
ORIGINAL RESEARCH
published: 13 July 2021

doi: 10.3389/fgene.2021.699280

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 699280

Edited by:

Leyi Wei,

Shandong University, China

Reviewed by:

Renhai Chen,

Tianjin University, China

Che-Lun Hung,

National Yang Ming Chiao Tung

University, Taiwan

*Correspondence:

Dariusz Mrozek

dariusz.mrozek@polsl.pl

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 23 April 2021

Accepted: 28 May 2021

Published: 13 July 2021

Citation:

Mrozek D, Stępień K, Grzesik P and

Małysiak-Mrozek B (2021) A

Large-Scale and Serverless

Computational Approach for

Improving Quality of NGS Data

Supporting Big Multi-Omics Data

Analyses. Front. Genet. 12:699280.

doi: 10.3389/fgene.2021.699280

A Large-Scale and Serverless
Computational Approach for
Improving Quality of NGS Data
Supporting Big Multi-Omics Data
Analyses
Dariusz Mrozek 1*, Krzysztof Stępień 1, Piotr Grzesik 1 and Bożena Małysiak-Mrozek 2

1Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland, 2Department of Graphics, Computer

Vision and Digital Systems, Silesian University of Technology, Gliwice, Poland

Various types of analyses performed over multi-omics data are driven today by

next-generation sequencing (NGS) techniques that produce large volumes of DNA/RNA

sequences. Although many tools allow for parallel processing of NGS data in a Big Data

distributed environment, they do not facilitate the improvement of the quality of NGS data

for a large scale in a simple declarative manner. Meanwhile, large sequencing projects

and routine DNA/RNA sequencing associated with molecular profiling of diseases for

personalized treatment require both good quality data and appropriate infrastructure

for efficient storing and processing of the data. To solve the problems, we adapt the

concept of Data Lake for storing and processing big NGS data. We also propose a

dedicated library that allows cleaning the DNA/RNA sequences obtained with single-read

and paired-end sequencing techniques. To accommodate the growth of NGS data, our

solution is largely scalable on the Cloud and may rapidly and flexibly adjust to the amount

of data that should be processed. Moreover, to simplify the utilization of the data cleaning

methods and implementation of other phases of data analysis workflows, our library

extends the declarative U-SQL query language providing a set of capabilities for data

extraction, processing, and storing. The results of our experiments prove that the whole

solution supports requirements for ample storage and highly parallel, scalable processing

that accompanies NGS-based multi-omics data analyses.

Keywords: next-generation sequencing, data quality, cloud computing, big data, data lake, OMICS data,

serverless, querying

1. INTRODUCTION

Several commercially available sequencing platforms on the market today allow thousands or even
millions of DNA/mRNA sequence fragments (sequence reads) to be obtained simultaneously. Raw
data obtained once the sequencing is complete include a set of many short genome sequence
reads that usually undergo several phases of data analysis. The NGS data pre-processing scheme
preceding a secondary data analysis should include sequence quality control and data processing
phase, covering the removal of low-quality sequences and bases, demultiplexing, removal of
adapters, primers, and contamination, error correction, and detection of enrichment biases. Each

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.699280
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.699280&domain=pdf&date_stamp=2021-07-13
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dariusz.mrozek@polsl.pl
https://doi.org/10.3389/fgene.2021.699280
https://www.frontiersin.org/articles/10.3389/fgene.2021.699280/full


Mrozek et al. Improving Quality of Big NGS Data

nucleotide in the DNA/mRNA read is accompanied by
information about the probability of its misidentification. This
probability directly determines the phred quality score, which is
given for the DNA sequence reads in FASTQ files. The quality
scoreQ for a base-call is a logarithmic measure depending on the
probability P of incorrect nucleotide identification (Ewing and
Green, 1998):

Q = −10× log10 P. (1)

High values of the quality score correspond to low probabilities
of misidentification errors, and conversely. Low-quality bases
are often located at the very beginning of the sequence. The
probability of misidentifying nucleotides also increases with the
position in the read. In addition, raw data may be contaminated
with fragments of the adapter sequences that do not belong to
the sequenced material. Therefore, the quality improvement of
NGS sequence reads is vital for further analysis of genomic data
analyses since the presence of poor quality or technical sequences
may degrade the results of the analyses.

At the same time, as a high-throughput technology, NGS
sequencing generates vast amounts of biomedical data. This
raises challenges of Big Data (Mrozek, 2014, 2018) not only due
to the volume of data generated, but also due to the velocity (i.e.,
speed) in which the data is produced in various projects, and
the variety of formats in which the data is delivered. These three
V characteristics (i.e., volume, velocity, variety), typical for Big
Data problems, largely influence the value that can be retrieved
from the data. The implementation of even small projects that
require data from the NGS sequencing of multiple genomes can
pose many problems related to the infrastructure necessary to
perform the task. The infrastructure must provide the needed
storage space and computing power to process large amounts of
information efficiently. Therefore, highly distributed and scalable
environments are recently used to solve the challenges of NGS Big
Data processing and NGS-based analyses performed at various
steps of analysis workflows, from primary to tertiary.

These environments rely on a broad Hadoop ecosystem and
its tools. For example, SeqPig (Schumacher et al., 2013) as a
dedicated library for distributed analysis and processing of large
NGS sequencing data on Hadoop clusters extends the processing
capabilities of Apache Pig and the Pig Latin scripting language.
Apart from processing files in FASTA and FASTQ formats,
the library enables the assessment of the quality of sequences.
Several Hadoop-based solutions were proposed for the secondary
NGS data analysis steps, including initial alignment of short
reads to a reference genome with BigBWA tool (implementing
the Burrows-Wheeler Aligner (Abuín et al., 2015), tag SNPs
selection (Hung et al., 2015), and construction of phylogenetic
trees based on ultra-large DNA sequences (Zou, 2016; Zou
et al., 2016). Within the tertiary analysis of NGS data, the
GenoMetric Query Language (GMQL) (Masseroli et al., 2015,
2018) simplifies the variant analysis in genomic data stored
in Hadoop Distributed File System (HDFS) with a declarative
query language, distributed processing, and integration of
heterogeneous biomedical data sources (Masseroli et al., 2016).
Furthermore, Wiewiórka et al. (2019) proposed a library for

scalable depth of coverage calculations over genomic data on
Apache Spark. These solutions prove that distributed processing
can solve the problems of voluminous and quickly produced data.

On the other hand, the variety of data, which next to the
volume is one of the challenges affecting the NGS data obtained
in several formats after particular phases of data production,
processing, and analysis, causes the need for efficient and scalable
data storage. Big Data lakes that allow storing the data before
and after data analyses in the native formats facilitate gathering
all the data in one place. However, processing the data must
be accompanied by specific steps of data extraction. We first
introduced the Extract, Process, and Store (EPS) process in
Małysiak-Mrozek et al. (2018) for processing biomedical data
with the use of fuzzy techniques. It clearly exposed the extraction
and storing phases that can also be parallelized while processing
big data in a distributed manner.

We adopt this idea in the NGS data processing performed in
this paper to improve processing performance for large amounts
of NGS data while at the same time reducing the operational
overhead by taking advantage of the serverless nature of the Data
Lake Analytics service. However, we also show limitations of the
used data lake platform and the EPS while processing NGS data.

1.1. Related Works
The growing body of research shows that the quality of NGS
data is important for future NGS-based multi-omics data
analyses. There are many approaches and tools dedicated to
processing and cleaning the DNA/RNA sequences obtained
with single and paired-end sequencing techniques in the
literature. First of them, Trimmomatic, introduced by Bolger
et al. (2014), is a tool dedicated to trimming and filtering
next-generation sequencing reads, supporting both single and
paired-end reads. For trimming, it offers two algorithms, one
called “simple,” which tries to find an approximate match
between provided adapter sequence and read, and the second,
called “palindrome mode,” which is dedicated to detecting
contaminants at the end of the reads. It also offers to filter
sequences based on Illumina quality score. According to
performance experiments presented in the paper, it is faster
than comparable tools such as AdapterRemoval, Reaper, or
Cutadapt. Schubert et al. (2016) propose AdapterRemoval v2,
an improvement to an AdapterRemoval introduced previously
in Lindgreen (2012). It is a tool that allows for the trimming of
adapter sequences from both single-end and paired-end FASTQ
reads. It takes advantage of a modified Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970). Additionally, it also
allows for the merging of overlapping paired-ended reads into
consensus sequences. According to the performance experiments
presented in the paper, it offers performance comparable
to Trimmomatic. Another tool that takes advantage of the
Needleman-Wunsch algorithm has been introduced by Roehr
et al. (2017). The authors present FLEXBAR 3.0, an improvement
to previously introduced FLEXBAR (Dodt et al., 2012), which is a
sequence trimming software dedicated to processing NGS reads
and trimming barcode and adapter sequences. It supports five
trimming modes, LEFT, LEFT-TAIL, RIGHT, RIGHT-TAIL, and
ANY. In version 3.0, it introduced multi-threading and SIMD

Frontiers in Genetics | www.frontiersin.org 2 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

vectorization to improve performance over previous versions.
According to benchmarks presented by the authors, it offers
better trimming quality than Trimmomatic but takes two times
longer to process the same number of reads. Criscuolo and Brisse
(2013) introduced AlienTrimmer, a tool dedicated to the removal
of alien sequences such as primer, adapters, or barcode sequences
from raw next-generation sequencing data. The tool supports the
removal of such sequences from both 5′ and 3′ ends. It uses an
algorithm based on the k-mer decomposition of specified alien
sequences and then tries to find occurrences of such k-mers in
the sequence. The authors highlight that k-mer decomposition-
based algorithms, such as the one used in AlienTrimmer, are
prone to decreased accuracy in case of sequencing errors and
when handling short fragments of alien sequences. Another tool
dedicated to trimming adapters and low-quality bases in next-
generation sequencing data, Btrim, has been introduced by Kong
in Kong (2011). When performing adapter trimming, the tool
uses an algorithm that is based on a modified version of Myers’
bit-vector dynamic programming algorithm. When performing
trimming of bases with low quality, it switches to a moving
window algorithm that trims bases if the average quality score is
lower than the predefined threshold. It supports data in FASTQ
for both Sanger and Illumina reads. Smeds and Künstner (2011)
proposed ConDeTri, a content-dependent trimming solution
dedicated to processing and trimming Illumina reads. It supports
the removal of sequencing errors from the 3’ end as well as
the removal of reads with low-quality bases. The algorithm
allows keeping low-quality bases (below the threshold) if they
are surrounded by high-quality bases. Martin, in his work
(Martin, 2011), introduces Cutadapt, which is another tool
dedicated to removing adapter sequences from Illumina reads.
Cutadapt trims at most one adapter sequence in a single run
and does not offer other trimming capabilities. According to
the benchmarks presented in Schubert et al. (2016), it offers
slower performance than AdapterRemoval and Trimmomatic.
Unlike Cutadapt, PEAT (Paired-End Adapter Trimmer) (Li
et al., 2015) does not require providing adapter sequence but
instead detects adapter sequence by finding mutually reverse-
complement region between paired reads. It is also not capable
of processing barcode sequences on 5’ ends, does not take the
read quality scores into account, but for benchmarked datasets,
it offered much better performance in terms of speed than
tools such as AdapterRemoval and Trimmomatic. For trimming
paired-end NGS reads, Skewer (Jiang et al., 2014) adapter
trimmer offers better memory efficiency while being slower than
solutions like Trimmomatic and Btrim.

In addition to tools that are dedicated mostly to trimming
adapter sequences, there are also toolkits, like Kraken (Davis
et al., 2013), FASTX-Toolkit (Gordon, 2008), or ERNE
(Del Fabbro et al., 2013), that allow building advanced pipelines
for analyzing NGS data, where filtering and adapter trimming
is only one of the steps. In terms of the declarative nature
of the adapter trimming, Fuzzysplit, a flexible fuzzy search
library (Liu, 2019) provides a pattern language that can be used
to define adapter patterns that should be detected in target
sequences. However, it does not support any other matching
algorithms and does not consider quality scores from FASTQ

formats. It offers great flexibility at the cost of a steep learning
curve and the requirement to write custom templates for each
supported format.

In terms of addressing Big Data challenges, Expósito et al.
(2020) proposed SeQual for large-scale processing of NGS
reads on Apache Spark. It implements filtering, trimming, and
formatting procedures, operates on FASTQ and FASTA data
formats, and offers a user-friendly graphical user interface.
However, it requires access to the Spark computational cluster.

While there are also other local tools dedicated to trimming
NGS data, such as ea-utils (Aronesty, 2011, 2013), PRINSEQ
(Schmieder and Edwards, 2011), SeqPurge (Sturm et al., 2016),
PE-Trimmer (Liao et al., 2020), StreamingTrim (Bacci et al.,
2014), AfterQC (Chen et al., 2017), ClinQC (Pandey et al.,
2016), UrQT (Modolo and Lerat, 2015), pTrimmer (Zhang
et al., 2019), Fastq_clean (Zhang et al., 2014), they are often
designed as separate programs instead of libraries and only
one of them, Fuzzysplit, offers declarative interface, but has
limited functionality. They are often also not designed for
Big Data processing that takes advantage of Cloud Computing
technologies, except SeQual, which is built on top of the Apache
Spark framework. The downside of SeQual is that the underlying
Apache Spark cluster has to be provided and managed, which
adds operational complexity and requires knowledge about
managing the computing cluster itself.

1.2. Scope of the Work
It is worth noting that most of the works mentioned in
previous sections do not focus on improving the quality of
NGS data at a large scale. Moreover, only one of them provides
declarative querying capabilities for this purpose but with
limited NGS data quality improvement capabilities. Our solution
hybridizes different technological approaches, which finally leads
to possessing three fundamental properties—it is declarative,
addresses challenges of Big NGS Data, and is scalable on the
Cloud. Moreover, unlike SeQual, it does not require complex
management of the computational cluster.

To solve the problems of Big NGS Data, in this paper, we
present the scalable solution that utilizes the Data Lake ecosystem
and serverless computing on the Microsoft Azure platform,
enabling NGS data cleaning in the Cloud. Furthermore, we
show how we can use the Data Lake ecosystem to build an
environment for distributed storing and analyzing NGS data.
This will be demonstrated by implementing solutions designed
to control and improve the quality of reads from raw data. The
results of our experiments show that the storage method and
the degree of parallelism have the most significant impact on
the time necessary to pre-process the sequence in terms of their
quality improvement and thus on the costs of using the Cloud
platform incurred.

2. MATERIALS AND METHODS

The approach we propose for big NGS data cleaning assumes
storing the genomic data in NGS data lake in the Azure Data Lake
Store in Microsoft Azure cloud and performing serverless but
highly scalable processing of the data by formulating processing

Frontiers in Genetics | www.frontiersin.org 3 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

queries in the declarative U-SQL language. The data lake is the
place where data can be stored in its original format, including
structured, semi-structured, and unstructured data. This allows
applying the schema on read approach while processing the
same data for various purposes. In contrast to the schema on
write approach widely used in transactional systems, the schema
on read approach schematizes the data when it is needed.
Furthermore, the U-SQL language combines the declarative
nature of the SQL language with imperative capabilities of C#
programming language to process data in a scalable manner,
which fits the scenario of big NGS data processing. Finally,
serverless computing allows skipping the management of the
servers responsible for data processing and frees the user from
keeping the running servers all the time (which usually increases
costs). By applying the serverless approach, we rely on the
computing resources that are allocated by the cloud provider only
when we need to execute the processing jobs.

In our approach, we process big NGS data stored in NGS
Data Lake in three phases—Extract, Process, and Store (EPS)—
as it is shown in Figure 1. Particular phases of the EPS allow for
the following:

1. Extract—uses various extractors to extract appropriate data
stored in the data lake, read it, and load the data for further
processing,

2. Process—applies developed processors for NGS data to
perform a set of transformations on the extracted NGS data
set; these transformations cover the process of improving the
quality of data,

3. Store—uses various outputters to store the processed data back
in the NGS data lake.

2.1. NGS Data Extraction
Data extraction allows reading data from the specified files
in the data lake. General workflow for data extraction from
a single NGS data file is presented in Algorithm 1. Standard
files (e.g., in FASTQ format) are extracted as a whole (by a
single computational unit, called Allocation Unit or AU)—lines
8–12. Large files in the row-oriented format (see later in this
section) are additionally split into smaller chunks and extracted
in parallel. In both cases, for each DNA sequence read rj in
the file or chunk, the extractor E extracts the data appropriately
(depending on the format) and represents it in the row-oriented
format. The sequence read in a row-oriented format rTj is added

to the data chunk c∗ (a resultant rowset, line 5 and 10).
The symbol T (line 10) denotes transposition, and we use it

when the NGS data is extracted from FASTQ files, where each
DNA sequence read rj is represented by a quadruple:

rj =









d1
s
d2
q









, (2)

where d1 contains sequence identifier and an optional
description, s is a raw sequence, d2 is a separator line beginning
with a plus (+) sign with an optional description, q contains
encoded quality scores for base calls in the sequence s.

Algorithm 1: NGS data extraction for a single file located in
big NGS data lake.

Input :
f : a large file of NGS data to extract;
E : an extractor;

Output: c∗: a rowset with extracted data in a row-oriented
format

1 Extract(f , E)
2 if filetype = row-o then
3 C← SplitIntoChunks(f );
4 parallel foreach ci ⊂ C do

5 c∗← c∗ ∪ E(rj);
6 end

7 end

8 else

9 foreach rj ∈ f do

10 c∗← c∗ ∪ E(rj)
T ;

11 end

12 end

13 return c∗;

Files in the FASTQ format containmany of such reads and can
be represented as:

fFASTQ =









r1
r2
. . .

r|f |









, (3)

where |f | denotes the number of sequence reads in a file. The
extraction process is a function that temporary changes the
format of the data to the row-oriented one:









r1
r2
. . .

r|f |









E
−→









rT1
rT2
. . .

rT
|f |









. (4)

For the paired-end sequencing, we operate on two files with
forward (left) and reverse (right) sequence reads

f
f
FASTQ =











r
f
1

r
f
2

. . .

r
f

|f |











and f rFASTQ =









rr1
rr2
. . .

rr
|f |









, (5)

where r
f
j and rrj are corresponding forward (left) and reverse

(right) sequence reads. Therefore, the extraction process provides
an appropriate row-oriented representation for them that looks
as follows:

f
paired
ROW−O =











r
f
1 rr1
r
f
2 rr2

. . . . . .

r
f

|f |
rr
|f |











. (6)

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

FIGURE 1 | Extraction, processing, and storing (EPS) over big NGS data lake.

If there are many files with independent genomic data to be
extracted or in case a large genomic data file is divided into
smaller files (e.g., intentionally), the extraction process can be
further parallelized on many Allocation Units (Algorithm 2, line
1). Each file fl in a collection of files F undergoes the same
extraction steps (line 2) as in Algorithm 1. This produces many
rowsets cl in the row-oriented format that are either independent
partitions of data for multiple genomic data files or are merged
in a single rowset, when operating on many smaller files for one
sequencing experiment (line 3). The collection of rowsets or a
merged rowset C is then returned for further processing in the
Process phase of the EPS (line 5).

Algorithm 2: Parallelization of NGS data extraction from
files located in big NGS data lake.

Input : F : a set of files to extract;
E : an extractor;

Output: C: a collection of rowsets (if processing many
independent files) or a merged rowset (if processing
many smaller files for one genomic experiment)
with extracted data in a row-oriented format.

1 parallel foreach f in
l
∈ F do

2 cl ← Extract(f in
l
, E);

3 C← C ∪ cl;

4 end

5 return C;

Reading data from files located in the NGS data lake is
implemented in the EXTRACT expression of the U-SQL
language. The EXTRACT expression consists of a list of attributes
extracted, a FROM clause followed by a file path, and a USING
clause followed by an instance of the extractor that defines how
the files should be read (like in Listing 1). The library that we

developed allows extraction from three file formats used to store
raw NGS data. With the library, we can read data from FASTQ
file format, dedicated to storing NGS raw data. Additionally, we
designed a dedicated row-oriented format for processing NGS
data on the Azure Data Lake platform, which improves the
performance of the processing. The new data format assumes that
all data related to one sequence is kept in a single row, in sections
separated by a delimiter, which is a vertical bar “|.” This format
was specially designed during the implementation of this work to
make the best use of the possibilities of the Data Lake services.
The layout of a single row that stores information describing
the corresponding reads (paired-end) in the row-oriented file is
shown below and implements the representation from formula 6.

<Description of read 1>|<Sequence 1>|<Optional descr.>|
<Quality values for read 1>|
<Description of read 2>|<Sequence 2>|<Optional descr.>|
<Quality values for read 2>|

Consequently, for the new row-oriented format, we also
implemented appropriate extractors that enable reading NGS
data stored in it. We also provided the ability to read data
from FASTA format files. However, files in this format do not
store information on the sequence reads quality. Therefore, no
mechanism for cleaning data stored in this format has been
implemented in the Process phase. Simple operations on FASTA
files can be performed using U-SQL expressions (shortening the
sequence to a specific length, removing short sequences, etc.).
In summary, the following extractors were prepared for reading
NGS data:

• FastaExtractor—for reading data from files in the
FASTA format.
• FastqExtractor—for reading data from files in the

FASTQ format. As an argument, the extractor takes a Boolean
value that indicates whether the identifier taken from the first
description line of a read should be written to a separate
column. By default this value is set to true.

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

FIGURE 2 | Formats of data representation in particular phases of the EPS

process.

• FormattedFastaExtractor—for reading from files in a
row-oriented version of the FASTA format.
• FormattedFastqExtractor—for reading from files in a

row-oriented version of the FASTQ format.
• FormattedPairedEndExtractor—for reading data

from files in the row-oriented version of the FASTQ format,
in which data from paired-end sequencing related to a single
read are stored in one row of the file.

It is worth noting that although before extraction the data can
be stored in various formats, in the Process phase, the extracted
data is always represented in the row-oriented format (Figure 2).
This representation allows processing the data more efficiently
(see section 2.4 for details).

Examples of data reading with the use of the implemented
extractors are presented in Listing 1. U-SQL enables reading
data in parallel from multiple files located in a given location.
Information on sequence reads resulting from paired-end
sequencing is usually stored in two separate FASTQ files (like in
Listing 1, lines 3 and 8). In order to be able to process such data in
the successive steps, it is required to link the corresponding reads
from these two files (lines 11–16).

1 @SRR_1 = EXTRACT id int, name string, sequence
string,

2 optional string, quality string
3 FROM @forwardFilePath
4 USING new NGSQualityControl.Domain.Extractors.

FastqExtractor();
5

6 @SRR_2 = EXTRACT id int, name string, sequence
string,

7 optional string, quality string
8 FROM @reverseFilePath
9 USING new NGSQualityControl.Domain.Extractors.

FastqExtractor();
10

11 @SRR_1_2 = SELECT r1.name AS name_r1, r2.name
AS name_r2,

12 r1.sequence AS sequence_r1, r2.sequence AS
sequence_r2,

13 r1.optional AS optName_r1, r2.optional AS
optName_r2,

14 r1.quality AS qualScore_r1, r2.quality AS
qualScore_r2

15 FROM @SRR_1 AS r1 JOIN @SRR_2 AS r2
16 ON r1.id == r2.id;

Listing 1 | Reading data from two files and linking reads related to the same
sequence.

The Extraction process can be quite complex, and the invocation
of extractors according to the U-SQL syntax may cause troubles
for those users and NGS analysts who are not familiar with
programming. Therefore, to facilitate using the above-mentioned
solutions, we added wrapping functions that enable the same
functionality of reading NGS data. Examples of these functions
are presented in Listing 2.

1 // extracting from two FASTQ files, for the
paired-end sequencing

2 @SRR988072 = ExtractPairedEndSequences(
3 @"/SRR988072_Compressed/SRR988072_1.gz",
4 @"/SRR988072_Compressed/SRR988072_2.gz"
5 );
6

7 // extracting from a FASTQ file, for the single-
read sequencing

8 @SRR988072 = ExtractSingleEndSequences(
9 @"/SRR988075_FULL/SRR988075_2.fastq"
10 );

Listing 2 | Invocation of wrapping functions for extraction of data from FASTQ files
with data obtained with the paired-end and single-read sequencing techniques.

2.2. NGS Data Processing: Improving NGS
Data Quality
NGS data processing covers applying a set of transformations
for the rowset generated in the Extract phase. The phase
is parallelized for large rowsets c provided at the input
(Algorithm 3). First, the rowset c is divided into many data
chunks (line 2). Then, each data chunk ci is processed in parallel
on allocation units by applying cleaning transformations tk ∈ TR

for each row (sequence read in a row-oriented format) rj of the
data chunk ci. The cleaning covers single reads in the single-read
mode (lines 5–11) or forward (left) and reverse (right) reads in
the paired-end sequencing mode (lines 12–18). Results are stored
in the new rowset c∗i (lines 10 and 17). At the end, all new data
chunks are merged together into new rowset c∗ with cleaned data
(line 21, |C| is the number of data chunks the input rowset c was
divided into).

Improving NGS data quality is implemented in the U-SQL
and performed through a set of transformations implemented in
the Process phase of the EPS process. The set of transformations
is modeled based on the capabilities of the Trimmomatic tool
(Bolger et al., 2014). Trimmomatic works in two modes: single-
read and paired-end. We have implemented the following
commands for improving data quality in our tool:

Frontiers in Genetics | www.frontiersin.org 6 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

Algorithm 3: Processing a row-oriented data partition (a
rowset) from a single NGS data file (or a pair of files for the
paired-end sequencing).

Input :
c : a rowset with extracted sequence reads;
TR : a set of transformations;

Output: c∗ : a rowset of cleaned data;
1 Process(c, TR)
2 C← SplitIntoChunks(c);
3 parallel foreach ci ⊂ C do

4 foreach rj ∈ ci do
5 ifmode = single-read then
6 r∗j ← rj;

7 foreach tk ∈ TR do

8 r∗j ← tk(r
∗
j );

9 end

10 c∗i ← c∗i ∪ r
∗
j ;

11 end

12 else

13 (r
f ,∗
j , rr,∗j )←

(

r
f
j , r

r
j

)

;

14 foreach tk ∈ TR do

15 (r
f ,∗
j , rr,∗j )← tk

(

r
f ,∗
j , rr,∗j

)

;

16 end

17 c∗i ← c∗i ∪ (r
f ,∗
j , rr,∗j );

18 end

19 end

20 end

21 c∗ ←
|C|
⋃

i=1
c∗i ;

22 return c∗;

• ILLUMINACLIP—removes Illumina adapters from sequence
reads,
• SLIDINGWINDOW—removes nucleotides using the sliding

window method; starts scanning at the 5’ end and cuts off the
read when the average quality in the window falls below the
threshold value,
• MAXINFO—removes nucleotides with an adaptive method,

by balancing the read length and error level to maximize the
quality of each read,
• LEADING—removes nucleotides from the beginning of the

sequence as long as their quality is lower than the specified
threshold,
• TRAILING—removes nucleotides from the end of the

sequence as long as their quality is below the specified
threshold,
• CROP—reduces reads to a specified length,
• HEADCROP—deletes the specified number of nucleotides

from the beginning of the read,
• TAILCROP—deletes the specified number of nucleotides from

the end of the sequence,

• MINLEN—deletes the read if its length is shorter than the
specified value,
• AVGQUAL—deletes the sequence if the average quality of its

nucleotides is lower than the specified threshold.

NGS data transformations are performed by invoking
dedicated processors for the U-SQL queries that are used for
parallel processing in the Data Lake environment. We developed
two data processors that allow cleaning the NGS reads:

1. FastqPairedEndTrimmerProcessor (wrapped by
the ProcessPairedEnd processing function)—allows
processing sequence reads obtained as a result of the
paired-end sequencing.

2. FastqSingleEndTrimmerProcessor (wrapped by
the ProcessSingleEnd processing function)—allows
processing sequence reads obtained as a result of the
single-read sequencing.

An example of how to process the extracted rowset with
developed processors is shown in Listing 3. The processing
statement consumes the processed data set with extracted
sequence reads and quality information in the PROCESS clause
(lines 2 and 10) and generates a new rowset with cleaned NGS
sequence reads (lines 1 and 9). The rowset consists of information
specified in the PRODUCE clause (lines 3 and 11). Processing
is performed with the use of one of the two data processors
invoked in the USING clause. These processors accept several
arguments. The first one is the String value with a list of
cleaning commands (@command, lines 6 and 16). Commands are
issued in the order in which they are given. Command arguments
are given after the colon symbol “:.” It is recommended that
the removal of adapters from NGS reads be performed first.
The @illuminaAdaptors argument (defaults to null) is a
String value that takes the location to the file with adapters
to be removed from the input sequences. The last argument
takes the quality score coding (PHRED33—set by default, or
PHRED64). The @keepUnpaired argument of the Boolean
type (for the paired-end data processor) is used to set the flag
(false by default), forcing the storage of reads that, as a result
of cleaning, were deprived of the associated read stored in the
second (paired) file.

1 @SRRSingleEnd_result =
2 PROCESS @SRRSingleEnd //processed rowset
3 PRODUCE name string, sequence string,
4 optionalName string, qualityScore

string
5 USING new NGSQualityControl.Domain.

Processors.
6 FastqSingleEndTrimmerProcessor(@command,

@illuminaAdaptors,
7 (NGSQualityControl.Helper.Infrastructure.

QualityEncodingType)@qualityType);
8

9 @SRRPairedEnd_result =
10 PROCESS @SRRPairedEnd_1_2 //processed rowset
11 PRODUCE name_r1 string, name_r2 string,
12 sequence_r1 string, sequence_r2

string,
13 optionalName_r1 string,

optionalName_r2 string,

Frontiers in Genetics | www.frontiersin.org 7 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

14 qualityScore_r1 string,
qualityScore_r2 string

15 USING new NGSQualityControl.Domain.
Processors.

16 FastqPairedEndTrimmerProcessor(@command,
@keepUnpaired, @illuminaAdaptors, (
NGSQualityControl.Helper.Infrastructure.
QualityEncodingType)@qualityType);

Listing 3 | Cleaning NGS data with the developed processors in U-SQL.

As in the case of the extractors used for reading theNGS data, also
for the processing phase, we developed the wrapping functions
that simplify the use of prepared solutions. These functions and
an example of how to use them are presented in Listing 4.
They accept the rowset with extracted NGS data as a first
argument (lines 2 and 10) and a set of cleaning transformations
(commands) as a second argument (lines 3 and 11). The third
argument for the paired-end sequencing data processor tells it
what to do with the reads left unpaired after the cleaning (the
DEFAULT value means not to keep them, line 4).

1 @SRR988074_result = ProcessPairedEnd(
2 @SRR988074,
3 @"ILLUMINACLIP:2:30:10 TAILCROP:10 LEADING:20

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:30",
4 DEFAULT,
5 @Res_Lookup,
6 DEFAULT
7 );
8

9 @SRR988075_result = ProcessSingleEnd(
10 @SRR988075,
11 @"ILLUMINACLIP:2:30:10 TAILCROP:10 LEADING:20

TRAILING:20 MINLEN:30 SLIDINGWINDOW:4:20",
12 @Res_Lookup,
13 DEFAULT
14 );

Listing 4 | Wrapping functions for cleaning NGS data with the developed
processors in the Data Lake environment.

The last two arguments correspond to the location of the
dictionary of adapters to be removed (@Res_Lookup, lines 5
and 12) and the quality score encoding (lines 6 and 13, DEFAULT
means PHRED33). Both functions return cleaned rowsets of
NGS data.

2.3. NGS Data Storing
Storing data completes the EPS process for the NGS data. It is
performed according to Algorithm 4. The procedure accepts the
rowset c with the processed data, a dedicated outputter O, and
the name of the output file (or files, depending on the mode).
The rowset is split into several data chunks (line 2) that are
written into several parts of the file(s). The offset is determined
by the data chunk ci (lines 6 and 9–10). The degree of parallelism
depends on the size of data written, the used outputter, and the
maximum number of AUs specified by the user while executing
the job. Custom outputters (storage processors) may, however,
serialize this part of the EPS (see Table 1). Each read rj in
the rowset is stored appropriately depending on the destination
format specified (e.g., it is transposed again to be represented

in the FASTQ format, unless we use the row-oriented format to
store the data in the output files).

Algorithm 4: Storing a processed rowset of NGS data to
output files with a dedicated outputter O.

Input :
c : a rowset with processed sequence reads;
O : a dedicated outputter; fout|fout1, fout2 : output

files(s);
Output: fout|fout1, fout2 : output files(s) with cleaned data;

1 Store(c, O, fout|fout1, fout2)
2 C← SplitIntoChunks(c);
3 parallel foreach ci ⊂ C do

4 foreach rj ∈ ci do
5 ifmode = single-read then
6 fout[ci + j]← O(rj);
7 end

8 else

9 fout1[ci + j]← O(r
f
j );

10 fout2[ci + j]← O(rrj );

11 end

12 end

13 end

The Store phase implemented in U-SQL covers saving the output
of processing scripts to a file in the Data Lake or a database. The
data is written to the file using one of the dedicated outputters
that we have developed for various formats that NGS data can be
stored in. Five different output interfaces have been prepared for
this purpose:

1. FastaOutputter—saves data to a file in the FASTA
format,

2. FastqOutputter (with the
SavePairedEndRowsetDecompressed and
the SaveSingleEnd-RowsetDecompressed
functions)—saves data to a file in the FASTQ format,

3. FastqGzipOutputter (with the
SavePairedEndRowsetCompressed and
the SaveSingleEnd RowsetCompressed
functions)—saves data to a compressed FASTQ file.

4. FormattedFastqOutputter (with the
SaveFormattedPairedEndRowsetDecompressed
and the
SaveFormattedSingleEndRowsetDecompressed
functions)—saves data to a file in the row-oriented version of
the FASTQ format; as an argument, it uses a Boolean value
that specifies whether the rowset being stored contains reads
resulting from paired-end sequencing or only reads from
single-read sequencing,

5. FormattedGzipFastqOutputter (with the
SaveFormattedPairedEndRowsetCompressed and
the SaveFormattedSingleEndRowsetCompressed
functions)—stores data to the compressed, row-oriented
version of the FASTQ format.

Frontiers in Genetics | www.frontiersin.org 8 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

An example of invoking the proposed outputters to store NGS
data after the quality improvement to a file in the Data Lake is
presented in Listing 5. The OUTPUT clause accepts the rowset
with the cleaned NGS data that will be stored (lines 1 and 5). The
NGS data will again be stored in the Data Lake in the destination
file specified in the TO clause either directly or by a string
variable (lines 2 ad 6). Finally, the data are persisted in the storage
space in a specific format by invoking a particular outputter
(lines 3 and 7).

1 OUTPUT @SRR // NGS rowset after processing to be
stored

2 TO @destination1 // path for the destination
file, where data should be stored

3 USING NGSQualityControl.Domain.Factories.
OutputtersFactory.GetFastqOutputter();

4

5 OUTPUT @SRR
6 TO @destination2
7 USING NGSQualityControl.Domain.Factories.

OutputtersFactory.GetGzipFastqOutputter();

Listing 5 | Sample invocations of the Store phase for two developed outputters
saving cleaned NGS data in the uncompressed and compressed FASTQ formats.

To unify the coding related to saving the processed NGS data
to a file in the Data Lake, for each of the outputters, we
also created wrappers that facilitate the use of implemented
mechanisms. Sample functions for storing paired-end NGS data
as decompressed and compressed files are presented in Listing 6.
As arguments, the wrapping functions take paths to the files to
which the NGS data from the NGS resultant rowset should be
saved (lines 3–4 and 10–11). The rowset with cleaned data is
given as the last argument (lines 6 ad 12).

1 SavePairedEndRowsetDecompressed(
2 //paths for the destination files, where data

should be stored
3 @forward_destination,
4 @reverse_destination,
5 //NGS rowset after processing to be stored
6 @SRR_Paired_End_Result
7 );
8

9 SavePairedEndRowsetCompressed(
10 @forward_destination,
11 @reverse_destination,
12 @SRR_Paired_End_Result
13 );

Listing 6 | Sample wrapping functions for storing paired-end NGS data after
processing and improving its quality.

2.4. Granularity of Parallelism
Parallel computations can be performed according to various
levels of granularity, including fine-grained, medium-grained,
and coarse-grained. The granularity defines the amount of
computational work performed within a single task. While
performing the quality control and NGS data cleaning in the
proposed Data Lake environment, we can apply two types
of parallelism:

• Coarse-grained parallelism—this granularity applies when
multiple, whole FASTA and FASTQ files are processed in
compressed and decompressed form.
• Medium-grain parallelism—this granularity applies when

multiple large NGS data from FASTA and FASTQ files are
divided into many (d) smaller files (e.g., 250 or 750 MB), or
when NGS data are stored as a whole in the row-oriented
format (then, the splitting is done automatically).

Both levels of granularity are presented symbolically in Figure 3.
In our solution, the granularity of parallelism depends on the
format and sizes of processed data files. In the most typical
scenario, when whole NGS data files are uploaded to the data lake
in the FASTQ format, coarse-grained parallelism will occur. The
coarse-grained parallelism relies here on processing individual
NGS data files by Allocation Units (AUs) responsible for data
processing-related computations. Figure 3 shows only three AUs
in action, but there can be many more. This level of granularity
is applied due to the large sizes and non-standard format of
the NGS data files from the viewpoint of processing data in
Big Data environments. Each sequence read entity is composed
of four successive rows. This requires dedicated extractors and
outputters to extract the data before and store the data after
processing. Unlike those used for standard row-oriented data,
these are not standard extractors and outputters, where each
row constitutes an independent entity. The efficiency of such an
approach is lower due to longer idle times resulting from uneven
sizes of processed data files.

The average idle time for the coarse-grained parallelism Tidle
C

can be calculated as follows:

T̄idle
C =

1

n− 1

n−1
∑

i=1

(Tmax − TAUi ), (7)

where Tmax is the longest processing time registered (usually the
execution time noted when processing the largest NGS data file),
which is equivalent to the execution time of the whole parallel
processing, TAUi is the processing time of the i-th NGS data file
(another than the largest one) by another AU (other than the one
that processes the longest), n is the number of AUs in use.

Splitting FASTQ data into multiple data chunks d causes
changing the granularity of parallelism from coarse-grained to
medium-grained and usually increases overall efficiency. This
should be visible, especially if the sizes of processed data files
differ much. This increase in efficiency is possible due to shorter
idle times for AUs that have nothing to process in the final
iteration of data processing (assuming that n < d, we have
to perform several processing iterations with the same AUs for
different data chunks).

The idle time for themedium-grained parallelismTidle is equal
to the idle time of any AU (Tidle

AUi
) processing a data chunk:

Tidle = Tidle
AUi

. (8)

The best performance can be achieved when the number of
allocated AUs is equal to the number of data chunks (n = d).
Theoretically, in such a case, the idle time Tidle = 0. The number

Frontiers in Genetics | www.frontiersin.org 9 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

FIGURE 3 | Granularity of parallelism applied in various storage scenarios: (left) NGS data processed as a whole by many Allocation Units (AUs), (right) processing

NGS data divided into chunks.

of allocated AUs can be even greater than the number of data
chunks (n > d), but it would unnecessarily increase the cost
of using the NGS data lake platform as some AUs would have
nothing to process (overallocation).

It is worth noting that medium-grained parallelism is
automatically applied when the NGS data is stored in a row-
oriented format. This is a non-standard format to keep the NGS
data in but, at the same time, a standard format for processing
data on Big Data platforms. This fact causes that, unlike in
previous cases, the medium-grained parallelism occurs in all
phases of the EPS process, including extraction and storing. And
this is the reason why we proposed a new format to store the NGS
sequence data.

Table 1 summarizes the granularity levels used for particular
storage formats in particular phases of the EPS process. When
processing row-oriented files, we operate on themedium-grained
level of parallelism in all phases of the EPS. For native formats
(FASTA and FASTQ), we usually operate on the coarse-grained
level of parallelism while extracting and storing the data. This
is because we use non-standard extractors. Medium-grained
parallelism is achievable in the Extract phase when we pre-
process the files and physically divide them into many smaller
files. This should speed up the Extract phase but requires an
additional preparation step.

3. EXPERIMENTAL RESULTS

The presented Data Lake-based approach was tested to verify the
quality of results and performance of the NGS data cleaning.

We performed tests in the highly parallel Azure Data Lake
environment and on local workstations. For the Data Lake
environment, we executed the EPS process on the varying
number of Allocation Units (AUs).

The purpose of the experiments was to find a way to store
NGS data in the Data Lake Store to make the most efficient use
of the Data Lake Analytics performing the EPS process, thereby
reducing the analysis time and, indirectly, the associated costs of
using the scalable platform. In the following sections, we will also
briefly present a comparison of the duration of data processing
in the cloud and on desktop computers. On the other hand, we
also checked the correctness of the obtained results. We checked
whether the NGS data processed and cleaned with the use of the
developed library are identical to those obtained as a result of
analogical processing performed on local workstations with the
Trimmomatic program.

During our tests on improving the quality of NGS data, we
executed the U-SQL script that looked like the one presented
in Listing 7 (executed scripts differed only with the paths to
data files extracted and stored as we worked with different data
sets). The presented U-SQL script extracts NGS data obtained
by means of the paired-end sequencing technique, stored in
two files. Then, it processes the files according to the cleaning
commands given. Finally, it saves the processed reads to two
uncompressed FASTQ files.

1 REFERENCE ASSEMBLY [NGSQualityControl.Helper];
2 REFERENCE ASSEMBLY [NGSQualityControl.Domain];
3

Frontiers in Genetics | www.frontiersin.org 10 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

Table 1 | Granularity levels of parallel computations used for particular storage formats in particular phases of the EPS process.

FASTA FASTQ Row-O

Extract Coarse- or Medium-grained Coarse- or Medium-grained Medium-grained

Process Medium-grained Medium-grained Medium-grained

Store Coarse-grained Coarse-grained Medium-grained

4 DECLARE @Res_Lookup string = @"/Adapters/TruSeq3
-PE.fa";

5 DEPLOY RESOURCE @Res_Lookup;
6

7 @SRR988074 = ExtractPairedEndSequences(
8 @"/SRR988074_FULL/SRR988074_1.fastq",
9 @"/SRR988074_FULL/SRR988074_2.fastq"
10 );
11

12 @SRR988074_result = ProcessPairedEnd(
13 @SRR988074,
14 @"ILLUMINACLIP:2:30:10 TAILCROP:10 LEADING:20

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:30",
15 DEFAULT,
16 @Res_Lookup,
17 DEFAULT
18 );
19

20 SavePairedEndRowsetDecompressed(
21 @"/Result/SRR988074_1.fastq",
22 @"/Result/SRR988074_2.fastq",
23 @SRR988074_result
24 );

Listing 7 | Sample U-SQL script used for parallel cleaning of NGS data in
performed experiments.

During our tests, we used the raw NGS data obtained from
the NGS sequencing of the Drosophila melanogaster with the
paired-end method. We tested our library on four NGS data sets
(each providing two FASTQ files containing the corresponding
sequence reads from the 3’ to 5’ end of the sequenced DNA
fragment). The data were collected from the Sequence Read
Archive database (Leinonen et al., 2010). The following NGS data
sets were used in our experiments:

• SRR988072 (two files, 4.95 GB each),
• SRR988073 (two files, 3.61 GB each),
• SRR988074 (two files, 5.2 GB each),
• and SRR988075 (two files, 11.7 GB each).

The total amount of data was about 50.1 GB for uncompressed
data. For the compressed data (gzip-based compression), the total
amount of data was ∼14.8 GB (SRR988072—1.48 and 1.30 GB,
SRR988073—1.08 and 951 MB, SRR988074—1.62 and 1.45 GB,
and SRR988075—3.63 and 3.33 GB). These files contained the
NGS data characterized by low quality and contamination with
Illumina adapters. For this reason, they were selected for our tests
related to NGS sequence cleaning.

3.1. Processing Multiple Genomes
One of the advantages of the Data Lake ecosystem is the
possibility of processing the NGS data of many genomes
simultaneously. In this section, we present the results of
performance experiments carried out for parallel processing of all

FIGURE 4 | Processing times of NGS data extracted from uncompressed files

and saved to eight uncompressed FASTQ files (two files for each of the

processed genomes) with 8 AUs for various storage formats: regular FASTQ,

multiple 250 MB FASTQ (M250-FASTQ), and row-oriented (Row-O).

FIGURE 5 | Processing times of NGS data extracted from compressed files

and saved to eight compressed FASTQ files (two files for each of the

processed genomes) with 8 AUs for various storage formats: regular FASTQ,

multiple 250 MB FASTQ (M250-FASTQ), and row-oriented (Row-O).

data sets (SRR988072, SRR988073, SRR988074, and SRR988075)
for various storage scenarios, file formats, and compression used.
Experiments were performed with 8 AUs. For this experiment,
the NGS sequence reads were stored in their native FASTQ
files and the row-oriented files. Additionally, we also divided
the NGS data into 250 MB FASTQ files to increase the level
of parallelism (manually apply the medium-grained parallelism)
and verify whether it affects the performance of the EPS process.
The 250 MB size of the files fits exactly one block of data, called
an extent, assigned to a single unit of parallelism—a vertex in the
execution graph.

Frontiers in Genetics | www.frontiersin.org 11 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

FIGURE 6 | Utilization of Allocation Units (computational units) over time while processing data from four uncompressed (A) and compressed (B) row-oriented files

with forward and reverse reads and saving to eight uncompressed (A) and compressed (B) FASTQ files (two files for each of the processed genomes) with 55 AUs (A)

and 68 AUs (B).

Figure 4 shows the execution time of the whole EPS process
performed for improving the quality of NGS data stored in the
three formats. The data were extracted from uncompressed data
files and stored again in uncompressed files after improving the
quality. As can be observed, processing the whole FASTQ files
takes the longest, while row-oriented files are processed almost
two times faster. The distribution of data to multiple FASTQ files
brings some improvement, but it is not huge.

Figure 5 shows the execution time of the whole EPS process
performed for improving the quality of NGS data stored in
the same three formats. However, in contrast to the previous
experiment, the data were extracted from compressed data files
and stored in compressed files after improving the quality. In
terms of storage format, conclusions are similar to those from
the previous experiment. However, we can observe that for
the compressed data, the use of the row-oriented format does

not bring such a huge improvement in the execution time.
Comparing the results of both experiments, we can also notice
that processing the compressed data takes more time, which is
caused by additional decompression and compression steps while
extracting and storing the data in the EPS process.

It is worth noting that in both cases of processing compressed
and uncompressed files, the row-oriented format turned out to
be highly scalable. When scaling out to many AUs for the same
collection of data, we could decrease the execution time to 227
s when processing uncompressed row-oriented files and to 329 s
when processing compressed row-oriented files for all data sets
and storing the cleaned NGS data to eight uncompressed and
compressed FASTQ files in both scenarios. Figure 6 shows the
utilization of Allocation Units over time while processing the
data. It can be observed that AUs are not evenly utilized during
the whole execution time. Especially in the final phases of the job

Frontiers in Genetics | www.frontiersin.org 12 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

execution, their utilization is low due to storing in FASTQ files,
for which we cannot rely on the medium-grained parallelism.

3.2. Performance Gain Over Local
Processing
In the next series of experiments, we compared the execution
time of the whole EPS process performed in the Data Lake
environment and on local workstations. The data processing time
on the local computers was checked using two machines with
different configurations. The first workstation had an Intel Core
2 Duo 3.6 GHz CPU, 3 GB DDR memory, and 320/7200/16 hard
disk drive. The second workstation had much better compute
capabilities. It was equipped with an Intel Core i7-4790K 4
GHz processor, 16 GB DDR3 memory, and the same type of
hard disk drive. For improving the quality of data, we used the
original Trimmomatic program. NGS data were processed to
achieve the best possible quality scores. The following commands
were used during the data processing phase for particular NGS
data sets (SRR988072, SRR988073, SRR988074, and SRR988075),
analogous to those used to perform data cleaning in the Data
Lake ecosystem:

>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:4:20 MINLEN:30

>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:4:20 MINLEN:30
>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 TAILCROP:10 LEADING:20
TRAILING:20 SLIDINGWINDOW :4:20 MINLEN:30
>ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 TAILCROP:10 LEADING:20
TRAILING:20 SLIDINGWINDOW :4:20 MINLEN:30

Figure 7 shows processing times for NGS data extracted
from regular uncompressed FASTQ files and saved to eight
uncompressed FASTQ files (two files for each of the processed
genomes) for various implementations: on Data Lake with 8
AUs (DLA-8), workstation 1 (WS1), and workstation 2 (WS2).
This experiment shows a pessimistic case since whole FASTQ
files are processed at the coarse-grained level of parallelism. As
we can observe, the processing time was reduced more than
three times in the Data Lake environment. It is not linearly
proportional to the number of AUs in use (8 AUs), but differences
in sizes of processed FASTQ files and granularity of parallelism
do not allow for better performance gain (some AUs finish their
processing earlier and stay idle for some time, as it was presented
in Figure 3).

3.3. Quality Control
Our library was created to allow scalable processing and
improving the quality of NGS raw data stored in the Big NGS
Data Lake. At the same time, the library implements the set of
functionalities of the Trimmomatic application, an open-source
desktop program intended for this purpose. As a part of our
experiments, we also validated the effectiveness of our library
in terms of the quality of results. Tests were performed for all
genome sequences in our NGS Data Lake. In this section, we
show the validation results on the example of NGS data marked
with the SRR988074 identifier. To validate the effects of the
cleaning process performed on FASTQ files with our library
for data lake, we used the FastQC tool (Wingett and Andrews,
2018). Figure 8 shows the comparison of results generated by
the FastQC program presenting the assessment of the quality of

FIGURE 7 | Processing times of NGS data extracted from regular

uncompressed FASTQ files and saved to eight uncompressed FASTQ files

(two files for each of the processed genomes) for various implementations: on

Data Lake with 8 AUs (DLA-8), workstation 1 (WS1), and workstation 2 (WS2).

nucleotides in DNA sequence reads from two NGS files storing
data obtained with the paired-end sequencing technique. We
can observe that quality scores of the sequence reads before
the cleaning process drop below 20 (for the file with forward
reads SRR988074_1, Figure 8A). After the cleaning process, the
quality scores stay above 25 (Figure 8C), and even 30 for the file
containing reverse reads (SRR988074_2, Figure 8D). In the case
of both files, definite improvement is visible.

Since we implemented the same set of functionalities as in the
Trimmomatic, in terms of the quality improvement, the results
are the same as for the original desktop application.

4. DISCUSSION AND FUTURE
DIRECTIONS

Improving the quality of NGS data is one of the first steps
preceding the secondary analysis of DNA genome sequences and
further NGS-based analyses. Our work confirms that the steps
of the pre-processing can be performed on a large scale by (1)
collecting the massive volumes of NGS data in the NGS data
lake, (2) processing them in parallel within the EPS process, and
(3) scaling the computations in the Cloud. Our library becomes
then a handy element of the early stages of the secondary analysis
of NGS data.

Although, as we could see, processing some storage formats
(like the whole compressed FASTQ files) do not provide linearly
proportional performance gain and do not allow utilizing
both types of parallelism, we also found a way to parallelize
computations for other storage formats efficiently (e.g., whole
native, uncompressed FASTQ files) and take advantages of
the platform capabilities and the techniques we propose. Our
experiments showed that we could benefit from the coarse-
grained parallel processing when we process multiple genomes.
Medium-grained parallelism is advantageous mainly for row-
oriented files. However, our solution has limitations for handling
the whole FASTQfiles, for which themedium-grained parallelism
cannot be applied in all phases of the EPS process.

Frontiers in Genetics | www.frontiersin.org 13 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

FIGURE 8 | Evaluation of nucleotide sequence quality in the FASTQ files SRR999074_1 (A,C) and SRR999074_2 (B,D) before (A,B) and after (C,D) improving the

quality with the developed software.

Our experiments also showed that to take full advantage
of such data lake platforms, it is advisable to work with
data split into many smaller files or work with non-
standard formats for storing the NGS data, like the
row-oriented format presented in the paper. However, this
would require either additional data pre-processing (to
split the data) or changing the formats in which data are
provided for analysis. The row-oriented format is the best-
fitting one for all Big Data platforms and would give the
best performance.

Our library complements other solutions presented in
section 1 by providing a set of functionalities that are dedicated
to cleaning NGS data on a large scale in a highly scalable
environment, which was not available so far. In such a way,
it extends the data cleaning capabilities of the Trimmomatic
package toward large data sets. Like SeqPig and GMQL, the
functionality of our library is exposed through a declarative
language, but for a different purpose. Also, in our project,
we used the U-SQL language that combines capabilities of
the SQL language used for querying relational databases with
the C# programming language, which is highly extendable.
However, the limitation of the adopted Data Lake platform
is that it is tightly linked with the Azure cloud. Therefore,

unlike the SeqPig or SeQual, it is not portable to other cloud
platforms. On the other hand, our Data Lake library allows
improving the quality of NGS data obtained with the use of
single-read and paired-end sequencing techniques and stored in
various formats, which are also significant unique features of
our solution.

5. CONCLUDING REMARKS

Secondary and tertiary analyses performed by scientists working
in genomics and computational biology require high-quality
data and an infrastructure that provides appropriate space
to store large amounts of data generated as a result of
next-generation sequencing techniques at various stages of
the analysis. Data obtained from single genome sequencing
can reach up to several hundred gigabytes and may be of
various quality. The infrastructure used to analyze the NGS
data should also provide computing power to allow rapid
and scalable processing of gathered data. The hybridization of
tools that enable handling computations over big biomedical
data with extensive scaling capabilities of the Cloud proved
to be a reasonable solution. This work shows the successful
implementation of the early stage pre-processing techniques used

Frontiers in Genetics | www.frontiersin.org 14 July 2021 | Volume 12 | Article 699280

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

in NGS data analysis pipelines in a distributed environment
of the Data Lake ecosystem hosted in the Microsoft Azure
cloud computing platform. Data Lake Store allows hosting
data in any format and without restrictions on the amount
of data stored. These characteristics make Data Lake a perfect
place for storing large amounts of data for further analysis.
In such a way, our solution addresses the volume and variety
challenges of processing Big NGS Data. The Data Lake
Analytics allows then for parallel processing of many genomes
simultaneously in a distributed environment, addressing the
velocity challenge. This would be difficult to achieve on, for
example, desktop computers due to the limited capabilities of
the processors or hard disk drives. Additionally, the use of
the Data Lake Analytics and serverless computing paradigm
reduces the maintenance overhead and removes the need to
maintain and scale underlying computing clusters manually.
Finally, procedures and functions for improving NGS data
quality embedded in declarative U-SQL queries simplify the
cleaning process that ultimately leads to the increase in the value
of obtained results.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: Sequence Read Archive (https://trace.ncbi.nlm.
nih.gov/Traces/sra/?run=SRR988072).

AUTHOR CONTRIBUTIONS

DM proposed the idea and KS extended it. DM conceived
and designed the experiments and prepared the experimental
environment. KS and DM performed the experiments, verified
results, and designed and implemented the tools. DM and BM-M
analyzed the data. PG reviewed the related literature. BM-M, KS,
PG, and DM wrote the paper and made revisions to address
comments of the referees. All authors contributed to the article
and approved the submitted version.

FUNDING

This work was supported by a pro-quality grant for highly scored
publications or issued patents (grant No 02/100/RGJ21/0009),
the professorship grant (02/020/RGP19/0184) of the Rector
of the Silesian University of Technology, Gliwice, Poland,
and partially, by Statutory Research funds of Department of
Applied Informatics, Silesian University of Technology, Gliwice,
Poland (grant 02/100/BK_21/0008, BK-221/RAU7/2021) and
Department of Computer Graphics, Vision and Digital Systems,
Silesian University of Technology, Gliwice, Poland (Rau6,
2021), and partially, by the Polish Ministry of Science and
Higher Education as a part of the CyPhiS program at the
Silesian University of Technology, Gliwice, Poland (Contract No.
POWR.03.02.00-00-I007/17-00).

REFERENCES

Abuín, J. M., Pichel, J. C., Pena, T. F., and Amigo, J. (2015). BigBWA: approaching

the Burrows?Wheeler aligner to Big Data technologies. Bioinformatics 31,

4003–4005. doi: 10.1093/bioinformatics/btv506

Aronesty, E. (2011). ea-utils: Command-Line Tools for

Processing Biological Sequencing Data. Available online at:

https://github.com/ExpressionAnalysis/ea-utils (accessed April 10, 2021).

Aronesty, E. (2013). Comparison of sequencing utility programs. Open Bioinform.

J. 7, 1–8. doi: 10.2174/1875036201307010001

Bacci, G., Bazzicalupo, M., Benedetti, A., and Mengoni, A. (2014).

StreamingTrim 1.0: a Java software for dynamic trimming of 16s rRNA

sequence data from metagenetic studies. Mol. Ecol. Resour. 14, 426–434.

doi: 10.1111/1755-0998.12187

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

doi: 10.1093/bioinformatics/btu170

Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., and Gu, J. (2017). AfterQC:

automatic filtering, trimming, error removing and quality control for fastq data.

BMC Bioinformatics 18:80. doi: 10.1186/s12859-017-1469-3

Criscuolo, A., and Brisse, S. (2013). Alientrimmer: A tool to quickly and accurately

trim off multiple short contaminant sequences from high-throughput

sequencing reads. Genomics 102, 500–506. doi: 10.1016/j.ygeno.2013.07.011

Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N.,

and Enright, A. J. (2013). Kraken: a set of tools for quality control

and analysis of high-throughput sequence data. Methods 63, 41–49.

doi: 10.1016/j.ymeth.2013.06.027

Del Fabbro, C., Scalabrin, S., Morgante, M., and Giorgi, F. M. (2013). An extensive

evaluation of read trimming effects on illumina NGS data analysis. PLoS ONE

8:e85024. doi: 10.1371/journal.pone.0085024

Dodt, M., Roehr, J. T., Ahmed, R., and Dieterich, C. (2012). Flexbar-flexible

barcode and adapter processing for next-generation sequencing platforms.

Biology 1, 895–905. doi: 10.3390/biology1030895

Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using

phred. II. Error probabilities. Genome Res. 8, 186–194. doi: 10.1101/gr.8.3.186

Expósito, R. R., Galego-Torreiro, R., and González-Domínguez, J. (2020). Sequal:

big data tool to perform quality control and data preprocessing of large

NGS datasets. IEEE Access 8, 146075–146084. doi: 10.1109/ACCESS.2020.30

15016

Gordon, A. (2008). FASTX-Toolkit: FASTQ/a Short-Reads Pre-Processing Tools.

Available online at: http://hannonlab.cshl.edu/fastx_toolkit/ (accessed April 10,

2021).

Hung, C.-L., Chen, W.-P., Hua, G.-J., Zheng, H., Tsai, S.-J. J., and Lin, Y.-L. (2015).

Cloud computing-based TagSNP selection algorithm for human genome data.

Int. J. Mol. Sci. 16, 1096–1110. doi: 10.3390/ijms16011096

Jiang, H., Lei, R., Ding, S.-W., and Zhu, S. (2014). Skewer: a fast and accurate

adapter trimmer for next-generation sequencing paired-end reads. BMC

Bioinformatics 15:182. doi: 10.1186/1471-2105-15-182

Kong, Y. (2011). Btrim: a fast, lightweight adapter and quality trimming

program for next-generation sequencing technologies. Genomics 98, 152–153.

doi: 10.1016/j.ygeno.2011.05.009

Leinonen, R., Sugawara, H., Shumway, M., and International Nucleotide Sequence

Database Collaboration (2010). The sequence read archive. Nucleic Acids Res.

39(Suppl. 1), D19–D21. doi: 10.1093/nar/gkq1019

Li, Y.-L., Weng, J.-C., Hsiao, C.-C., Chou, M.-T., Tseng, C.-W., and

Hung, J.-H. (2015). Peat: an intelligent and efficient paired-end

sequencing adapter trimming algorithm. BMC Bioinformatics 16:S2.

doi: 10.1186/1471-2105-16-S1-S2

Liao, X., Li, M., Zou, Y., Wu, F., Pan, Y., and Wang, J. (2020). An

efficient trimming algorithm based on multi-feature fusion scoring model

for NGS data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 17, 728–738.

doi: 10.1109/TCBB.2019.2897558

Lindgreen, S. (2012). Adapterremoval: easy cleaning of next-generation

sequencing reads. BMC Res. Notes 5:337. doi: 10.1186/1756-0500-5-337

Liu, D. (2019). Fuzzysplit: demultiplexing and trimming sequenced DNA with a

declarative language. PeerJ 7:e7170. doi: 10.7717/peerj.7170

Frontiers in Genetics | www.frontiersin.org 15 July 2021 | Volume 12 | Article 699280

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR988072
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR988072
https://doi.org/10.1093/bioinformatics/btv506
https://doi.org/10.2174/1875036201307010001
https://doi.org/10.1111/1755-0998.12187
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1186/s12859-017-1469-3
https://doi.org/10.1016/j.ygeno.2013.07.011
https://doi.org/10.1016/j.ymeth.2013.06.027
https://doi.org/10.1371/journal.pone.0085024
https://doi.org/10.3390/biology1030895
https://doi.org/10.1101/gr.8.3.186
https://doi.org/10.1109/ACCESS.2020.3015016
https://doi.org/10.3390/ijms16011096
https://doi.org/10.1186/1471-2105-15-182
https://doi.org/10.1016/j.ygeno.2011.05.009
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1186/1471-2105-16-S1-S2
https://doi.org/10.1109/TCBB.2019.2897558
https://doi.org/10.1186/1756-0500-5-337
https://doi.org/10.7717/peerj.7170
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mrozek et al. Improving Quality of Big NGS Data

Małysiak-Mrozek, B., Stabla, M., and Mrozek, D. (2018). Soft and declarative

fishing of information in Big Data lake. IEEE Trans. Fuzzy Syst. 26, 2732–2747.

doi: 10.1109/TFUZZ.2018.2812157

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet J. 17, 10–12. doi: 10.14806/ej.17.1.200

Masseroli, M., Canakoglu, A., Pinoli, P., Kaitoua, A., Gulino, A., Horlova, O.,

et al. (2018). Processing of big heterogeneous genomic datasets for tertiary

analysis of Next Generation Sequencing data. Bioinformatics 35, 729–736.

doi: 10.1093/bioinformatics/bty688

Masseroli, M., Kaitoua, A., Pinoli, P., and Ceri, S. (2016). Modeling and

interoperability of heterogeneous genomic big data for integrative processing

and querying.Methods 111, 3–11. doi: 10.1016/j.ymeth.2016.09.002

Masseroli, M., Pinoli, P., Venco, F., Kaitoua, A., Jalili, V., Palluzzi, F.,

et al. (2015). GenoMetric Query Language: a novel approach to

large-scale genomic data management. Bioinformatics 31, 1881–1888.

doi: 10.1093/bioinformatics/btv048

Modolo, L., and Lerat, E. (2015). UrQt: an efficient software for the

unsupervised quality trimming of NGS data. BMC Bioinformatics 16:137.

doi: 10.1186/s12859-015-0546-8

Mrozek, D. (2014). High-Performance Computational Solutions in

Protein Bioinformatics. SpringerBriefs in Computer Science. Cham:

Springer International Publishing. doi: 10.1007/978-3-319-06

971-5

Mrozek, D. (2018). Scalable Big Data Analytics for Protein Bioinformatics, Vol. 28

of Computational Biology. Cham: Springer. doi: 10.1007/978-3-319-98839-9

Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.

48, 443–453. doi: 10.1016/0022-2836(70)90057-4

Pandey, R. V., Pabinger, S., Kriegner, A., and Weinhäusel, A. (2016).

ClinQC: a tool for quality control and cleaning of Sanger and NGS data

in clinical research. BMC Bioinformatics 17:56. doi: 10.1186/s12859-016-

0915-y

Roehr, J. T., Dieterich, C., and Reinert, K. (2017). Flexbar 3.0 -

SIMD and multicore parallelization. Bioinformatics 33, 2941–2942.

doi: 10.1093/bioinformatics/btx330

Schmieder, R., and Edwards, R. (2011). Quality control and

preprocessing of metagenomic datasets. Bioinformatics 27, 863–864.

doi: 10.1093/bioinformatics/btr026

Schubert, M., Lindgreen, S., and Orlando, L. (2016). Adapterremoval v2: rapid

adapter trimming, identification, and read merging. BMC Res. Notes 9:88.

doi: 10.1186/s13104-016-1900-2

Schumacher, A., Pireddu, L., Niemenmaa, M., Kallio, A., Korpelainen, E., Zanetti,

G., et al. (2013). SeqPig: simple and scalable scripting for large sequencing data

sets in Hadoop. Bioinformatics 30, 119–120. doi: 10.1093/bioinformatics/btt601

Smeds, L., and Künstner, A. (2011). Condetri - a content dependent read trimmer

for illumina data. PLoS ONE 6:e26314. doi: 10.1371/journal.pone.0026314

Sturm, M., Schroeder, C., and Bauer, P. (2016). Seqpurge: highly-sensitive

adapter trimming for paired-end NGS data. BMC Bioinformatics 17:208.

doi: 10.1186/s12859-016-1069-7

Wiewiórka, M., Szmurło, A., Kuśmirek, W., and Gambin, T. (2019). SeQuiLa-

cov: a fast and scalable library for depth of coverage calculations. GigaScience

8:giz094. doi: 10.1093/gigascience/giz094

Wingett, S., and Andrews, S. (2018). FastQ Screen: a tool for multi-

genome mapping and quality control. F1000Research 7, 1–13.

doi: 10.12688/f1000research.15931.1

Zhang, M., Sun, H., Fei, Z., Zhan, F., Gong, X., and Gao, S. (2014). “Fastq_clean: an

optimized pipeline to clean the illumina sequencing data with quality control,”

in 2014 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM) (Belfast), 44–48. doi: 10.1109/BIBM.2014.6999309

Zhang, X., Shao, Y., Tian, J., Liao, Y., Li, P., Zhang, Y., et al. (2019). ptrimmer:

An efficient tool to trim primers of multiplex deep sequencing data. BMC

Bioinformatics 20:236. doi: 10.1186/s12859-019-2854-x

Zou, Q. (2016). “Multiple sequence alignment and reconstructing

phylogenetic trees with Hadoop,” in 2016 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM) (Shenzhen), 1438–1438.

doi: 10.1109/BIBM.2016.7822492

Zou, Q., Shixiang Wan, and Xiangxiang Zeng (2016). “HPTree: reconstructing

phylogenetic trees for ultra-large unaligned DNA sequences via NJ model

and Hadoop,” in 2016 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM) (Shenzhen), 53–58.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Mrozek, Stępień, Grzesik and Małysiak-Mrozek. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 16 July 2021 | Volume 12 | Article 699280

https://doi.org/10.1109/TFUZZ.2018.2812157
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/bioinformatics/bty688
https://doi.org/10.1016/j.ymeth.2016.09.002
https://doi.org/10.1093/bioinformatics/btv048
https://doi.org/10.1186/s12859-015-0546-8
https://doi.org/10.1007/978-3-319-06971-5
https://doi.org/10.1007/978-3-319-98839-9
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1186/s12859-016-0915-y
https://doi.org/10.1093/bioinformatics/btx330
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1186/s13104-016-1900-2
https://doi.org/10.1093/bioinformatics/btt601
https://doi.org/10.1371/journal.pone.0026314
https://doi.org/10.1186/s12859-016-1069-7
https://doi.org/10.1093/gigascience/giz094
https://doi.org/10.12688/f1000research.15931.1
https://doi.org/10.1109/BIBM.2014.6999309
https://doi.org/10.1186/s12859-019-2854-x
https://doi.org/10.1109/BIBM.2016.7822492
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Large-Scale and Serverless Computational Approach for Improving Quality of NGS Data Supporting Big Multi-Omics Data Analyses
	1. Introduction
	1.1. Related Works
	1.2. Scope of the Work

	2. Materials and Methods
	2.1. NGS Data Extraction
	2.2. NGS Data Processing: Improving NGS Data Quality
	2.3. NGS Data Storing
	2.4. Granularity of Parallelism

	3. Experimental Results
	3.1. Processing Multiple Genomes
	3.2. Performance Gain Over Local Processing
	3.3. Quality Control

	4. Discussion and Future Directions
	5. Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	References


