2, . . ., P) and the ith PSC

method (i = 1, 2. . ., . . .M). If scores Sik or Sjk are missing, the corresponding kth term is

excluded from the summation in (3) (divergence driven weighting).

RMSDij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP

k¼1

ðSik � S
j
kÞ

2

s

ð3Þ

ri ¼
1

M

XM

j¼1

RMSDij; i; j 2 f1; 2; . . . ;Mg ð4Þ

wi ¼
ri

maxðriÞ
; i 2 f1; 2; . . . ;Mg ð5Þ
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• M5—For each domain pair, we weight the PSC methods by user supplied relative weights.

For example, in the experiment with the Proteus_300 dataset [22] discussed in the Results

section, the PSC method weights were learned by applying a logistic regression method

where only 10% of the dataset was used for training to extract the relative method weights

(see details in Section B.2 in S1 File).

For a domain pair withm available PSC method scores, where in generalm< =M (M = 5

currently), them weights are first normalized to sum up to one and the consensus score (for

schemes M2-M5) is then calculated as the weighted average of the availablem scores. MCPSC

schemes M1-M4 leverage different properties of their component PSC methods, while weight-

ing them in different ways to generate a consensus score. Finally, amedian MCPSC score per

domain pair is generated using the M1-M5 scores. As pyMCPSC sources are made available, it

is also entirely possible for the user of the utility to experiment with new consensus score gen-

eration schemes.

Comparative evaluation of different methods

The generated pairwise domain similarity scores (PSC and MCPSC) are written to a file (pro-
cessed.imputed.mcpsc.csv) in the user defined output directory. If ground truth information i.e.

true classification (such as SCOP and CATH) is available for each protein domain, pyMCPSC
also performs the following data analysis steps (see Fig 1):

1. Generates Receiver Operating Characteristics (ROC) curves and computes the correspond-

ing Area Under the Curve (AUC) values for each method.

2. Performs Nearest-Neighbor auto-classification of protein domains, at any specified level of

SCOP hierarchy, using PSC/MCPSC score-based distance matrices.

3. Embeds the protein domains in a 2-dimensional space for visualization using Multi-dimen-

sional Scaling (MDS) and generates scatter plots. Parallel computation is used to utilize all

cores of the processor.

4. Generates Heatmaps, at Domain and Fold SCOP hierarchy levels, using PSC/MCPSC

score-based distance matrices.

5. Generates “Phylogenetic Trees” of protein Domains, using PSC/MCPSC score-based dis-

tance matrices.

Dependencies

pyMCPSC relies on extensively used scientific packages such as: Pandas [28], Scikit [29],

Numpy [30], Seaborn [31], dendropy [32], Ete3 [33] and Matplotlib [34]. Binaries for the five

default PSC methods are pre-packaged in pyMCPSC, however currently they are available only

on machines running 64-Bit Linux O/S (limiting factor is GRALIGN). However, a docker con-

tainer of pyMCPSC can be built and run on any operating system. Details on how to install the

dependencies and pyMCPSC software are provided in Section A.2 in S1 File. pyMCPSC has

been tested on Python 2 (version 2.7) and Python 3 (version 3.5). Further, build and installa-

tion instructions, application programmer interface (API) and documentation can be built

using the Sphinx documentation system included in pyMCPSC.

Results and discussion

We will demonstrate the use of pyMCPSC using protein pairs obtained from the Proteus data-

set [22]. PSC scores were obtained for these pairs and analyzed as discussed in the paper. The

Structural similarity analysis using pyMCPSC
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number of pairwise PSC jobs processed per PSC method is actually one half of this value

because of the symmetry of the PSC scores matrix, however the post processing and perfor-

mance calculations are performed with the full matrix. The PDB files, the ground-truth SCOP

classification and the pairwise domain list as well as the experimental setup are included in the

test folder of the downloadable sources. pyMCPSC generates performance results for three sets

of domain pairs, defined as follows:

• Original Dataset: It includes the similarity scores for the domain pairs defined in the original

dataset, but with missing values. The number of missing values may vary depending on the

PSC method as explained above.

• Common Subset: It consists of the subset of domain pairs taken from the Original dataset

for which scores have been generated by all PSC methods. In the case of the Proteus dataset,

this corresponds to 27312 domain pairs, which is less than half of the total number of pairs

processed.

• Imputed Dataset: It consists of the Original dataset with the missing scores filled using data

imputation The total number of domain pairs for the Proteus dataset is P = 72630.

Performing MCPSC on a multi-core processor

Using pyMCPSCwe generated pairwise similarity scores (all-to-all) based on the 5 PSC meth-

ods and the 5 MCPSC schemes (M1—M5) included in the utility by default, as well as the pair-

wise median MCPSC scheme. Experiments were carried out using multi-threaded processing

on an Intel Core i7- 5960X “Haswel” 8-Core (16 Threads) CPU running at 3.0 GHz with 32

GB of RAM and an SSD running Linux. The Core i7 CPU features highly optimized out-of-

order execution and HT (Hyper Threading), Intel’s flavor of Simultaneous Multi-Threading

(SMT).

Details of setting up an experiment with pyMCPSC and the supported arguments can be

found in Section A.4 in S1 File. The number of domain pairs for which scores were successfully

generated varies among the PSC methods (Table 1), with GRALIGN and FAST having the

lowest coverage. This is attributed to differences between the build and runtime environments,

the thresholds built into the PSC method programs and errors in the structure files down-

loaded from the PDB. A speedup factor of 9.13 is achieved for end-to-end processing of the

Proteus 300 dataset using pyMCPSCwhen p = 16 threads are used (Table 2).

Table 1 provides the number and percentage of pairs (coverage) successfully processed by

each PSC method. Table 2 shows the time pyMCPSC needs to process the pairwise PSC tasks

for the Proteus_300 dataset when using an increasing number of threads (from 1 to 16). GRA-

LIGN is not run in parallel by pyMCPSC because its binary is already optimized to use all the

available cores of the CPU. Entries in the table correspond to the blocks shown in Fig 1 of the

manuscript. The table shows the time taken by the five PSC methods and the consensus scores

Table 1. PSC methods coverage for the Proteus dataset.

PSC Method # Domain pairs processed Coverage

CE [18] 64964 89%

FAST [19] 39604 55%

GRALIGN [20] 56406 78%

TM-align [14] 72630 100%

USM [21] 72630 100%

https://doi.org/10.1371/journal.pone.0204587.t001
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calculation (Scale similarity scores, Impute missing data, Generate consensus scores). In addi-

tion to the end-to-end computation time we also provide in Table 2 the total times for the

Scores Generation and the Dataset Analysis blocks (as defined in Fig 1). We believe that the

superlinear speedup observed in parallel pairwise PSC processing is due to PDB structure data

caching which allows multi-threaded runs reuse the cached files.

In Fig 2 we show the speedup factor achieved and the total processing time as the number

of threads increases from 1 to 16. Nearly linear speedup is observed till the number of threads

reaches the number of available cores of the CPU (8). The speedup continues to grow with the

number of cores even beyond that point, albeit at a slower rate. This analysis suggests that the

Table 2. Time (in seconds) and Speedup (S) for end-to-end all-to-all analysis of the Proteus_300 dataset using pyMCPSC on a multi-core PC with Intel i7 CPU hav-

ing 8 cores (16 threads), 32 GB RAM, running at 3.0 GHz, under Ubuntu 14.04 Linux. GRALIGN already uses all the CPU cores by default.

1 Thread 4 Threads 8 Threads 12 Threads 16 Threads

Time Time S Time S Time S Time S

Pairwise scores generation

GRALIGN 86 86 1.00 86 1.00 86 1.00 86 1.00

USM 139 46 3.02 20 6.95 17 8.18 15 9.27

FAST 4100 1035 3.96 412 9.95 329 12.46 313 13.10

TM-align 3601 1032 3.49 423 8.51 333 10.81 299 12.04

CE 16776 4022 4.17 1858 9.03 1420 11.81 1213 13.83

Consensus scores 28 28 1.00 28 1.00 28 1.00 28 1.00

Block level

Scores Generation 24730 6249 3.96 2827 8.75 2213 11.17 1954 12.66

Dataset Analysis 843 849 0.99 844 1.00 846 1.00 847 1.00

End to End

End to End 25573 7098 3.60 3671 6.97 3059 8.36 2801 9.13

https://doi.org/10.1371/journal.pone.0204587.t002

Fig 2. Speedup factor and total processing time for performing all-to-all MCPSC with increasing number of

threads on a Intel Core i7 multicore CPU using the Proteus 300 dataset.

https://doi.org/10.1371/journal.pone.0204587.g002
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emerging many-core processors with more than 16 cores could also be exploited by pyMCPSC
to analyze very large datasets.

pyMCPSC generates quality consensus scores

Receiver Operating Characteristics (ROC) analysis can be used to compare the classification

performance of MCPSC with that of the component PSC methods. pyMCPSC uses ROCs and

corresponding Area Under the Curve (AUC) values for performance benchmarking if ground

truth data is available.

The following procedure is used to create the ROC curves: a) Vary a similarity threshold

from 1 down to 0, moving from maximum to minimum similarity; b) For each threshold value

record the number of True Positives (TP), False Positives (FP), False Negatives (FN) and True

Negatives (TN). In this context, TPs (FPs) are domain pairs with similarity scores greater than

the set threshold in which the two domains in the pair have the same (different) classification

at the SCOP hierarchy [35] level considered respectively. Similarly, FNs (TNs) are domain

pairs with similarity score less than the threshold having same (different) domain classifica-

tions respectively. Having calculated the TPs, FPs, FNs and TNs for a threshold value, we can

compute the True Positive Rate and False Negative Rate values as shown in [36].

In Fig 3(a), we see that for this dataset TM-align achieves the highest AUC among the five

supported PSC methods. Moreover using the median MCPSC score matches or exceeds the

AUC performance of the best component method (see also Fig C in S1 File). This actually

remains the case even if we remove TM-align from the pool of the PSC methods and repeat

the same analysis with the four remaining methods Fig 3(b) (see also Fig D in S1 File). In real-

ity, we do not expect to know which PSC method will perform the best for any given dataset.

So as the results suggest, combining PSC methods to obtain MCPSC scores and then using

their median as the final consensus score to assess similarities is an effective strategy.

pyMCPSC consensus scores can be used to accurately classify query

domains

Nearest-neighbor (NN) auto-classification [37] can be used to assess how well PSC methods

can classify a query domain, given pairwise PSC scores and the structural classification of

other domains. When a new protein structure is determined, it is typically compared with the

structures of proteins with known SCOP classifications. Therefore, the accuracy of the PSC

Fig 3. ROC curves of all PSC methods and the median MCPSC method using the Imputed dataset of pairwise

similarity scores. The ROCs are generated at the SCOP Superfamily level (Level 3). Panel (a) shows the results with all

five PSC methods and panel (b) with TM-align excluded.

https://doi.org/10.1371/journal.pone.0204587.g003
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and MCPSC based NN-classifiers effectively reflects their ability to be used for automatic pro-

tein domain classification.

Distance matrices based on the PSC and MCPSC scores are used by pyMCPSC to perform

NN domain classification. The following process is repeated for each supported PSC and

MCPSC method:

• Each domain is considered as a query and assigned the class label of its Nearest-neighbor

using the pairwise scores as distances. This leave-one-out class label assignment is repeated

for every domain and the predicted classes are recorded.

• The percentage of domains correctly classified is then calculated.

• A domain is correctly classified if the predicted and actual (ground truth) class labels match.

MCPSC based NN-classification matches or exceeds the performance of the best PSC

method at all SCOP hierarchy levels, with and without data imputation Table 3. Moreover,

whereas the classification performance of the five supported PSC component methods varies

considerably for the same SCOP level, the performance of the five different MCPSC methods

is consistent. This suggests that using pyMCPSC to implement different MCPSC methods and

then using their median score in conjunction with NN classification can provide trustworthy

query domain auto-classification results. These results also highlight that in the absence of

ground truth information and/or lack of prior knowledge as to the best PSC method for a data-

set, MCPSC can be employed to accurately auto-classify new domains.

The results show that the best MCPSC method matches the performance of the best compo-

nent method and the Median MCPCS based classification is almost always optimal, which

makes median MCPSC a good choice for classifying query domains when prior knowledge

about the best PSC method is not available. Moreover, the performance differences of the

MCPSC methods are minor, suggesting that they are all quite robust to significant variations

on the performance of their component PSC methods. The lower performance observed for all

methods on the Common subset is probably a result of the small percentage of domain pairs

for which similarity scores are available by all methods (less than 50%).

Table 3. Fraction of domains correctly classified at different SCOP hierarchy levels using a Nearest-Neighbor classifier built with similarity scores produced by dif-

ferent PSC and MCPSC methods. In the SCOP hierarchy: Level 1 = Class, Level 2 = Fold, Level 3 = Superfamily and Level 4 = Family.

Original dataset Common subset Imputed dataset

SCOP Level 1 2 3 4 1 2 3 4 1 2 3 4

TM-align 1.00 1.00 0.99 0.99 0.74 0.57 0.57 0.57 1.00 1.00 0.99 0.99

CE 0.78 0.61 0.61 0.60 0.63 0.47 0.47 0.47 0.76 0.60 0.60 0.58

GRALIGN 1.00 1.00 1.00 1.00 0.74 0.57 0.57 0.57 0.89 0.89 0.89 0.88

FAST 0.20 0.08 0.08 0.08 0.19 0.07 0.07 0.07 0.20 0.08 0.08 0.08

USM 0.84 0.72 0.67 0.65 0.65 0.51 0.49 0.49 0.84 0.72 0.67 0.65

M1 0.99 0.98 0.98 0.98 0.73 0.57 0.56 0.56 0.99 0.99 0.98 0.98

M2 0.99 0.98 0.98 0.98 0.75 0.57 0.56 0.56 0.99 0.98 0.97 0.97

M3 1.00 1.00 1.00 1.00 0.74 0.57 0.57 0.57 1.00 1.00 1.00 1.00

M4 0.99 0.99 0.99 0.99 0.72 0.57 0.57 0.57 0.99 0.99 0.99 0.99

M5 1.00 1.00 1.00 1.00 0.74 0.57 0.57 0.57 1.00 1.00 1.00 1.00

Median MCPSC 0.99 0.99 0.99 0.99 0.74 0.57 0.57 0.57 0.99 0.99 0.99 0.99

https://doi.org/10.1371/journal.pone.0204587.t003
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pyMCPSC reveals structural relations between domains

pyMCPSC uses PSC/MCPSC based distance matrices in conjunction with Multi-Dimensional

Scaling (MDS) [38] to generate insightful scatterplots of protein domain organization in the

structural space. An N × N, distance matrix D is constructed, with N being the number of

unique domains in the dataset. Matrix element Dij corresponds to 1—Sij, the pairwise scaled

dissimilarity score of domains di and dj, where i, j� N, are drawn from the imputed data set.

Missing values (N2 − P) are set to 1. The value of 1 (max dissimilarity) is selected so that all

domains appearing close in the visualization are in fact close to each other based on the

selected method’s score.

pyMCPSC uses matrix D as the basis for MDS to produce scatterplots of domains. This

effectively assigns a 2-Dimensional coordinate to each protein domain constrained by the pair-

wise domain distances specified in matrix D. The resulting scatterplots can be used to visually

explore a domains dataset, revealing existing correlations. Fig 4 shows the layout of the

domains of the imputed dataset in 2-D space resulting from MDS using the median MCPSC

scores. Such a visualization produced by pyMCPSC suggests that for the given dataset the

SCOP Class C domains (red color) exhibit higher interdomain similarity. This is in stark con-

trast to the domains of SCOP Class D (cyan color) which are diffused across the scatterplot

(details in Fig E in S1 File). This observation is further evidenced by the Heatmaps also gener-

ated by pyMCPSC (details in Figs F and G in S1 File) which in addition reveal finer level struc-

ture inside each class. The heatmaps clearly show stronger correlations between domains /

folds of SCOP Class C (darker patches in the heatmaps) while no such correlations appear for

other classes which justifies the observations of the scatterplots.

pyMCPSC can reveal functional relations between protein domains

pyMCPSC uses similarity score based distance matrices (D) in “Phylogenetic Trees” [39] to

provide functional grouping of domains. pyMCPSC uses a Neighbor-joining algorithm from

dendropy [32] to create dendrograms and uses them to generate unrooted circular layout

Fig 4. MDS scatter plot based on median MCPSC scores. Domains are colored according to their SCOP class (Level

1).

https://doi.org/10.1371/journal.pone.0204587.g004
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“Phylogenetic Trees”. The goal is to create trees where the domains are separated into clades

based on their function [40].

In Fig 5 we have marked two groups of domains belonging to different clades in the tree.

The most common keyword for Group 1 is ‘GTP-Binding’ while for Group 2 it is ‘Phospho-

protein’ (see details in Table C in S1 File). The clades of the Phylogenetic Tree generated by

pyMCPSC could therefore be used by a researcher to identify groups of domains (within the

same SCOP class as in this example) that are functionally different.

Conclusions

We have presented a unique python based utility, called pyMCPSC that can, a) generate pair-

wise structure comparison and consensus scores using multiple PSC and MCPSC methods

and b) use the resulting similarity scores to generate insightful visualizations to help assess

structural relationships in protein datasets. Availability of utilities, such as pyMCPSC,will

enable researchers in structural proteomics to carry out complex dataset analysis without

needing to resort to distributed infrastructure scheduling. As demonstrated, pyMCPSC imple-

ments/supports multiple PSC and MCPSC methods, processes the pairwise PSC tasks effi-

ciently in parallel and performs systematic structural analysis of protein domain datasets.

Importantly, it is also easy to incorporate new PSC methods or implement new MCPSC in

pyMCPSC, giving researchers a lot of flexibility with minimal effort. We intend to maintain

pyMCPSC and extend its capabilities as needed. More flexibility will be added to the CLI pro-

viding more control over the experimental setup, such as enabling/disabling the mix of PSC

methods used, configuring methods to be included in the visualizations, and improving inter-

faces between the modules to make pyMCPSCmore amenable to be used as a library. We are

also considering to add support in the future for returning alignments based on consensus

schemes (MCPSC).

Supporting information

S1 File. Supplemental material. A document containing additional information about the

software implementation (documentation, installation instructions etc,), the methods and the

Fig 5. The unrooted Phylogenetic Tree based on median MCPSC consensus scores. Domains are colored according

to their SCOP class (Level 1). Domains of the two clades that are marked belong to Class C but represent different

functional groups (see Table C in S1 File).

https://doi.org/10.1371/journal.pone.0204587.g005
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results presented in the manuscript.

(PDF)

S2 File. Supplemental material. A document containing additional information about the

software, the methods and the results generated for a very large SCOPCATH dataset. Informa-

tion on the files needed and instructions on how to produce the results of the analysis are also

provided.

(PDF)
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