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Abstract: Graphical visualization systems are a common clinical tool for displaying digital images
and three-dimensional volumetric data. These systems provide a broad spectrum of information to
support physicians in their clinical routine. For example, the field of radiology enjoys unrestricted
options for interaction with the data, since information is pre-recorded and available entirely in
digital form. However, some fields, such as microsurgery, do not benefit from this yet. Microscopes,
endoscopes, and laparoscopes show the surgical site as it is. To allow free data manipulation and
information fusion, 3D digitization of surgical sites is required. We aimed to find the number of
cameras needed to add this functionality to surgical microscopes. For this, we performed in silico
simulations of the 3D reconstruction of representative models of microsurgical sites with different
numbers of cameras in narrow-baseline setups. Our results show that eight independent camera
views are preferable, while at least four are necessary for a digital surgical site. In most cases, eight
cameras allow the reconstruction of over 99% of the visible part. With four cameras, still over 95% can
be achieved. This answers one of the key questions for the development of a prototype microscope.
In future, such a system can provide functionality which is unattainable today.

Keywords: surgical; microscope; surgical microscope; digital visualization; visualization system;
common main objective; multi-camera setup; in silico; narrow baseline; 3D reconstruction; digital
twin; simulation; surgical site model; MATLAB

1. Introduction

Since the late 1980s, visualization systems have received increasing attention in
medicine [1]. Medical visualization systems are used to graphically display image data
or three-dimensional (3D) volume data. These systems provide a broad spectrum of in-
formation to support the diagnostic process, therapy (e.g., surgical interventions) and
post-treatment care. In recent years, the increasing availability of digital pre- and intra-
operative medical data has made 3D visualization and information fusion more desirable.
Previously, the sole focus lay on the visualization of the surgical site. However, now
the interaction of observers with the data is gaining importance. If the information is
available entirely in digital form, the user can view it on a monitor and manipulate it
freely, e.g., in rotation, scale, brightness and contrast. This will aid in the understanding
of complex anatomy, e.g., in the field of radiology [2]. Such visualization systems can
even be extended into augmented or virtual reality (AR or VR). In many use cases, the
acquisition and analysis of the data are decoupled. Since the pre-recorded 3D data is fused
and then viewed offline, there is no limit to the number of observers. Observers in this
context are to bee understood as, e.g., medical staff or staff in medical training who view
the previously recorded 3D data. These observers’ views are flexible and independent of
each other. The field of surgery is not afforded this luxury yet. The surgical site itself is
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viewed through a microscope, endoscope, or laparoscope, with no digital representation
available. This precludes both the aforementioned information fusion and freedom of
manipulation, leaving several aspects to be desired in contemporary surgical visualization
systems. While endoscopy, laparoscopy, and microsurgery share similar limitations, we
will take a closer look at the shortcomings of surgical microscopes here, since these devices
are the focus of our work. In principle, however, the approach we will propose to mitigate
said limitations is also applicable to endoscopy and laparoscopy. Ergonomics pose a prob-
lem in surgical microscopes since surgeons must remain in unfavorable positions for a long
time during certain procedures, causing discomfort and muscle pain [3,4]. Furthermore,
spatial and optical limitations allow only two simultaneous observers. Further observers
require added opto-mechanical components, increasing cost, complexity, weight, and bulk
of the microscope head. The added weight, in turn, complicates the construction of the
balancing systems required for easy handling of the microscope by the surgeon [5]. In
order to increase the overall number of observers and enhance the freedom of movement,
some manufacturers employ a digital 3D streaming approach in their newest surgical
microscopes. Examples for this can be found in the ZEISS KINEVO® [6] or Munich Surgical
Imaging’s ARRISCOPE [7]. Here, users observe the microscope image on a monitor [8,9] or
a head-mounted display [9–11], which alleviates the previously mentioned ergonomic prob-
lems. A further advantage of streaming systems is the inclusion of remote observers, e.g.,
for training purposes [12]. Especially with 3D streaming, the additional depth perception
leads to a better understanding of the anatomical structures and the surgical area [13].

Despite the improvements this feature provides, it does not solve the fundamental
problem of dependent co-observers. The views of the co-observers are usually linked to
the main observer [14]. This makes the hand-eye coordination required for high-precision
work very challenging for the assistants. They must mentally rotate and translate the
scene in relation to their point of view, which makes it difficult for untrained assistants to
collaborate with the surgeon, further increasing their mental workload during the surgical
procedure. This can adversely affect surgical performance [15].

An optimal solution for multiple co-observers (assistants) with views independent of
the surgeon is required.

As mentioned above, this problem has already been solved in fields, such as radiology,
where the data is completely digital and available in 3D. Therefore, the question arises,
whether the same can be achieved in a surgical microscope.

The surgical site would have to be digitized, creating a 3D digital twin. Several digi-
tization techniques are available for this purpose including scanning systems, based on
time-of-flight approaches, and photogrammetric multi-camera systems. Time-of-flight
systems only yield structural information and do not provide textural information, which
is particularly important in medical applications. Photogrammetric approaches are prefer-
able since they provide textural information. This advantage comes at the cost of more
challenging extraction of accurate structural information. Increasing the number of in-
dependent camera views used for reconstruction can help mitigate this drawback. For
cost and space reduction, as well as for increased usability and efficient data handling,
the number of cameras should, however, be minimized. This raises the question: How
can we photogrammetrically reconstruct a 3D digital twin of a surgical site for maximum
observational flexibility and unlimited co-observers while keeping the number of cameras
minimal? While there are many conceivable approaches to the solution of this problem, we
chose to find the theoretical optimum under the constraints of a common main objective
(CMO) surgical microscope. Microscopes with this proven optical setup are very common.
Most importantly, adding a 3D digital visualization system as envisioned above to such a
microscope would allow keeping the existing analog observation system as a fallback. Thus,
if the main visualization system were to fail during an operation, the surgeon would still
be able to continue the procedure using the oculars. Additionally, surgeons worldwide are
experienced in the use of current surgical microscopes. Therefore, adding a visualization
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method to the existing type of microscope would aid acceptance of the new systems and
smooth the transition from existing devices.

By choosing this type of microscope, we subject ourselves to the limitation of the
available baseline for stereo camera pairs used for reconstruction. CMO microscopes must
be considered as narrow baseline systems since their inter-camera-angle (stereo angle) α is
typically less than 10◦ [16]. While the benefits of using true multi-view camera setups for
3D reconstruction of surfaces have been investigated in previous work, this has only been
done for wide-baseline camera systems with 15◦ < α < 45◦:

Rumpler et al. [17] evaluated the influence of the number of cameras on depth accuracy
and robustness of the 3D reconstruction of an urban scenery using multi-view camera
setups. The authors arranged cameras in a 2D grid, spaced such that 80% of the image
content overlapped. They found that the 3D reconstruction accuracy increases with the
individual number of available measurements (i.e., camera views). Sing Bing et al. [18]
further showed that using more than two camera images leads to an increase in the quality
of reconstruction.

To the best of our knowledge, no such study has yet been performed for a narrow
baseline system like a surgical microscope.

We therefore seek to answer the following question: What is the minimal number of
independent camera views required to create an adequately complete digital twin of a
microsurgical site, using a narrow baseline CMO camera setup?

Our hypothesis is: At a finite number of cameras, the 3D reconstructable area of the digital
twin reaches a point where a further increase in camera views yields only a negligible
increase in the reconstructable area.

It is necessary to define what should be considered adequately complete in this context.
A 3D visualization system in a surgical microscope should not hide anything that is already
visible through the existing observation channels. Therefore, we define our ground truth
for a truly complete digital twin of a surgical site as: everything a surgeon could see at any
point during a complete fly-around of the site while looking through the main observation
channel of a CMO surgical microscope. In other words, a surgical site reconstruction would
be considered complete if it allows the rendering of any view that is possible with the
analog microscope from a given microscope head pose — without any areas missing in the
rendered images.

Asking for merely adequate completeness, we can somewhat relax this requirement.
A reconstruction is considered adequately complete if it lacks only small regions of the
ground truth and if these are located exclusively in boundary regions underneath occluding
structures. Boundaries in this context are the borders between reconstructable and non-
reconstructable regions of the ground truth.

We had no access to a testbed for different physical camera constellations in a CMO
setup. Three-dimensional surgical site models and image series that we could have used to
calculate such models were likewise unavailable to us. We therefore created in silico models
of surgical sites, as well as the surgical microscope camera system itself. We present these
models in this contribution. Using our models, we performed simulated 3D reconstructions
of sites to determine the performance of different narrow-baseline multi-camera setups.
Based on these experiments, we estimate optimal camera numbers for the reconstruction of
digital twins of typical surgical sites. Finally, we also present the MATLAB [19] simulation
framework, which we developed for our experiments. The framework code are available
under [20].

2. Methods
2.1. Mesh Design

Meaningful comparison of the performance of different simulated camera setups with
respect to the 3D reconstruction of 3D surfaces requires surface models representative of the
use-case. To this end, we created models that realistically depict challenging neurosurgical
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sites with deep channels and the anatomy therein. The underlying simulation framework
requires the models to be manifold 3D triangle meshes in the binary STL format.

We modeled the operative corridors as channels with circular and deformed elliptical
cross sections [21,22], as shown in Figure 1a. The upper surface of the channel block,
which contains the channel opening, will be referred to as “top surface” in the following.
This surface is to be oriented towards the cameras. A diameter of 25 mm was chosen for
the cylindrical channel, while the elliptical cylinder was made approximately 42.5 mm
long and 22.5 mm wide. We used two different depths for each corridor type: 50 mm and
100 mm. The diameters and depths were selected based on the data in Table 1, as well as
the typical lengths of microsurgical instruments, ranging from 8.5 cm to 11 cm [23]. The
surgical site anatomy inserted into the corridor models was taken from a plastinated and
dissected patient head model (shown in Figure 1b), which was kindly provided to us by the
University of Hawaii [24]. We specifically used regions directly posterior to the mandible
on both sides of the head. These regions include segments of the internal and external
carotid arteries.

(a)

(b)

Figure 1. Design components for a realistic site models with a patient anatomy in a deep operative
corridors. (a) shows the four different operative corridors used: Two cylindrical channels with
a depth of 50 mm and 100 mm, respectively, as well as two channels of the same depths with a
deformed elliptical cross-section. (b) Three-dimensional model of a plastinated and dissected human
head. The box highlights the region which was merged into an empty cylindrical channel to create
the particular model to the right.

We created a total of ten different reference models with five different complex surgical
site topologies, each embedded into two different corridors of the depths discussed above.
The resulting models cover anatomic structures of varying complexity. The model “circ
flat anatomy” in Figures 2a and 3a contains a rather simple flat topology with only small
blood vessels protruding close to the bottom. Adding a large diameter vessel spanning the
channel, approximately 3 cm above the existing anatomy, yields the model “circ artery”,
shown in Figures 2c and 3c. Figures 2b and 3b shows “circ angled anatomy”. This
model contains a different topology consisting of a network of arteries, tissue furrows
and undercuts, set at an angle in the operative corridor. A similar topology to this, al-
beit overshadowed by a large bulging structure protruding into the channel, is used in
“circ overhang”, as shown in Figures 2d and 3d. The final model, “elliptical channel”,
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in Figures 2e and 3e, combines features from the aforementioned models (such as over-
hangs, tissue furrows, and undercuts) in the deformed elliptical channel.

(c) (d) (e)

(b)(a)

Figure 2. Five different artificial patient surgical site models with a 50 mm deep operative corridors. “Circ flat anatomy”,
shown in (a), contains a rather flat topology. “Circ angled anatomy” in (b) features a network of arteries, tissue furrows and
undercuts, which are set at an angle in the corridor. “Circ artery” (c) has the same flat topology as in (a) at the bottom of
the operative corridor, but adds an artery spanning the operative corridor. (d) shows a topology consisting of a mixture
of arteries, tissue furrows, undercuts, dominated by a large overhang protruding from the channel wall. This model is
called “circ overhang”. The model in (e) combines features from (b,d), set in an operating corridor with deformed elliptical
cross-section, hence its name: “elliptical channel”.

Table 1. Operation channel diameters for groups of lesions that are of particular interest in microsurgery. We used these
values as a basis for the design of our operation channel models. All values are given in millimeters. Data provided by Carl
ZEISS Meditec AG.

Organ Operation Type Diameter Range Average Diameter Depth Range

Brain Glioblastoma resection 40–70 55 40–90

Interventions in the cerebellopontine angle 20–40 30 60–100

Spine Intervertebral disc surgery 20–30 25 50–100
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(a)

c)

(b)

(c) (d) (e)

Figure 3. Five different artificial patient surgical site models with 100 mm deep operative corridors. “Circ flat anatomy”,
shown in (a), contains a rather flat topology. “Circ angled anatomy” in (b) features a network of arteries, tissue furrows and
undercuts, which are set at an angle in the corridor. “Circ artery” (c) has the same flat topology as in (a) at the bottom of
the operative corridor but adds an artery spanning the operative corridor. (d) shows a topology consisting of a mixture of
arteries, tissue furrows, undercuts, dominated by a large overhang protruding from the channel wall. This model is called
“circ overhang”. The model in (e) combines features from (b,d), set in an operating corridor with a deformed elliptical
cross-section, hence its name: “elliptical channel”.

Mesh Creation

The models presented above were created using Autodesk Inventor® 2020 and Au-
todesk Meshmixer®, as well as Blender™. Inventor® was used to create the channel blocks,
while Meshmixer® served to cut and edit regions of anatomy from the head model shown
in Figure 1b. The channel blocks and cut-out anatomy were merged in Blender™ and
exported as binary STL from there.
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2.2. Camera Setup

Our simulated camera setup takes into account the restrictions imposed by the CMO
optical setup commonly used in surgical microscopes. We chose a camera arrangement
that reflects these restrictions in the manner described in the following paragraph. Each
individual camera model consists of two separate components: the positioning of the
cameras and the simulated image acquisition from each camera. The cameras in our work
were modeled as pinhole cameras with restricted field of view (FOV). These camera models
do not include rasterized image generation. Since the resulting images are in continuous
space, we do not explicitly model any 3D reconstruction algorithm. We assume rather that
any point is “reconstructable” in 3D if it is visible to at least T cameras.

We also assume homogeneous and gapless illumination of every point on the surgical
site model, thus disregarding any influences of the lighting. As a result, only the positioning
of the cameras and their viewing direction influence the visibility — and by extension, the
reconstructability — of a point on an object in space.

2.2.1. Surgical Microscope Model

In order to keep our setup model simple, we decided not to explicitly model any
optical components. Therefore, we treat all lenses in our models as ideal. In addition to this,
the beam paths in the portion of the optical system inside a CMO microscope (i.e., between
the CMO lens and the cameras) are parallel. These two conditions — combined with the
assumption that the zoom system is set to a magnification of 1 — allow us to neglect the
aforementioned portion of the optical system in our model setup. We can, therefore, move
the cameras forward onto the principal plane of the CMO lens.

We can then further omit the CMO lens itself from the setup model. To retain the
equivalence of the model with the real optical system after this, we must align each
camera so that the respective principal ray becomes collinear with its previously refracted
counterpart. After this, all cameras in the setup are confocal in the sense that the principal
rays intersect in the central reference point ~F. Consideration must also be given to the
magnification. After omission of the CMO lens, magnification depends on the distance of
a camera from ~F. We assume that all cameras in the setup are identical and the depth of
field of the cameras is unlimited. If the images of an object located at ~F are to have uniform
magnification in all cameras, these cameras must be placed on a sphere centered on ~F, thus
maintaining equidistance from the object.

In a stereo camera setup, it is inherently better to use a large baseline, since an
increased baseline leads to better accuracy of reconstruction via triangulation and, at the
same time, generally allows the system to reconstruct more of the surface area. This is
especially true for objects that extend perpendicularly to the cameras’ viewing directions.
We, therefore, chose to arrange the cameras in our models on a ring with a diameter
equivalent to the maximum usable baseline bmain of real-world CMO surgical microscopes.
This is limited by the CMO lens and typically ranges from 20 mm to 30 mm [25]. The
arrangement on such a circle ensures that any two cameras, which lie exactly opposite
each other, constitute a stereo pair with the greatest realistically feasible baseline. Figure 4
illustrates the aforementioned simplification steps and considerations.

Our final camera setup model is shown in Figure 5. The setup allows an arbitrary
number of cameras to be arranged on a ring with a diameter d = bmain. This ring is situated
at a distance h in the z-direction from a main reference point ~F, where all cameras in the
setup focus on. In the simulated microscope, h is equal to the microscope’s working distance
Lwd. These mentioned parameters can be chosen by the user and fed into our simulation.
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Figure 4. Simplifications used in our surgical microscope model. The optical setup within the
microscope is omitted and the main objective lens is assumed to be ideal. The cameras are placed
directly on the non-refracted ray paths, at a distance from the object equal to the focal length of the
main objective lens. The cameras are located on a ring with the diameter of the CMO lens (shown
in green).

(0, 0, 0)T

h = 400mm

r ⇡ 400.28 mm

d = 30 mm

Figure 5. Schematic of the final camera setup model with an example mesh and four cameras. The
mesh is centered at the origin of the world coordinate system. The cameras are placed on a ring
(green) above the mesh. The wireframe hemisphere lies at a distance from the origin equal to the
common main objective lens’ focal length. It marks the surface on which cameras may be positioned.
The optical axes of the cameras are shown in red. The cameras all “look at” the central reference point,
which is the origin in this case. The figure is not to scale in the z-direction. It has been shortened for
illustration purposes.
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2.2.2. Camera Model

We modeled each individual camera as a pinhole camera according to Morvan [26].
The pinhole model consists of two components: An extrinsic matrix Mext ∈ R3×4 that
contains the camera’s position and orientation, and an intrinsic matrix Mint ∈ R3×3, which
defines the projection onto its image plane. The calculation of the camera matrices is
described in the following, beginning with the extrinsic matrix. The camera poses were
specified using the Look-At parametrization known from the openGL rendering-API [27].

The look-at camera pose is defined by three components:

• The position of the camera’s aperture: ~a ∈ R3.
• The direction~l ∈ R3 in which the camera looks.
• The direction that is to be considered “up” in the camera coordinate system: ~u ∈ R3.

The camera coordinate system axis directions are derived from the three components of the
pose: The forward (look-at) axis in our case~l = ~a−~F

‖~a−~F‖ ∈ R3 is the normalized vector from

the aperture to the central reference point ~F. The right-axis~r = ~u×~l
‖~u×~l‖ ∈ R3 is the normal

of the cross product of the up direction with the look-at axis direction. And the up-axis
~u =~l×~r ∈ R3 is the cross product of the look-at axis direction with the right-axis direction.
An overview of the different directions and axes is given in Figure 6.
The camera’s extrinsic matrix is composed of the 3×3 rotation matrix component R and
the 1×3 translation vector t. The camera coordinate system’s axes define R as follows:

R =

 r1 r2 r3
u1 u2 u3
−l1 −l2 −l3

 (1)

The translation vector t is the product of R with the aperture position~a:

t = −R~a (2)

Using R and t, the extrinsic matrix can be constructed as:

Mext =

 r1 r2 r3 t1
u1 u2 u3 t2
−l1 −l2 −l3 t3

 (3)

While the extrinsic matrix depends on the individual cameras’ pose, the intrinsic matrix
Mint is universal to all cameras in our simulation:

Mint =

−
f

sx
ss ox

0 − f
sy

oy

0 0 1

 (4)

Here, the image distance f in the camera is the distance from the pinhole to the image plane
(i.e., the sensor). In conjunction with the pixel sizes in the x and y direction (sx, sy), this
determines the scaling from world coordinates (in length units) to image coordinates (in
pixels). The sensor skew coefficient ss is not relevant to our experiments, since we are not
rendering the cameras images. The simulation framework therefore assumes rectangular
sensors in all cases (ss = 0). The principal point offset (ox, oy) describes the shift of the
camera sensor w.r.t. the camera’s principal axis. Like the skew coefficient, this is not
relevant to our application. In the framework (ox, oy) is always (0, 0).

The simulation allows the user to specify sensor size (in length units) and resolution
(in pixels). The sensor size and image distance together determine the field of view (FOV)
of the cameras. The sensor resolution only affects image space coordinate axis scaling via
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the pixel sizes. It has no influence on the results of the simulated reconstruction since no
rasterized images are produced anywhere in the program sequence.

h

⃗r⃗u

⃗l

l

elevation θ

⃗F
azimuth φ

⃗O = (0,0,0)T

d = bmain

camera aperture ⃗a

Figure 6. Overview of the parameters that define the camera setup model we devised for our
simulation. The cameras lie on a ring with the diameter d, at the distance h from the reference
point ~F, which all cameras look at. The distance h is equivalent to the working distance of the fully
digital microscope simulated by the model, while d is the maximum baseline bmain allowed by the
microscope’s main objective. The points on the ring can be described in spherical coordinates relative

to ~F. In these coordinates,
∥∥∥~l∥∥∥ is equal to the main objective’s focal length.

For the purposes of our simulation, the projection matrix P = Mint · Mext of each
individual camera fully describes the projection of a point, given by its homogeneous
coordinates (x, y, z, 1)T , from world space to this camera’s image coordinate system.

2.3. Reconstruction Algorithm

Our simulation framework finds the reconstructable subset of each face in the input
mesh. To this end, the program must first find the parts of each face that are visible to
the individual cameras in the simulated setup. This first step must be done once for
each camera and consists of several operations on all faces, performed in the following
order: Invisibility culling, occluder detection, clipping to the camera’s FOV, if applicable,
and, finally, clipping to a set of known occluders. From the resulting subsets of each face
which are visible to each of the cameras, the simulation can then derive the reconstructable
subset of the face in question. The union of these reconstructable subsets of the individual
faces comprises the reconstructable subset of the input mesh. The individual steps of
the algorithm are described in more detail below. A schematic overview of the complete
program is given in Figure 7. For explanations of the low level methods used throughout
the algorithm, please refer to Section 2.3.5.

2.3.1. Face Culling

The algorithm first eliminates backfaces and faces on the contour of the input model,
which are by definition invisible to the camera. The dot products of these faces’ normal
vectors with the current camera’s look-at direction~l are positive or zero. Only faces with
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normals oriented partially towards a camera’s aperture are considered candidates for
visibility to this camera.

(Per-face) Clipping process 

Camera 
setupMesh

foreach 
camera

Clipping to occluders

Face culling

Backface culling

Out-of-FOV culling

(Per-face) Occlusion detection

Circumcircle check

Overlap check

Depth sorting

Clipping to FOV

Reconstruction decision
Find reconstructable 

patches in every 
combination of  cameras𝕋

Union of patches = 
reconstructable subset of 

current face

foreach 
face

Union of reconstructable 
subsets of all faces

Reconstructable 
mesh

Figure 7. Overview flow chart of the individual steps of the 3D reconstruction simulation. The
camera setup and surgical site models comprise the input. The output is the reconstructable subset of
the input mesh in 3D.

The possible candidates are then projected into image space. There, they are tested for
location within or without the FOV. If a face’s image is fully outside the FOV rectangle, it is
also culled. Faces whose image intersects the FOV borders are marked for clipping against
the FOV at a later point. Faces that are fully inside the FOV are kept and not altered.

2.3.2. Occlusion Detection

The faces that survived culling are then tested for mutual occlusion. This itself is a
three-step process, also in image space, beginning with a circumcircle check. For this, a list
of potential occlusion partners (occluders or occludees) is started for each surviving face.
Every other surviving face, whose circumcircle overlaps with the subject face’s circumcircle,
is entered into this list. If the circles do not overlap, the potential partner is not included in
this list, since occlusion between the two faces can be definitively ruled out. Each face’s
image is then tested against the image of each of its potential occlusion partners. If the
two images overlap, occlusion is confirmed. In this case, the minimal depth of the original
3D faces is compared. The minimal depth in this context is the smallest distance in world
space from the camera’s aperture to any of a face’s three vertices. The face with the greater
minimal depth is occluded by the other face. The shallow face is added to the deeper face’s
list of known occluders.
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2.3.3. Clipping Process

Having compiled the lists of known occluders, the hidden portions can be removed
from each face in each camera’s view. First, a subject face is clipped against the current
camera’s FOV if it has been marked for this in the culling step. Only the portion of the
face’s image that is inside the FOV rectangle is kept.

After having been clipped to the FOV, the region of the subject face inside the FOV is
then further clipped against its known occluders. If no occluders were previously found,
this step is skipped. Otherwise, the images of all known occluders are merged into as few
polygons as possible, often one, against which the remaining subject region is then clipped.
The portion of the subject region outside of the merged occluder polygon is kept. This
portion is the subset of the subject face that is visible to the current camera. This set may
be empty. In this case, the subject face is marked as invisible to the current camera and
ignored downstream in the algorithm.

2.3.4. Finding the Reconstructable Subset of the Mesh

In our simulation framework, the user must specify a reconstructability threshold T.
This is the minimal number of cameras deemed necessary for the 3D reconstruction of a
given point on the mesh. A surface patch on the input mesh is not part of the reconstructable
subset if it is visible to less than T cameras. Under ideal circumstances, T = 2. Based on
the given reconstructability threshold, the simulation finds the reconstructable subset of
each individual face and combines these subsets of all faces into a new mesh comprising
the reconstructable subset of the input mesh.

The simulation begins this by listing, for each individual face, the cameras that it
is at least partially visible to. If the number of cameras in this list for a given face is
less than T, the face is not reconstructable. Otherwise, the visible subsets of the face
are recovered from each of the camera’s views. Then, all possible combinations of T
camera views are determined. The intersection of the visible fragments from each of these
combinations of camera views constitutes a region of the face that is reconstructable with
the simulated camera setup. The union of all these intersections, i.e., the union of all regions
of the face that are reconstructable with a combination of T cameras, comprises the entire
reconstructable subset of the face in question. These binary operations on 3D polygons are
done using the polyshape-based 2.5D method described in Section 2.3.5.

In the following, a formal description of the reconstructable subset of the input mesh
is given:

Let the input mesh

UN := {F1, . . . , FN} (5)

be the set comprising all N faces, and let

VM := {c1, . . . , cM} (6)

be the set of all M simulated cameras. Then,

ϕi : VM 7→Wi, f j
i = ϕi

(
cj
)

(7)

is the portion of the face Fi that is visible to the camera cj. Wi comprises all polygonal
partial areas of Fi. The list Li of cameras that see at least a partial area of Fi is:

Li :=
{

cj, j ∈ {1, . . . , M} | f j
i 6= ∅

}
(8)
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We denote the set of combinations of T cameras from this set Ci, which we define as follows:

Ci :=
(

Li
T

)
= {l1, . . . , lP}, where lk =

{
ck1 , . . . , ckT

}
, k ∈ {1, . . . , P} (9)

Therein, P is the cardinality of Ci:

P = |Ci| =
(|Li|

T

)
(10)

Using this notation, the reconstructable subset R of the input mesh is described as:

R =
N⋃

i=1

:=Ri︷ ︸︸ ︷
P⋃

k=1

T⋂
t=1

ϕi
(
ckt

)
︸ ︷︷ ︸

:=rik

, where ckt ∈ lk, lk ∈ Ci (11)

Here, Ri denotes the reconstructable subset of the face Fi. This subset Ri consists of the
regions rik ∈Wi which are reconstructable with each individual camera combination lk.

2.3.5. Occlusion Detection, Clipping, and Binary Operations on 3D Polygons

In the following, we outline the underlying methods used by the reconstruction
algorithm in Section 2.3.

2.5D Occlusion Detection

Finding out whether a given polygon in 3D overshadows a subject polygon in a given
camera’s view might be approached by determining if the subject polygon lies partially
or entirely within a volume in space, defined by the projection of the potential occluder
polygon from the camera’s aperture into infinity. However, this is complex and expensive.
MATLAB offers far superior built-in options for 2D polygons. Using MATLAB “polyshape”
objects created with the vertices of the subject and occluder polygons in the current camera’s
image space, the problem is reduced to calling overlaps (subjectImage,occluderImage). The
result translates immediately to 3D with no additional steps required.

2.5D Clipping

Two different clipping scenarios can occur in our simulation. First, faces might be
clipped to the camera’s FOV. Here, the FOV in image space is a rectangle, defining a
polyshape. The image of the subject’s face is a triangle, defining the second polyshape. We are
interested in the portion of the face that is inside the FOV. Therefore, the 2D clipping result
is the region shared by both polyshapes: intersect(FOVrectangle,subjectImage). To obtain the
3D-result, the vertices of the resulting polygon are back-projected into 3D. The correct 3D
vertices are found by the intersection of the vertex rays with the plane spanned by the
original 3D subject polygon.

Occlusion clipping follows the same principle as clipping to the FOV but uses
subtract(subjectImage,occluderImage) to obtain the portion of the subject polyshape that is
outside the occluder polyshape.

Binary Operations on 3D Polygons

In the last step of the reconstruction pipeline, the simulation framework must perform
boolean operations on all visible subsets of a given face from the different camera views.
Each of these subsets is a group of one or more polygonal fragments in 3D. In order to
use polyshape methods on them, they must first be transformed into 2D. We chose to avoid
dependence on camera parameters by not projecting the fragments into any of the camera’s
image spaces. Instead, the fragments’ vertices are transformed into a local 2D coordinate
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system in the plane spanned by the parent face’s vertices v1, v2 and v3. Having computed
the transformation as shown here:

~o = (0, 0, 0)T

~o′ := ~v1

~x′ =
~v2 −~o′
‖~v2 −~o′‖

~y′ =
~n×~x′

‖~n×~x′‖ where ~n = ~x′ ×
(
~v3 −~o′

)
,

any 3D point ~p can be transformed into and from its local 2D representation ~p′ with the
following operations:

~p′ =
(

p′1
p′2

)
=

(
(~p−~o′) ·~x′
(~p−~o′) ·~y′

)
(12)

~p = (p1, p2, p3)
T =~o′ + p′1 ·~x′ + p′2 ·~y′ (13)

After transforming each fragment’s vertices using Equation (12) and generating polyshape
objects using the transformed vertices, the desired boolean operations can be performed
conveniently. The results of the boolean operations can then be transformed back into 3D
with Equation (13).

3. Results

We initially conducted 100 different experiments with the 10 meshes introduced
in Section 2.1, aiming to answer the research question: What is the minimal number
of independent camera views required to create an adequately complete digital twin
of a microsurgical environment, using a narrow baseline camera setup? To this end,
we qualitatively and quantitatively analyze the reconstructable subset of each mesh for
different camera setups.

3.1. Benchmark

The use of 360 cameras in our setups is equivalent to distributing cameras in 1◦ steps
along the ring, hence placing a camera every 0.26 mm. This leads to the images of adjacent
cameras overlapping almost completely, in turn meaning that any point that is visible to a
camera on the ring is visible to at least one other camera. It is, therefore, safe to assume
that 360 cameras provide the most complete possible reconstruction under the restrictions
discussed in Section 2.2. Consequently, we use the surface that is reconstructable with
360 cameras as a benchmark. Since the meshes have different total areas, the results for
each specific mesh were normalized to this maximum reconstructable area. This way, the
results from different meshes can be directly compared to each other.

3.2. Experiment

We generated measurements with two, four, six, eight, 16, 32, 64, 128, 256, and 360 cam-
eras for each of our 10 anatomic model meshes. The cameras were placed equidistantly
on the ring. For example, two cameras would be arranged opposite of each other, four
cameras every 90◦, etc.

The camera setups always have a working distance of h = 400 mm and the cameras
are always arranged on a ring with the diameter d = 30 mm. This diameter was chosen
based on the maximum usable baseline in a ZEISS surgical microscope [25]. Together with
the working distance, this led to a focal length of the simulated CMO lens of r ≈ 400.28 mm.
This value lies well within the range of main objective focal lengths of surgical microscopes,
which spans from 200 mm to 500 mm. The common focal point (~F) of all the cameras is
the world coordinate origin (0, 0, 0), in a Cartesian coordinate system. The FOV of our
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simulated cameras is 36 mm×24 mm in the focal plane. This FOV corresponds to that of an
surgical microscope at the aforementioned working distance with 8×magnification.

Figure 5 illustrates a setup as described here, with four cameras and the 50 mm “circ
artery” anatomic model.

Finally, assuming ideal circumstances for image acquisition and triangulation process,
we consider a surface patch to be reconstructable if it is visible in two different cameras.
Therefore, we chose a reconstructability threshold of T = 2 for all experiments.

3.3. Qualitative Results

Figure 8 shows the 3D-reconstructable surface of the 50 mm channel versions of the
meshes (a) “circ flat anatomy”, (b) “circ angled anatomy”, (c) “circ artery”, (d) “circ over-
hang”, and (e) “elliptical channel”, for different numbers of cameras. For this purpose, we
overlaid the individual reconstructable surfaces of the respective meshes. The reconstruc-
tion with the largest area was placed in the background and the reconstruction with the
smallest area was placed in the foreground. The reconstructions were colored according to
the number of cameras used. The gray area represents what can be reconstructed with two
cameras. The additional surface area which is reconstructable by four cameras is shown
in red, orange for six, yellow for eight, lime for 16, green for 32, cyan for 64, blue for 128,
purple for 256, and magenta for 360. The top view is slightly tilted to show obscured
regions which are not reconstructable.

Figure 8. Overlay plots of the 3D reconstructable surfaces of the five different 50 mm-channel surgical site models for
different camera numbers. The reconstruction with the largest area was placed in the background and the reconstruction
with the smallest area in the foreground. The areas are color coded by number of cameras: Gray for two cameras, red for
four cameras, orange for six, yellow for eight, lime for 16, green for 32, cyan for 64, blue for 128, purple for 256, and magenta
for 360. (a) shows the reconstruction of “circ flat anatomy”. (b) does this for “circ angled anatomy”, (c) for “circ artery”, (d)
for “circ overhang”, and (e) for the “elliptical channel” mesh.
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For “circ flat anatomy”, the majority of the increase in reconstructable area with
increasing camera number comprises sections of the operative channel walls. This can be
seen in Figure 8a. This behavior still applies if the relevant anatomy is not located only at
the bottom of the operative channel, and instead rises towards one side of the channel, as
shown in Figure 8b.

This observation no longer applies in cases where an occluding structure is located
high above the bottom of the channel, such as in “circ artery” (Figure 8c). In such cases,
increasing the number of cameras does not only add portions of the channel wall to the
reconstructable area, but also significant portions of the anatomical structures towards the
bottom of the channel. This is shown in greater detail in Figure 9. The mesh “circ overhang”
in Figure 8d exhibits a comparable effect.

Figure 9. Magnified images of the 3D reconstructable surface of the model “circ artery”. The reconstruction with the largest
area was placed in the background and the reconstruction with the smallest area in the foreground. (a) shows that the
reconstructable area towards the outside of the top surface increases noticeably up to 128 cameras. After that, the increase
is difficult to visually. (b) shows part of the model in which a vessel with a branch obscures the anatomy below. Large
portions of this area are not reconstructable with two cameras (gray). In contrast to this, with four cameras, the red portions
become available. The areas in different colors represents additional areas reconstructable with six (orange), eight (yellow),
16 (lime), 32 (green), 64 (cyan), 128 (blue), 256 (purple), and 360 (magenta) cameras.

A change in the operative channel geometry and cross section (here from circular to
deformed elliptical) has no recognizable influence on the 3D reconstruction in the central
area of the channel, as can be seen in Figure 8e. However, the outer regions (to the left
and right of the image) require a far greater number of cameras for reconstruction in our
“elliptical channel” model than with the circular channel models. Furthermore, the left and
right sides of the channel walls are not reconstructable here, even with 360 cameras.
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The results from our experiments with the 100 mm deep circular channels show
qualitatively similar results to 50 mm models for the bottom part of the channel. This can
be seen in Figure 10a–d. However, six cameras are required for the complete reconstruction
of the deeper channel walls in these models, as opposed to the four cameras needed for in
50 mm channels.

In the case of the 100 mm deep elliptical model, like with the 50 mm version, no
number of cameras could reconstruct the left and right portions of the channel walls
(see Figure 10e). The number of cameras required to reconstruct the of the outer left
and right portions of the anatomy in the channel also remains largely unchanged by
channel depth.

Figure 10. Overlay of zoomed plots of the 3D reconstructable surfaces of the five different 100 mm-channel surgical site
models for different camera numbers. The reconstruction with the largest area was placed in the background and the
reconstruction with the smallest area in the foreground. The areas are color coded by number of cameras: Gray for two
cameras, red for four cameras, orange for six, yellow for eight, lime for 16, green for 32, cyan for 64, blue for 128, purple for
256, and magenta for 360. (a) shows the reconstruction of “circ flat anatomy”. (b) does this for “circ angled anatomy”, (c) for
“circ artery”, (d) for “circ overhang”, and (e) for the “elliptical channel” mesh.

3.4. Quantitative Results

Table 2 shows the reconstructable areas of the 50 mm channel models for different
numbers of cameras. The area values for each mesh are normalized to the area of the
respective mesh which is reconstructable with 360 cameras. This is always the maximum
reconstructable area for any given mesh. Table 2 further lists the absolute and relative
increases in reconstructable area from the next smaller number of cameras. The same
information is provided in Table 3 for the 100 mm channel models.
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In the following, we refer to the reconstructable area of a mesh as Ar. Ar(n) denotes the
area of a mesh that is reconstructable with n cameras. ∆An→m

r signifies the reconstructable
area that is added by increasing the number of cameras in the setup from n to m. ∆Ar alone
refers to any change in reconstructable area of a given mesh.

Table 2. Reconstructable areas (Ar) of the 50 mm channel models for different numbers of cameras, including the top surface.
The area values for each mesh are normalized to the area of the respective mesh which is reconstructable with 360 cameras.
∆Ar denotes the increase in reconstructable area from the next smaller number of cameras.

Number of “Circ Flat Anatomy” “Circ Angled Anatomy” “Circ Artery” “Circ Overhang” “Elliptical Channel”
Cameras ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar

2 0.5595 0 0.5703 0 0.5519 0 0.5501 0 0.5084 0
4 0.9142 0.3548 (+63.41%) 0.8778 0.3076 (+53.93%) 0.8604 0.3085 (+55.9%) 0.8844 0.3343 (+60.77%) 0.6554 0.1469 (+28.9%)
6 0.9185 0.0043 (+0.47%) 0.8902 0.0124 (+1.41%) 0.8858 0.0253 (+2.94%) 0.8995 0.0151 (+1.71%) 0.704 0.0487 (+7.43%)
8 0.9239 0.0054 (+0.59%) 0.8990 0.0088 (+0.99%) 0.9054 0.0197 (+2.22%) 0.9098 0.0102 (+1.14%) 0.7861 0.0821 (+11.66%)

16 0.9511 0.0272 (+2.94%) 0.9363 0.0373 (+4.15%) 0.9461 0.0406 (+4.49%) 0.9437 0.034 (+3.73%) 0.867 0.0809 (+10.29%)
32 0.9719 0.0208 (+2.19%) 0.9638 0.0275 (+2.94%) 0.9701 0.0241 (+2.54%) 0.9681 0.0244 (+2.58%) 0.9025 0.0355 (+4.09%)
64 0.9857 0.0138 (+1.42%) 0.9817 0.0179 (+1.85%) 0.9851 0.0149 (+1.54%) 0.9838 0.0157 (+1.62%) 0.9503 0.0478 (+5.3%)

128 0.9963 0.0106 (+1.08%) 0.9952 0.0135 (+1.38%) 0.9961 0.011 (+1.12%) 0.9958 0.012 (+1.22%) 0.9807 0.0304 (+3.2%)
256 0.999 0.0027 (+0.27%) 0.9988 0.0035 (+0.35%) 0.999 0.0029 (+0.29%) 0.9989 0.0031 (+0.31%) 0.9955 0.0148 (+1.51%)
360 1 0.001 (+0.1%) 1 0.0012 (+0.12%) 1 0.001 (+0.1%) 1 0.0011 (+0.11%) 1 0.0045 (+0.46%)

3.4.1. Results for 50 mm Channel Depth

As can be seen in Table 2, the Ar of the different models with circular cross section
are very similar for a given number of cameras. The elliptical channel model behaves
quantitatively differently than the qualitative analysis has suggested.

In the case of the circular channel models, 55.01–57.03% of the maximum area (Ar(360))
can be reconstructed with two cameras. This fraction increases with the number of cameras,
as observed in Section 3.4. Among all the camera number increments in the table, the
step up from two to four cameras yields the greatest relative increase in reconstructable
area. ∆A2→4

r ranges from 53.93–63.41% for the circular channel models, which amounts
to approximately twice the ∆A2→4

r observed in the elliptical channel model. ∆Ar for
the increments thereafter never exceeds 4.5% for the circular channel models, showing
alternating behavior between six and 16 cameras. The elliptical channel model exhibits
the same general behavior, albeit with greater values of ∆Ar than in the circular channel
models. In addition, the alternating behavior of ∆Ar ends at 64 cameras here, instead of 16,
as in the case of the circular channel models.

Ar(32) is least 96.38% of Ar(360) for the circular channel models. In the case of the
elliptical model, twice the number of cameras are needed for the same result with Ar(64)
being 95.03% of Ar(360).

Table 3. Reconstructable areas (Ar) of the 100 mm channel models for different numbers of cameras, including the top
surface. The area values for each mesh are normalized to the area of the respective mesh which is reconstructable with 360
cameras. ∆Ar denotes the increase in reconstructable area from the next smaller number of cameras.

Number of “Circ Flat Anatomy” “Circ Angled Anatomy” “Circ Artery” “Circ Overhang” “Elliptical Channel”
Cameras ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar

2 0.4673 0 0.4674 0 0.4629 0 0.4593 0 0 0.4474 0 0
4 0.9214 0.4541 (+97.19%) 0.9044 0.437 (+93.49%) 0.8942 0.4314 (+93.19%) 0.9072 0.4479 (+97.52%) 0.5443 0.0969 (+21.65%)
6 0.9494 0.028 (+3.04%) 0.9396 0.0352 (+3.89%) 0.9313 0.0371 (+4.15%) 0.9428 0.0356 (+3.92%) 0.6493 0.105 (+19.29%)
8 0.9641 0.0147 (+1.55%) 0.9571 0.0175 (+1.86%) 0.9547 0.0234 (+2.51%) 0.9595 0.0168 (+1.78%) 0.7153 0.066 (+10.16%)

16 0.9767 0.0126 (+1.31%) 0.9728 0.0156 (+1.64%) 0.9741 0.0195 (+2.04%) 0.9746 0.015 (+1.57%) 0.8049 0.0896 (+12.52%)
32 0.986 0.0093 (+0.95%) 0.9839 0.0111 (+1.14%) 0.9851 0.011 (+1.13%) 0.9849 0.0104 (+1.07%) 0.8792 0.0743 (+9.23%)
64 0.9929 0.0069 (+0.7%) 0.9919 0.0081 (+0.82%) 0.9927 0.0075 (+0.77%) 0.9925 0.0075 (+0.76%) 0.9375 0.0583 (+6.63%)
128 0.9976 0.0047 (+0.47%) 0.9973 0.0053 (+0.54%) 0.9975 0.0048 (+0.49%) 0.9975 0.005 (+0.5%) 0.9749 0.0374 (+3.99%)
256 0.9993 0.0017 (+0.17%) 0.9992 0.0019 (+0.19%) 0.9993 0.0018 (+0.18%) 0.9993 0.0018 (+0.18%) 0.9944 0.0195 (+2%)
360 1 0.0007 (+0.07%) 1 0.0008 (+0.08%) 1 0.0007 (+0.07%) 1 0.0007 (+0.07%) 1 0.0056 (+0.57%)
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3.4.2. Results for 100 mm Channel Depth

The Ar(2) of the 100 mm circular channel models are smaller than the Ar(2) in their
50 mm counterparts by approximately 10 percentage points — decreasing from previously
55.01–57.03% to now 45.93–46.74%, as can be seen in Table 3.

∆A2→4
r is far greater in the 100 mm circular channels when compared to their 50 mm

versions. Here, ∆A2→4
r grows from 63.41% to 97.52%. Four cameras, therefore, fully double

Ar over two cameras, achieving Ar(4) ≈ 0.9 · Ar(360).
In the elliptical channel models, there is no growth in ∆A2→4

r from 50 mm to 100 mm
channel depth. Instead, ∆A2→4

r shrinks from 29.9% in the 50 mm version to 21.65% in the
100 mm channel.

For the 100 mm circular channel meshes, the ∆Ar decrease steadily after ∆A2→4
r . This

differs from the alternating behavior observed in the 50 mm models. The maximum ∆Ar
above four cameras for all 100 mm circular channel models is 4.15%. For the increments
beyond 64 cameras, the ∆Ar are all less than 1%. In these circular channel models, 95% of
Ar(360) can be achieved with only eight cameras, as opposed to the 16 cameras needed for
the same result in the 50 mm channel models.

The 100 mm elliptical channel model is an exception yet again. In its case, the ∆Ar
for the increments above four cameras range up to 19.29%, compared to a maximum of
4.15% with the circular channel models. Moreover, the ∆Ar here do not decrease uniformly,
instead alternating as was the case with the 50 mm channel models.

3.5. Quantitative Results Excluding Mesh Top Surface

The images and observations in Section 3.3 show that much of the ∆Ar for increasing
numbers of cameras occurred on the top surface. For ∆A4→6

r , and above, the majority of the
addition in reconstructable area was located on the top surface. The higher the number of
cameras, the more the respective ∆Ar is dominated by the top surface. The only exceptions
to this rule are, again, the elliptical channel models.

The top surface is far from the focal point of the camera setup (Figure 5). We assume
this focal point to also be the point interest of the surgeon. By extension, the region of
highest interest surrounds this point. The top surface is, therefore, likely to be of less
interest.

In consideration of the previous explanations, to facilitate later assessment of the
practical value of the ∆Ar presented here, we chose to report our data a second time under
exclusion of the top surface. The normalized results for the 50 mm deep channels with the
excluded top surface are shown in Table 4. The results for the 100 mm deep channels are
listed in Table 5.

Table 4. Reconstructable areas (Ar) of the 50 mm channel models for different numbers of cameras, excluding the top
surface. The area values for each mesh are normalized to the area of the respective mesh which is reconstructable with 360
cameras. ∆Ar denotes the increase in reconstructable area from the previous smaller number of cameras.

Number of “Circ Flat Anatomy” “Circ Angled Anatomy” “Circ Artery” “Circ Overhang” “Elliptical Channel”
Cameras ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar

2 0.6264 0 0.6615 0 0.619 0 0.6249 0 0.5263 0
4 0.9965 0.37 (+59.07%) 0.9776 0.3161 (+47.79%) 0.9343 0.3153 (+50.94%) 0.9723 0.3474 (+55.6%) 0.6788 0.1525 (+28.99%)
6 0.9979 0.0014 (+0.15%) 0.9883 0.0107 (+1.09%) 0.9608 0.0265 (+2.83%) 0.9865 0.0142 (+1.46%) 0.7308 0.052 (+7.66%)
8 0.9989 0.001 (+0.1%) 0.9921 0.0038 (+0.39%) 0.9786 0.0178 (+1.86%) 0.9927 0.0062 (+0.63%) 0.8191 0.0883 (+12.09%)

16 0.9996 0.0007 (+0.07%) 0.9968 0.0047 (+0.47%) 0.9947 0.0161 (+1.64%) 0.9977 0.005 (+0.5%) 0.8906 0.0715 (+8.73%)
32 0.9999 0.0003 (+0.03%) 0.9989 0.002 (+0.21%) 0.9984 0.0037 (+0.37%) 0.9994 0.0016 (+0.16%) 0.9144 0.0238 (+2.67%)
64 0.9999 0.0001 (+0.01%) 0.9996 0.0007 (+0.07%) 0.9995 0.0011 (+0.11%) 0.9998 0.0004 (+0.04%) 0.9567 0.0423 (+4.62%)
128 1 0 (+0%) 0.9998 0.0003 (+0.03%) 0.9998 0.0003 (+0.03%) 0.9999 0.0001 (+0.01%) 0.9817 0.025 (+2.61%)
256 1 0 (+0%) 1 0.0001 (+0.01%) 1 0.0002 (+0.02%) 1 0.0001 (+0.01%) 0.9958 0.0141 (+1.44%)
360 1 0 (+0%) 1 0 (+0%) 1 0 (+0%) 1 0 (+0%) 1 0.0042 (+0.42%)



J. Imaging 2021, 7, 87 20 of 29

3.5.1. Results for 50 mm Channel Depth

A comparison of Tables 2 and 4 shows that removing the top surface increases the
Ar(2) of the 50 mm deep circular channel meshes by approximately 7–9 percentage points.
Ar(2) of the 50 mm elliptical channel mesh increases by only approximately 2 percentage
points. For the circular channel models, ∆A2→4

r is decreased by approximately 5 percentage
points by exclusion of the top surface, while it remains virtually unchanged for the elliptical
channel mesh (+0.09 percentage points).

Comparing the new results to the simulations including the top surface, there is a
clear shift towards lower camera numbers required to achieve 99% of Ar(360) in all circular
channel models. While it took 128 cameras to reach this number before removal of the
top surface, it now requires four (“circ flat anatomy”), eight (“circ angled anatomy” &
“circ overhang”), and 16 cameras (“circ artery”), respectively. Again, the elliptical channel
results diverge strongly from the circular channel results.

In contrast to the alternating behavior observed previously in the 50 mm experiments
including the top surface, the ∆Ar now decreases continuously above 6 cameras after
removal of the top surface. “Circ angled anatomy” constitutes an exception, since there,
∆A8→16

r , with 0.47 percentage points, lies above both its neighboring values. The mesh
with the elliptical channel is another exception, here the changes in ∆Ar are non-continuous
and greater than in the meshes with a circular channel.

Table 5. Reconstructable areas (Ar) of the 100 mm channel models for different numbers of cameras, excluding the top
surface. The area values for each mesh are normalized to the area of the respective mesh which is reconstructable with 360
cameras. ∆Ar denotes the increase in reconstructable area from the next smaller number of cameras.

Number of “Circ Flat Anatomy” “Circ Angled Anatomy” “Circ Artery” “Circ Overhang” “Elliptical Channel”
Cameras ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar

2 0.4978 0 0.502 0 0.4934 0 0.4911 0 0.4604 0
4 0.9645 0.4668 (+93.77%) 0.9519 0.4499 (+89.62%) 0.9359 0.4425 (+89.67%) 0.9519 0.4608 (+93.85%) 0.5525 0.092 (+19.99%)
6 0.999 0.0344 (+3.57%) 0.9949 0.043 (+4.52%) 0.9801 0.0443 (+4.73%) 0.9949 0.043 (+4.51%) 0.6649 0.1125 (+20.36%)
8 0.9995 0.0005 (+0.05%) 0.9966 0.0017 (+0.17%) 0.9898 0.0096 (+0.98%) 0.9967 0.0019 (+0.19%) 0.7257 0.0608 (+9.14%)
16 0.9999 0.0004 (+0.04%) 0.9986 0.002 (+0.2%) 0.9974 0.0076 (+0.77%) 0.9989 0.0022 (+0.22%) 0.8121 0.0864 (+11.9%)
32 1 0.0001 (+0.01%) 0.9995 0.0009 (+0.09%) 0.9992 0.0018 (+0.18%) 0.9997 0.0007 (+0.07%) 0.8838 0.0717 (+8.83%)
64 1 0 (+0%) 0.9998 0.0003 (+0.03%) 0.9998 0.0006 (+0.06%) 0.9999 0.0002 (+0.02%) 0.9398 0.0561 (+6.34%)

128 1 0 (+0%) 0.9999 0.0001 (+0.01%) 0.9999 0.0001 (+0.01%) 1 0.0001 (+0.01%) 0.9755 0.0357 (+3.79%)
256 1 0 (+0%) 1 0 (+0%) 1 0.0001 (+0.01%) 1 0 (+0%) 0.9946 0.0191 (+1.96%)
360 1 0 (+0%) 1 0 (+0%) 1 0 (+0%) 1 0 (+0%) 1 0.0054 (+0.54%)

3.5.2. Results for 100 mm Channel Depth

Finally, the results for the mesh with a channel depth of 100 mm with excluded
top surface are shown in Table 5. After removal of the top surface, Ar(2) increases by
approximately 3 percentage points over the previous results for all 100 mm circular channel
models. For these models, ∆A2→4

r is decreased by approximately 4 percentage points by
exclusion of the top surface, ∆A2→4

r for the 100 mm elliptical channel mesh decreases by
1.66 percentage points.

Like in the 50 mm models, removal of the top surface causes a clear shift towards
lower camera numbers required to achieve 99% of Ar(360) in all circular channel mod-
els. While this took 64 cameras before removal of the top surface, it now requires six
(“circ flat anatomy”, “circ angled anatomy”, & “circ overhang”) and 16 cameras (“circ
artery”), respectively. Again, the elliptical channel results diverge strongly from the circular
channel results.

3.6. Quantitative Results for Elliptical Channel Models Using a Larger Camera FOV

The elliptical channel model results invariably did not match the results from the
circular channels models, both in trends and actual numbers. This was unexpected and
raised the question as to the exact cause.

The results from the circular channel models all exhibit a very similar exponential
dependency on the camera number, see Figure 11. Differences are limited mostly to the
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values of Ar. Channel depth and anatomic features could, therefore, be ruled out as the
cause for the deviant behavior of the elliptical channel models. One of the remaining
possible causes was the different channel cross-section.
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normalized 3D reconstructabel area

“circ flat anatomy” 50 “circ flat anatomy” 100 “circ angled anatomy” 50
“circ angled anatomy” 100 “circ artery” 50 “circ artery” 100

“circ overhang” 50 “circ overhang” 100 “elliptical channel” 50
“elliptical channel” 100 “elliptical channel” FOV 50 “elliptical channel” FOV 100

Figure 11. Comparison plot showing the fit functions to the reconstructable area values for each of our meshes. (a) shows
the fit functions including the top surface, (b) shows the fits to data excluding the top surface. The curves for the meshes
with 50 mm deep channel are solid lines. The dashed lines shows the curves of the meshes with 100 mm deep channel. The
colors red, blue, green, and cyan represent the meshes “circ flat anatomy”, “circ angled anatomy”, “circ artery”, and “circ
overhang”, in this order. Magenta belongs to the elliptical channel models, using the smaller FOV. The black curves belong
to elliptical channel fits with larger FOV. The scattered markers represent the measured area values.

However, we chose to further investigate the hypothesis that the discrepancies were
caused by the camera FOV being too small for the elliptical channel models. This seemed
the more likely cause, since the reconstructable region using four cameras covered only
the central portion of the elliptical channel and its base. Yet the same number of cameras
was sufficient to reconstruct the vast majority of the circular channel walls. This becomes
clear upon comparison of subfigure (e) with the subfigures (a–d) in the respective plots for
50 mm and 100 mm channel depth in Figures 8 and 10.

Our hypothesis was further supported by the much slower decrease of ∆Ar for the
elliptical channel models, when compared to the circular channel models.

Finally, excluding the top surface drastically decreased the difference between Ar(360)
and Ar(2) for circular channel models, in effect reducing the number of cameras needed to
attain Ar = 0.99 · Ar(360) by an order of magnitude. This was not the case for the elliptical
channels, further pointing towards the FOV as the cause.

All observations used in our reasoning here were discussed in the previous sections
and can be validated by examining Tables 2–5.
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To investigate our hypothesis, we performed an additional 40 experiments with the
elliptical channel models. In these experiments, we used the exact settings described
in Section 3.2 with exception of the camera FOV, which was increased to 60 mm×60 mm.

Table 6. Reconstructable areas (Ar) of the “elliptical channel” models for different numbers of cameras using an larger FOV
(60 mm×60 mm). The area values for each mesh are normalized to the area of the respective mesh which is reconstructable
with 360 cameras. ∆Ar denotes the increase in reconstructable area from the next smaller number of cameras.

Number
of

Cameras

Elliptical Channel with a Larger FOV

Including Top Surface Excluding Top Surface

50 mm Deep Channels 100 mm Deep Channels 50 mm Deep Channels 100 mm Deep Channels
‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar ‖Ar‖ ∆Ar

2 0.8634 0 0.8427 0 0.9752 0 0.9547 0
4 0.8959 0.0324 (+3.76%) 0.8966 0.0538 (+6.39%) 0.987 0.0118 (+1.21%) 0.9932 0.0385 (+4.03%)
6 0.944 0.0481 (+5.37%) 0.9334 0.0369 (+4.11%) 0.9933 0.0062 (+0.63%) 0.9965 0.0033 (+0.33%)
8 0.94 −0.004 (−0.42%) 0.9375 0.0041 (+0.44%) 0.996 0.0027 (+0.28%) 0.9979 0.0014 (+0.14%)
16 0.9699 0.0299 (+3.18%) 0.9675 0.03 (+3.2%) 0.999 0.003 (+0.3%) 0.9995 0.0016 (+0.16%)
32 0.9862 0.0163 (+1.68%) 0.9884 0.0209 (+2.16%) 0.9996 0.0006 (+0.06%) 0.9998 0.0003 (+0.03%)
64 0.9944 0.0082 (+0.83%) 0.9937 0.0053 (+0.54%) 0.9998 0.0002 (+0.02%) 0.9999 0.0001 (+0.01%)

128 0.9975 0.0031 (+0.31%) 0.9977 0.004 (+0.4%) 0.9999 0.0001 (+0.01%) 1 0 (+0%)
256 0.9995 0.002 (+0.2%) 0.9992 0.0015 (+0.15%) 1 0 (+0%) 1 0 (+0%)
360 1 0.0005 (+0.05%) 1 0.0008 (+0.080%) 1 0 (+0%) 1 0 (+0%)

Results for Elliptical Channel Models using Cameras with Larger FOV

Table 6 shows the results of our additional experiments on the 50 mm and 100 mm
elliptical channel models, respectively, including and excluding the top surface. All values
were normalized to Ar(360) as with the results of the other tests before. Comparing the
results in Table 6 with those in Tables 2 and 3, the most prominent changes with the larger
FOV over the experiments with smaller FOV are the pronounced increases of Ar(2) in
all cases. Where Ar(2) previously ranged from approximately 45–53% of Ar(360) with
the smaller FOV, Ar(2) increased to between 84% and 98% Ar(360) after increasing the
FOV size. This means that two cameras are now sufficient to reconstruct a vast majority
of the maximum possible reconstructable area. Consequently, all values of ∆Ar for every
elliptical channel model also become much smaller after increasing the FOV.

The ∆Ar mostly decrease continuously after ∆A4→6
r now, with ∆A6→8

r being the only
exception, as it is invariably smaller than ∆A4→6

r . ∆A6→8
r for the 50 mm elliptical channel

model including the top surface is even more of an outlier. It is the only case of negative
∆Ar, i.e., a decrease in reconstructable area despite the increase in number of cameras,
which we found in any of our experiments.

In general, the number of cameras needed to achieve 99% of Ar(360) has been reduced
greatly for all elliptical channel models by increasing the size of the FOV. Where 256
cameras were needed for this purpose in all previous cases, this number has dropped to 64
in the two experiments with the top surface. In the experiments excluding the top surface,
six cameras were needed with the 50 mm channel, while the 100 mm channel required
only four.

3.7. General Observations

The reconstructable area Ar follows negative n-phase exponential decay functions
in all cases (n ∈ {2, 3}). This was found after fitting the functions shown in Figure 11
to the data. In our result, we could therefore not observe an obvious dependence of
the reconstructable area on either the exact anatomy in the channel, nor on the channel
geometry itself. This is, however, only true as long as the entire channel lies within the
combined FOV of the camera setup.
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Figure 11a shows the fits to the results from our models including the top surface.
These values are listed in Tables 2, 3, and 6. The fits to the corresponding results after
exclusion of the top surface (Tables 4–6) are shown in Figure 11b.

The curves of the fit functions for 50 mm channel models are shown as solid lines.
Dashed lines indicate curves of functions fitted to the results from models with 100 mm chan-
nels. The colors red, blue, green, and cyan represent the meshes “circ flat anatomy”, “circ
angled anatomy”, “circ artery”, and “circ overhang”, in this order. The curves shown in
magenta show the fit functions for meshes with elliptical channel, using the smaller FOV.
The black curves belong to elliptical channel fits with larger FOV. The scattered markers
show the measured values.

The absolute values for the experiment are shown in the Appendix A. Table A1 shows
the results for meshes including the top surface, Table A2 for the meshes after excluding
the top surface and Table A3 for meshes with elliptical channel.

4. Discussion and Conclusions

Our simulation framework is able to simulate the 3D reconstruction of representative
models of microsurgical sites with different numbers of narrow-baseline cameras. The
results from our simulated reconstructions, reported in Section 3, confirm our hypothesis:
At a finite number of cameras, the 3D reconstructable area of the digital twin reaches a
point where a further increase in camera views yields only a negligible increase in the
reconstructable area. During the evaluation of our results, we found unexpected oscillating
behavior in the increase of the 3D reconstructable area with increasing number of cameras.
This was caused by the dependency of the reconstructable region of the top surface on
the changing angular separation between the cameras at different camera numbers — and
subsequently on the differing patterns in which their FOVs overlapped. The increases in
area on the top surface also far outweighed the relatively small gains around the anatomical
structures in the channel, diluting the results and making them difficult to interpret. All
the while, the top surface is not relevant to the practical use of surgical microscopes: In
surgical procedures, this region is only of immediate interest during the initial opening
of the channel; a step done entirely without the aid of a surgical microscope in practice.
Afterwards, the region is no longer of interest and is covered by surgical drapes. It is,
therefore, essentially invisible to the microscope user during the operation and can, hence,
be treated as of no interest for the rendering of co-observer views. Consequently, we based
our conclusions only on the results of our experiments excluding the top surface.

It is also important to reiterate that the values given for the reconstructable areas
in our results constitute theoretical maxima. We chose not to explicitly model any 3D
reconstruction method, instead assuming any point to be correctly 3D reconstructable if
is visible to at least T cameras (see Section 2.2). The influences of aberrations, depth of
field, lighting effects, and 3D reconstruction, therefore, still await investigation in future.
We expect these error sources to strongly impact the visual quality and depth accuracy
of the reconstruction. However, aberrations and the reconstruction method itself should
not significantly change the reconstructable subset of the mesh itself. Only non-uniform
lighting or insufficient depth of field should be able to entirely prevent the reconstruction
of significant surface regions.

The relationships between the reconstructable area and the number of cameras in
each of our experiments could uniformly be described by negative n-phase exponential
decay functions. We did not find any evidence that this relationship depended either on
the exact anatomy located in the channel, or on the channel geometry itself — provided
that the channel and its contents lie entirely within the FOV of the camera setup.

We found out that two cameras, as currently used in the ZEISS KINEVO®, are too
few, since they allow the reconstruction of only approximately 50% A(360) for each of
the models. As explained in Section 3, 360 cameras are able to reconstruct every region
of the input model that is visible from any viewing angle available within the simulated
microscope.
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Four cameras, as currently used in Munich Surgical Imaging’s ARRISCOPE, provide
95% of the performance of 360 cameras, while eight cameras reach 99%. Doubling the
number of cameras from eight to 16 only adds performance in the range of 10−2% of that
of 360 cameras. The gains thereafter become even more minuscule.

The colored areas in Figure 12 help illustrate this, using the 50 mm “elliptical channel”
model as an example. Above a number of four cameras (red region), additional cameras
only add small increments to the fringes of the reconstructable surface beneath occluding
features. The yellow stripes, added by eight cameras, can still be distinguished without
zooming in some areas, while the regions added by higher numbers of cameras can barely
be seen.

Figure 12. Reconstructable subset of the 50 mm deep version of our “elliptical channel” model, using cameras with increased
FOV size. The regions shown in grey are reconstructable with only two cameras. The area added by four cameras is red. In
addition, shown are additional areas reconstructable with six (orange), eight (yellow), 16 (lime), and 32 (green) cameras.

The only case in our results, where one might argue that 16 cameras add practical
value, is shown in Figure 9. The artery high above the rest of the anatomy in the channel
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occludes large regions below in many camera views. It, therefore, takes an unusually high
number of cameras to make the areas underneath reconstructable. Even the regions added
by 16 cameras (lime) are easily visible in the image in this case. The 3D reconstruction of
surgical sites in our concept of a fully digital microscope, as outlined in Section 1, seems to
be vulnerable to large vertical distances between anatomical features in operative channels.
The extent of this vulnerability, as well as its consequences for the number of cameras
needed for our use-case, require further exploration.

Based on the observed behavior a general answer can be given to the research question,
which was: What is the minimal number of independent camera views are required to
create an adequately complete digital twin of a microsurgical site, using a narrow baseline
common main objective camera setup?

The number of cameras required for a 3D reconstruction is limited and largely the same
for all channel models. Four cameras can yield a reconstruction sufficient for the generation
of additional virtual views of the surgical field. Eight cameras are close to optimal and
might be attainable if the additional cost and complexity for the 3D reconstruction over
over four cameras can be managed. Any number of cameras above eight has little practical
use, except perhaps if anatomical features are expected to reach far into the operative
channel high above other anatomy of interest.

Our results further indicate that the suggested equidistant arrangement of cameras
on the equivalent of a maximum baseline ring has the potential to yield reconstructions
that are very close to optimal in a real surgical microscope under the given restrictions
on viewing angles. Beder et al. [28] previously found that images taken by cameras 90◦

apart yielded the highest depth accuracy for the 3D reconstruction of points. This gives us
reason to believe that our suggested camera arrangement also has the potential for high
depth accuracy. To exploit this potential, the arrangement might have to be logically split
into camera pairs 90◦ apart, using these for reconstruction instead of other possible camera
combinations from this setup. Which camera view pairs to choose for reconstruction is,
therefore, also a possible question for future analysis.

We must stress that the numbers of independent camera views stated above constitute
only a lower limit for reconstruction of an adequately complete digital twin under optimal
circumstances. Furthermore, by using only deep-channel models, we have have limited
ourselves to the worst case scenario for microscope-borne 3D reconstruction. Sites with
shallower channels or sites on the surface of the body (e.g., in ophthalmology) might
require less cameras for reconstruction.

Any number of cameras named here is not guaranteed to yield a digital twin of the
same quality in reality as in our simulations. In practice, 3D reconstruction will suffer from
problems, such as insufficient feature points in the images for feature matching between
camera views. A physical test setup for 3D reconstruction with a CMO microscope must
be used to verify our findings in a future study.

In summary, we introduced a simulation framework that finds the most extensive
subset of a model that could theoretically be 3D reconstructed with a given camera con-
stellation, assuming ideal optics and disregarding any losses or errors introduced by the
reconstruction method itself. We also introduced in silico models of typical deep-channel
surgical sites, as well as a simplified in silico model of a CMO-pattern surgical microscope.
Using the models and the simulation, we showed that a minimum of eight independent
cameras views is preferable for 3D reconstruction of a deep channel surgical site if the
complexity of implementation is manageable. Otherwise, a minimum of four independent
views is sufficient for an adequately complete reconstruction. This study has laid the foun-
dation for the digitization of surgical sites entirely in 3D. We have answered one of the key
questions for the development of a prototype surgical 3D visualization system which offers
currently unattainable features. A system that adapts to the user, instead of the user having
to adapt to it. It will enable any number of independent assistants’ during operations, e.g.,
for those present in the operating room, as well as for remote training or expert assistance.
It will also make 3D information fusion possible in surgical visualization systems.
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5. Outlook

The presented models cover various geometries, but validation requires a sufficient in
vivo data set. Validation on different in vivo geometries and channel depths could help to
clarify whether the suggested annular camera arrangement is equally suitable in vivo.

Occlusion caused by the depth of the channels, as well as occluding structures inside
the channels, are likely to blame for the high number of cameras required for reconstruction
in our findings. In contrast, it would therefore be interesting to investigate the 3D recon-
structability of a flat and wide-open site, such as the anterior chamber of the human eye.
Given the absence of occluders, it might even be possible to achieve a complete 3D recon-
struction of such a site with as little as four cameras, a small step up from the two cameras
currently used in commercially available devices, such as the ZEISS ARTEVO 800® [29].

As we mentioned earlier in the introduction, we believe that a 3D digital-twin based vi-
sualization approach can also be used in endoscopic and laparoscopic surgery –– promising
information fusion, as well as free choice of view point for any number of observers.
However, the feasibility of 3D reconstruction within the confines of hollow organs and
laparoscopic approaches would have to analyzed separately. These use-cases are subject to
very different constraints to camera numbers, stereo baseline, etc., than those applicable to
the microsurgical use-case we chose to examine.

Our current simulation finds the subset of a surgical site model that is theoretically
accessible to reconstruction with a given camera setup. It cannot simulate the actual
reconstruction and, therefore, cannot convey insights as to the visual quality and depth
accuracy that is to be expected from a setup under test. This will require a new simulation.
The pinhole camera models should be replaced with a rendering pipeline for simulated
acquisition of raster images. This pipeline should use a realistic camera model, allowing
for lens aberrations and depth of field. The current projection matrix should, therefore, be
replaced by a more sophisticated projection matrix with additional intrinsic parameters,
e.g., of the CMO lens. Furthermore, the simple continuous-space threshold-based 3D
reconstructability decision on polygons would have to be replaced with a discrete-space
photogrammetric 3D reconstruction algorithm. Finally, a realistic lighting model should
be incorporated into the new simulation, thus taking the effects of lighting on the 3D
reconstruction into account.

Once improved in silico studies are done, results from the in silico model can be
used to implement an experimental prototype setup. The prototype setup and ex vivo
experiments can also be used to investigate how inaccuracies, e.g., in feature matching,
affect the accuracy of 3D reconstruction. At least, in vivo studies are needed to finally state
the accuracy in clinical use.

Author Contributions: Conceptualization, A.W.; Data curation, A.W. and J.K.; Formal analysis, A.W.
and J.K.; Funding acquisition, W.N.; Investigation, A.W. and J.K.; Methodology, A.W. and J.K.; Project
administration, A.W.; Resources, J.K.; Software, J.K.; Supervision, A.W. and W.N.; Validation, A.W.
and J.K.; Visualization, A.W. and J.K.; Writing — original draft, A.W. and J.K.; Writing — review
& editing, A.W., J.K., and W.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The MATLAB code of the framework is online available under GNU
General Public License Version 3 together with 4 exemplary meshes at doi:10.5281/zenodo.4727697.

Acknowledgments: We thank Scott Lozanoff, from the University of Hawaii School of Medicine for
providing the plastinated and dissected patient head model. It has greatly improved the quality
and realism of our results. We also acknowledge the support by the KIT-Publication Fund of the
Karlsruhe Institute of Technology.

https://doi.org/10.5281/zenodo.4727697


J. Imaging 2021, 7, 87 27 of 29

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
FOV Field of view
CMO common main objective
STL stereolithography
ROI region of interest
AR augmented reality
VR virtual reality
3D three-dimensional
Ar reconstructable areas

Appendix A. Absolute Result Values

Table A1. Absolute values of the models including the mesh top surface.

Number
of

Cameras

50 mm Deep Channel 100 mm Deep Channel

Circ Angled
Anatomy

Circ
Artery

Circ Flat
Anatomy

Circ
Overhang

Elliptical
Channel

Circ Angled
Anatomy

Circ
Artery

Circ Flat
Anatomy

Circ
Overhang

Elliptical
Channel

2 2180.53 2606.64 2693.70 2362.84 2654.16 3537.98 3890.15 3969.95 3692.46 3954.95
4 3356.55 4063.70 4401.76 3798.81 3421.09 6845.67 7515.49 7828.25 7293.31 4811.07
6 3404.02 4183.30 4422.30 3863.85 3675.29 7111.80 7827.31 8066.09 7579.15 5739.22
8 3437.72 4276.11 4448.32 3907.83 4103.85 7244.43 8023.60 8191.01 7713.91 6322.41

16 3580.24 4468.04 4579.21 4053.70 4526.04 7362.88 8187.21 8298.20 7834.79 7114.16
32 3685.43 4581.74 4679.38 4158.41 4711.22 7447.15 8279.58 8377.04 7918.24 7771.07
64 3753.73 4652.29 4745.77 4225.98 4960.89 7508.13 8342.94 8436.05 7978.77 8286.51
128 3805.53 4704.30 4796.90 4277.46 5119.40 7548.59 8383.69 8475.88 8018.96 8616.84
256 3819.01 4718.06 4810.08 4290.81 5196.54 7563.16 8398.45 8490.17 8033.40 8789.11
360 3823.74 4722.80 4814.70 4295.50 5220.23 7569.11 8404.50 8496.04 8039.31 8839.03

* all values are in mm2.

Table A2. Absolute values of the models excluding the mesh top surface.

Number
of

Cameras

50 mm Deep Channel 100 mm Deep Channel

Circ Angled
Anatomy

Circ
Artery

Circ Flat
Anatomy

Circ
Overhang

Elliptical
Channel

Circ Angled
Anatomy

Circ
Artery

Circ Flat
Anatomy

Circ
Overhang

Elliptical
Channel

2 2029.79 2455.90 2542.95 2212.10 2484.92 3508.06 3860.23 3940.03 3662.54 3902.41
4 2999.76 3706.91 4044.98 3442.03 3205.17 6652.06 7321.87 7634.64 7099.7 4682.31
6 3032.57 3811.85 4050.85 3492.40 3450.65 6952.80 7668.31 7907.09 7420.15 5635.57
8 3044.26 3882.64 4054.86 3514.36 3867.70 6964.56 7743.74 7911.15 7434.05 6150.52

16 3058.60 3946.40 4057.57 3532.06 4205.32 6978.78 7803.12 7914.10 7450.7 6882.52
32 3064.87 3961.18 4058.83 3537.86 4317.55 6985.00 7817.42 7914.88 7456.08 7490.37
64 3067.11 3965.67 4059.15 3539.37 4517.09 6987.20 7822.01 7915.12 7457.84 7965.51
128 3067.90 3966.68 4059.27 3539.83 4635.15 6987.91 7823.02 7915.21 7458.29 8267.71
256 3068.27 3967.33 4059.35 3540.08 4701.71 6988.23 7823.53 7915.25 7458.48 8429.70
360 3068.40 3967.46 4059.36 3540.15 4721.64 6988.33 7823.72 7915.26 7458.53 8475.36

* all values are in mm2.
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Table A3. Absolute values of the “elliptical channel” models with a larger FOV.

Number
of

Cameras

Elliptical Channel with a Larger FOV

Including Top Surface Excluding Top Surface

50 mm
Deep Channel

100 mm
Deep Channel

50 mm
Deep Channel

100 mm
Deep Channel

2 6871.89 11,019.57 5073.47 10,056.69
4 7130.12 11,723.53 5134.85 10,461.92
6 7513.14 12,205.45 5167.31 10,496.57
8 7481.50 12,258.89 5181.59 10,511.21
16 7719.42 12,651.23 5197.12 10,527.66
32 7849.21 12,924.11 5200.28 10,531.26
64 7914.27 12,993.35 5201.46 10,532.68

128 7938.87 13,045.03 5201.84 10,533.09
256 7954.70 13,065.00 5202.09 10,533.29
360 7958.74 13,075.75 5202.31 10,533.44

* all values are in mm2.
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