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ABSTRACT Admixture is increasingly being recognized as an important factor in evolutionary genetics. The
distribution of genomic admixture tracts, and the resulting effects on admixture linkage disequilibrium, can
be used to date the timing of admixture between species or populations. However, the theory used for such
prediction assumes selective neutrality despite the fact that many famous examples of admixture involve
natural selection acting for or against admixture. In this paper, we investigate the effects of positive selection on
the distribution of tract lengths. We develop a theoretical framework that relies on approximating the trajectory
of the selected allele using a logistic function. By numerically calculating the expected allele trajectory, we also
show that the approach can be extended to cases where the logistic approximation is poor due to the effects of
genetic drift. Using simulations, we show that the model is highly accurate under most scenarios. We use the
model to show that positive selection on average will tend to increase the admixture tract length. However,
perhaps counter-intuitively, conditional on the allele frequency at the time of sampling, positive selection will
actually produce shorter expected tract lengths. We discuss the consequences of our results in interpreting the
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timing of the introgression of EPAST from Denisovans into the ancestors of Tibetans.

Admixture—a process wherein genetically distinct populations hy-
bridize and exchange alleles—is increasingly recognized as a dominant
force in evolutionary genomics. In particular, admixture has the
potential to introduce adaptive alleles from a donor population to a
recipient, particularly if the donor population has already adapted to
e.g., unique environmental conditions. For example, when the ances-
tors of modern ethnic Tibetans first colonized the extremely high
elevation Tibetan Plateau their success in adapting to these harsh
conditions stemmed in part from genes acquired from a Denisovan-like
ancestral population (Huerta-Sanchez et al. 2014). More generally,
as genome sequence data continues to accumulate, it is increasingly
clear that introgression has played a major role in shaping adaptive
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outcomes across a wide range of species, e.g., (Hufford et al. 2013;
Martin et al. 2013). However, the specific genetic signature of adaptive
introgression and its impact on patterns of genetic variation remains
less explored (but see e.g., (Setter et al. 2019)). There is, therefore, a clear
need to develop a theoretical framework to investigate the impacts
of adaptive introgression on the genomes of natural populations.
When two ancestral populations hybridize, the genome of each
individuals is a mixture of the ancestral populations, and the ancestry
at each site in the genome can be traced back to a single population.
Because alleles from a given ancestral population are initially on the same
chromosomes, and therefore strongly linked within the admixed pop-
ulation, this process can dramatically shape linkage disequilibrium within
admixed populations (commonly termed admixture LD (Stephens ef al.
1994; Falush et al. 2003)). Admixture LD, and the haplotypic analog,
ancestry tracts, which are unbroken stretches of sites from one ancestral
population, have become the key elements of genomic inference in
studying admixed populations. These two features of genetic variation
are the primary units of demographic model inference within admixed
populations. For example, the decay of LD (Loh et al. 2013) and the
ancestry tract length distribution (Gravel 2012; Corbett-Detig and
Nielsen 2017) (Skov et al. 2018) are commonly used for timing the
onset of admixture assuming a neutral model during admixture.
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(Hill 1974; Liang and Nielsen, 2014b 2016) showed recombina-
tion, genetic drift, and migration processes act as linear operators on
the 2-locus and 3-locus linkage disequilibrium coefficients (as defined
in (Lewontin and ichi Kojima 1960) and (Slatkin 1972) respectively).
In contrast, natural selection is not a linear operator on the LD
coefficients, and these approaches can, therefore, not be extended to
accommodate the impacts of natural selection. Instead, other meth-
ods are required to analyze the impact of selection. A recent study
(Sachdeva and Barton 2018) derives the ancestry tract length distri-
bution under an infinitesimal selection model. Such a model assumes
that there are many different sites and each of them is under weak
selection. However, another potent force that affects admixed pop-
ulations is adaptive introgression, where one or a few adaptive genes
is acquired via hybridization and each has potentially strong effects
on fitness. The analysis of adaptive introgression and its impacts on
linkage disequilibrium and the ancestry tract length distribution is a
largely unexplored topic and requires a novel theoretical framework.

The distribution of tract lengths during adaptive introgression is
closely related to the study of the strength of linkage disequilibrium. Two
main models that address this question are 2-locus and 3-locus linkage
models, which model the joint behavior of 2 and 3 linked loci re-
spectively. Substantial theory and numerical simulations are known from
earlier works, e.g., (Kimura 1956; Maynard and Haigh 2007; Thomson
1977; Lewontin and ichi Kojima 1960; Ewens 1968; Karlin and
Feldman 1970; Feldman et al. 1974; Karlin and Carmelli 1975; Karlin
1975; Lewontin, 1964a, b; Franklin and Lewontin 1970)). There are two
main differences between these works and our approach. The first is
the problem itself: in the aforementioned works the object of interest is
primarily the strength of LD in different selection scenarios, so all the
sites are considered to be segregating in a single ancestral population, and
allele frequencies at all the sites affect the strength of LD. In this paper
we are instead interested in the length of an admixture tract covering a
selected site. The second difference is that aforementioned works consider
forward time models, and we consider coalescent models.

There are many other works which have used coalescent theory to
study the dynamics of selective sweeps. In particular, (Kaplan et al.
1989) examine how the number of polymorphic sites changes due to
selective sweeps using a deterministic logistic approximation to the
selected allele frequency trajectory. (Barton 1998) expanded on this by
considering the stochastic phase of the allele frequency trajectory when
the allele frequency is close to 0 or 1. He showed that conditioning on
the selected allele not being lost, its spread in the population is faster
than exponential. (Durrett and Schweinsberg 2004) also showed,
through simulations, that the logistic approximation performs poorly
if the allele frequency is close to the boundaries (0 or 1).

The distribution of ancestry tract lengths around a locus under
selection can reveal the strength of selection and the timing of admixture
without requiring the assumption of neutrality. In this work, we present
an efficient way to calculate the expected ancestry tract length distribu-
tion, and we analyze the dependence of this distribution on a range of
different biological parameters. In particular, it is evident that for a given
admixture proportion, selection results in longer tract lengths of intro-
gressed segments. On the other hand, when conditioning on the allele
frequency at the time of sampling, positive selection actually results in
shorter ancestry tracts during adaptive introgression.

THEORY AND METHODS

Conceptual overview
We model the tract length distribution around a selected locus. In
other words, we want to find the probability that an ancestry tract
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ends at a certain distance from the selected locus because of a
recombination event within the admixed population. We imagine
a stochastic process along the length of the chromosome where
transitions between ancestries at a given locus are caused by re-
combination (at this locus) such that chromosomes on the left and on
the right of the recombination site are derived from different ancestral
populations. As shown in (Thomson 1977), the strength of linkage
disequilibrium between two neutral loci depends on the distance of
the region containing those loci from the selected site. Similarly,
transition rates between ancestry types are not uniform in recombi-
nation units with regards to the distance from the selected site.

Indeed, if a neutral locus is far away from the selected locus, the
surrounding genomic region is nearly independent of the impact of
selection, and the transitions between the ancestry types should occur
almost as expected under neutrality. On the other hand, if a given site
is tightly linked to a selected locus, the probability of transitions to a
different ancestry would be affected by the allele frequency changes in
the selected locus. Because a 2-locus framework cannot model this
dependency, it does not provide enough information regarding the
local transition rates in genomic regions proximal to a selected site.
Instead, in this work, we use a 3-locus model to calculate transition
rates between different ancestries in two loci as a function of the
distance to a third selected locus.

Selected allele trajectory

Let o denote a locus under selection with two possible alleles A
standing for the selected allele and a standing for neutral allele. We
are interested in the scenario when allele A is introduced into the
population through an adaptive introgression event that includes
instantaneous replacement of a given proportion of individuals, the
admixture fraction, in the recipient population. Such an introgression
event is commonly termed an “ancestry pulse” in related works, e.g.,
(Gravel 2012; Corbett-Detig and Nielsen 2017). We assume that allele
A was fixed in the donor population, and that prior to admixture,
allele a was fixed in the recipient population.

The expected trajectory of an allele under selection can be well
approximated using a logistic function (see e.g., (Kaplan et al. 1989))
under the following conditions: First, selection should be strong
(Nes > 1, where N, is effective population size, and s is selection
coefficient such that an individual with two selected alleles has fitness
1 + s and a heterozygous individual has fitness 1 + s/2). Second, the
frequency of the selected allele is above a critical threshold, so in our
model, the admixture fraction must not be too small. Finally, the time
since adaptive introgression is not too large compared to the selection
coefficient, so that the frequency of A is not too close to 1 at the time
of sampling (Smith 1971; Messer and Neher 2012).

Approximating the allele frequency trajectory of the adaptive
allele using a deterministic logistic trajectory, as in (Kaplan et al.
1989), allows us to avoid integration over the stochasticity caused by
genetic drift, which makes our approach similar to the mean field theory
widely used in physics (Weiss 1907) and epidemiology (Kermack
William Ogilvy and Thomas 1927). We show that this approximation
is highly accurate, in a certain range of parameters, for estimating the
expected tract lengths. In this range, the expected tract length can be
considered invariant under the order of integration over genetic drift and
over the tract length distribution.

Outside this range, when the proportion of introgression is very
small, which means that drift is strong relative to selection, the logistic
function will yield inaccurate predictions. This observation matches
that of (Durrett and Schweinsberg 2004). In this case the expected
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trajectory can be estimated by generating a large random sample of
stochastic trajectories. This can be done efficiently, because, in
practice, the selection coefficient s < 1 is small, and the diploid
population can be approximated by a haploid population under genic
selection. At each generation the selected allele frequency is simulated
from a binomial distribution with probability weighted by the total
fitness contributed of the selected allele. We average allele frequencies
at each generation over the simulated trajectories (conditioning on
observing the selected allele at the time of sampling). We will show
that such an approach vastly extends the applicability of our method
to cases that require greater stochasticity. In particular, we use it to
analyze the Denisovan introgression in the ancestry of Tibetans,
where the proportion of introgression is estimated to be as small as
0.06% (Huerta-Sanchez et al. 2014), and therefore is outside the range
of parameters where the logistic approximation to the allele frequency
trajectory yields accurate results.

3-locus model during adaptive introgression

Let B and vy be two neutral loci near « (the locus under selection) so
that there are 3 loci on the chromosome: a, 3, and vy, following each
other sequentially in this order on the chromosome. Let r; be the
distance (in Morgans) between « and (3, r, is the distance between 3
and y. We are following the ancestry of 8 and . In other words, we
track the lineage leading to each locus to the time of introgression,
while simultaneously tracking how recombination and coalescence
act on the segment. If at the time of introgression the ancestral locus is
on a haplotype carrying allele A, then, by definition, its ancestry is
from the introgressed population (denoted ancestry type 1). If, in
contrast, the ancestral locus is linked to allele a, then it comes from
the recipient population (denoted ancestry type 0). Ancestry type
0 corresponds to the recipient population and ancestry type 1 corre-
sponds to the donor population.

The importance of this 3-locus model is that we can calculate
transition rates between ancestry types, and hence, we can numer-
ically calculate the distribution of tract lengths of ancestry type 1 (or
type 0) near the locus o.

Model derivation

Under the coalescent with recombination, the model can be consid-
ered Markovian backward in time, when conditioned on the allele
frequency path. To describe the dynamics of the adaptive introgres-
sion 3-locus model, we need to enumerate the possible states, which
describes the ancestry configurations across the three loci, and we
need to find the transition rates between them.

The model has 6 possible states. Each state represents an ancestral
configuration for an observed chromosome with three loci: , 8 and
7. At o we track the allelic state, A or a, which also indicates ancestry.
In B and vy we only need to know if the given chromosome is ancestral
to the observed chromosome or not. We use the notation 84 and y* to
indicate DNA in 3 or y that is ancestral to the observed chromosome.
B" and y" is used to indicate DNA that is not ancestral to the
observed chromosome. The six states are then:

e (A — B — y*): ancestral material for the observed chromosome at
B and y on a chromosome carrying allele A at the selected locus «,

e (A—pB*—vy" A—B"—¥"): ancestral material at 8 and y on
different chromosomes, both carrying allele A,

o (A—B%—vy" a—B"—y"): ancestral material at 8 and y on
different chromosomes, and the chromosome ancestral to the
observed chromosome at 3 is carrying allele A, while the chromo-
some ancestral to the observed chromosome at 7y is carrying allele a,
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e (a—pB*—y",A—B" — y*): ancestral material at 8 and y on
different chromosomes, and the ancestral chromosome at B is
carrying allele a, while the ancestral chromosome at 1y is carrying
allele A,

e (a—B*—9",a— B" —y?): the ancestral material of 8 and vy are
on different chromosomes, both carrying allele a,

e (a— B®— y?): ancestral material at both 8 and y are on the same
chromosome carrying allele a.

We denote the frequency of the selected allele at time ¢ by w(?).
As we indicated previously, we assume that w(¢) deterministically
follows a logistic function:

1 1

w(t) =1= 1+ e st/2 = 1+ est/2’

because we are working in backward time. This is a reflection of a
logistic function relative to t = 0. The time of introgression corre-
sponds to a point, t;, on the deterministic allele frequency trajectory
such that w(#;) equals the admixture proportion w;. Notice, that the
time of sampling ty = t; — T, where T is the time since introgression,
does not necessarily equal ¢ = 0.

Recombination acts at a rate proportional to the recombination
distances between loci. We assume that recombination between loci «
and B occurs at rate r; and recombination occurs between loci 8 and
7y at rate r,. In other words, we measure distance between the loci in
Morgans.

Consider for example the ancestry configuration state (A — B* — y%)
at time #. If recombination occurs between loci & and B, then ancestral
material at loci 8 and y remain on the same ancestral chromosome.
The allele at the site a on this ancestral chromosome will be A with
probability w(t) (state does not change) and a with the probability
1 — w(t). Hence, the transition rate from state (A — 8% — ¥*) to the
state (a — B* — y*) is r1 (1 — w(t)) at time ¢. If a recombination event
occurs on a chromosome with configuration (A — 8% — y?) between
loci B and v, then it is split into two chromosomes, and there are two
different possible ancestry configurations. In both configurations the
first ancestral chromosome is A — 8% — y". The second chromosome
is either A —pB" —y* with probability w(t), or a —B" — y* with
probability 1 — w(t). So, recombinations are the first type of transi-
tion in our model. The other type of transition is coalescence, which is
possible between chromosomes that carry the same allele (A or a) at
the selected locus « at the rate A /w(t) for A and A /@(t) for a, where
A = 1/2N, and 2N, is the haploid effective population size. The full
transition rate matrix is

where @(t) =1 — w(t) is the allele frequency of allele a, and the
equation describing the probability of being at a certain state at time ¢
is

P'(t) = P(£)M(8). (1)
The initial condition for this differential equation is
P(t) = (1,0,0,0,0,0)
for the dynamics of introgressed tracts (hence, carrying allele A), and
P(t) = (0,0,0,0,0,1)

for the tracts from the recipient population (individuals with allele a).
Equation 1 cannot be solved analytically, because eigenvalues of
the matrix M(t) cannot be derived analytically in general. However, it
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—ra(t) —r ra(t) r@(t) 0 0 rn(t)
A w(t) A w(t) = (2 +rn)a(t) (rn+rn)o(t) ro(t) 0 0
M(t) = 0 (r1 + rn)o(t) —r1 — no(t) 0 ra(t) 0
0 ro(t) 0 —r1 — no(t) (n+nr)o(t) 0 ’
0 0 rlw(t) (1’1 + ?‘2)(1)(1’) _/\/E)(t) - (21’1 + 1’2)(1)(1') )\/(D(i’)
1’1(()(1’) 0 0 Tza)(t) rch)(t _1’1(1)(1’) - n
is easy to solve it with standard numerical methods. Our imple- . P(S(r+4dr) =0[S(r) = 1)
mentation uses scipy.integrate.odeint() (Jones et al. 2001) which is Ti0(r) = dl,u_r,lo dr
based on Isoda (Hindmarsh 1983) from the FORTRAN library 1 P(S(r+dr)=0,8(r) = 1)
odepack. B dlrlr—r>10 dr P(S(r)=1) @

Again, we assume that allele a is private to the recipient
ancestral population, and allele A is private to the donor ancestral
population. To estimate the ancestry of loci 8 and v, it is necessary
to trace the ancestral chromosomes to the time of introgression t;.
If ancestral locus appears on a chromosome with allele a (allele A)
at that time we conclude that it comes from the recipient pop-
ulation (donor population respectively), hence it has ancestry type
0 (ancestry type 1 respectively). Our goal is to calculate the
expected length of the introgression tract containing the locus
under selection, i.e., haplotypes with allele A. The fact that the tract
ends at a certain position on a genome means that all loci (8) to the
left of this position has ancestry type 1 and a loci (7y) to the right of
this position has ancestry type 0. Moreover, all the loci between o
and B have ancestry type 1, and 8 and y are infinitesimally close to
each other. The mathematical derivation of this idea is in the next
subsection. We also note that this process is a type of of Sequen-
tially Markov Coalescent (SMC) model (McVean and Cardin 2005)
which considers two Markovian process: backward-in-time co-
alescent process and along-the-genome Markov chain which gen-
erates recombination breakpoints.

Transition rates between ancestry of type 0 and type 1

As previously discussed, we are interested in transitions of ancestry
in loci near the introgressed selected allele. More precisely, we seek
the distribution of lengths of ancestry tracts that contain A4, i.e., the
set of ancestry tracts with ancestry type 1 at the selected site. In the
given model the probability that a locus is of ancestry type 1 or type
0 is equal to the probability that the ancestral chromosome carries
the allele A or a respectively at time of introgression #. In the
previous subsection we described a Markovian process (with
regards to the backward time) under which we can calculate those
probabilities.

Now we consider a new Markov process, which describes the
ancestry at a locus while moving along the chromosome away from
the selected locus. The process is only approximate because the real
process along the length of the chromosome is not Markovian. The
states of this Markov process are again ancestries of type 0 or 1. By
definition, transition rate between states s; and s, at position r of a
Markov process S(r) is

Ts) ssz(r) = dlimo P(S(r + d?‘) erz‘s(r) = 51).
r—

The transition rate is 79 () between ancestries of type 1 and type 0,
which corresponds to recombination breaking the introgressed an-
cestry tract, is
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The numerator P(S(r + dr) = 0,S(r) = 1) is the probability of being
at the third state (A —B% — y",a — B" — ¥?), and the denominator
P(S(r) = 1) is the marginal probability of ancestry type 1, hence it is
the sum of probabilities of the first three ancestral configurations
(A=p' =), (A-B'—y"A=-B"—v") and (A-B*"—v"
a— B" — 7). Expression 2 is easy to evaluate numerically by con-
sidering sufficiently small values of r,.

Model validation

In order to estimate how accurate our deterministic approximation is,
we compared our results with the average tract length estimated from
simulations using the forward-in-time simulation framework SELAM
(Corbett-Detig and Jones 2016). Briefly, we used the software to
simulate a Wright-Fisher population of constant size 5000 hermaph-
roditic diploid individuals. We simulated a single chromosome of
length one Morgan with a single selected site at position 0.5 Morgans.
At each sampling point, we extracted 50 individuals (100 chromo-
somes) at random from within the population and output the
ancestry across each chromosome. We performed 10 to 100 thousand
replicates of each combination of selective coefficient, times since
admixture and admixture proportion.

Data availability

The authors state that all data necessary for confirming the conclu-
sions presented in the article are represented fully within the article.
The code is available at the GitHub repository associated with this
project https://github.com/vlshchur/DAIM.

RESULTS

Accuracy of deterministic approximation

We simulate both relatively weak and strong selection, and we allow
selection to act in different periods of time. We mostly explore the
accuracy through the comparison of expected tract length and its
variance. We also present the distribution of break-points of tracts
containing selected allele. The tract length is the sum of two in-
dependent random variables, one representing the distance to the left
of the selected mutation and the other representing the distance to the
right of the selected mutation.

As the waiting time to a recombination event along the length
of the genome is exponentially distributed, one might be inclined
to think that tracts lengths also are exponentially distributed.
However, this is not the case as illustrated in Figure 1. The figure
shows the distribution of the distance from the selected locus to
one end of the tract, estimated from simulations, from the deterministic
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Figure 1 Distribution of the distance from the selected locus to one end of the introgressed tract. Selection coefficient s = 0.01, admixture fraction
w1 = 0.1 and time since introgression T = 1000 generations. The observed allele frequency is wg = 0.94. The first panel shows the probability
density functions for the empirical distribution obtained by simulations, the distribution calculated under the deterministic approximation and the
exponential distribution with the mean set equal to the simulated mean. Three other panels are qg-plots showing all three pairs of the presented

distributions.

approximation, and an exponential distribution with the rate equal to
the inverse of the mean of the simulated distribution. In this scenario,
the approximation provides an accurate estimate of the empirical
distribution. The exponential distribution provides a much worse
fit. The reason why the exponential distribution fits so poorly is that
it does not incorporate the possibility of back-recombination and
coalescence. In the presence of these processes, the tract length
distribution is not exponential (see also (Liang and Nielsen, 2014a)
for more discussion of this).

In all of the scenarios that we explored, the relative error does not
exceed 5%, and in more than half of all cases it is within 2% (Tables 1
and 2). This level of precision should be sufficient for most appli-
cations given that the uncertainty in the real data analysis is usually
much greater than the error of the approximation model.

As previously discussed, the logistic function is a good approx-
imation for the allele frequency trajectory only when selection is
strong. Still, we wondered if the deterministic approach would give
consistent results for a case of neutral admixture without adaptive
introgression. Following Liang, Nielsen (Liang and Nielsen, 2014a)

the expected tract length under a neutral admixture model can be
calculated as

2

C o)1= T ®)

2N, (1

under the SMC’ model (Marjoram and Wall 2006). Notice that there
is a factor of two in the numerator due to the fact that we condition on
observing the introgressed allele on a haplotype. We find that in the
limiting case of no selection, the approximation closely approximates
the analytical result from (Liang and Nielsen, 2014a) (Table 3).
Another case where the logistic function is not expected to be a
good approximation of the mean trajectory, is when the admixture
proportion is close to zero. To explore this issue, we chose a set of
parameters, which are similar to Neanderthal introgression into non-
Africans (2.5%), and to the Denisovan introgression into Tibetans
(0.06%). We found that the logistic approximation performs poorly
for the Denisovan-like scenario, and is not very accurate (up to 10%
relative error) for the Neanderthal-like introgression with week

Table 1 The accuracy of the deterministic approximation for the expected tract length under adaptive introgression compared to
estimates from simulations. For every set of parameters (introgression fraction, selection coefficient, and time of introgression), we
performed 10° replicate= simulations. The haploid effective population size was 10,000 chromosomes, with 100 chromosomes sampled from
each population. The relative error was calculated by comparing the simulated expected tract length to the prediction given by the

deterministic model.

Introgression parameters

Expected tract length

Proportion Selection Time Simulations Deterministic approximation Relative error

0.01 0.001 50 0.0417436 0.0401907 3.7%
100 0.0197123 0.0200985 2.0%

500 0.00407317 0.00402525 1.1%

1000 0.00206252 0.00201644 2.2%

0.01 0.01 50 0.0415686 0.0402287 3.3%
100 0.0202129 0.02014 0.4%

500 0.00423004 0.00411598 2.8%

1000 0.00237283 00227902 4.0%

0.05 0.001 50 0.0427474 0.0419025 2.0%
100 0.0210069 0.0209646 0.2%

500 0.00428813 0.00421551 1.7%

1000 0.00217073 0.00212356 2.2%

0.05 0.01 50 0.0428456 0.0420981 1.7%
100 0.021438 0.0211766 1.2%

500 0.00470731 0.00462923 1.7%

1000 0.00290033 0.00286404 1.3%
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Table 2 The accuracy of the deterministic approximation for the expected tract length under adaptive introgression compared to the
estimates from simulations for numerically estimated trajectory. For scenarios with relatively small admixture fractions (w; = Proportion =
0.0006), the logistic function does not accurately describe the allele frequency trajectory, so we numerically estimated the mean trajectory
using stochastic simulations. The relative error is for the deterministic approximation with numerically estimated trajectories relatively to the

simulation estimates.

Introgression parameters

Expected tract length

Deterministic Deterministic Relative error

Proportion Selection Time Simulations Approximation Approximation
(numerical) (logistic)
0.0006 0.01 1500 0.00176 0.00173 0.00142 1.7%
1750 0.00158 0.00160 0.00129 1.3%
2000 0.001503 0.001500 0.00120 0.2%
2250 0.00141 0.00142 0.00114 0.7%
0.0006 0.02 1500 0.00234 0.00230 0.00198 1.7%
1750 0.00222 0.00215 0.00186 3.2%
2000 0.00210 0.00203 0.00175 3.3%
2250 0.00205 0.00193 0.00167 5.9%
0.025 0.001 1500 0.001415 0.001436 0.00138 1.5%
1750 0.001227 0.001244 0.001189 1.4%
2000 0.001136 0.001101 0.001043 3.1%
2250 0.001020 0.000990 0.000930 2.9%
2500 0.000883 0.000902 0.000839 2.2%
0.025 0.005 1500 0.00164 0.00158 0.00155 4.9%
1750 0.00146 0.00142 0.00139 2.7%
2000 0.00133 0.00130 0.00128 2.3%
2250 0.00126 0.00121 0.00120 4.0%
2500 0.00118 0.00114 0.00114 3.4%

selection (s = 0.001); in particular, the predicted allele frequency is
strongly underestimated. Presumably these discrepancies reflect the
increased impacts of genetic drift for small admixture proportions. To
address this issue, we estimated the expected trajectory by forward-in-
time stochastic simulations of a large sample of possible allele
frequency trajectories (see subsection Selected allele trajectory for
details). The stochastically estimated expected trajectory is then used
instead of the logistic function in Equation 1 to model the tract length
distribution. The deterministic model (with numerically pre-com-
puted expected trajectories) gives tract length estimates quite similar
to those observed in the simulated data sets (Table 2).

Variance

The variance in the tract length distribution predicted by our method
is an accurate approximation of the across population variance, that
is, the variance among all the tracts obtained in many replicates with
the same parameters (see Table 4). This is equivalent to the variance
in tract length among tracts within a population if the tracts intro-
gressed into the population independently of each other and have not

coalesced or recombined with each other. Of course, in reality, two
tracts might coalesce before the time of introgression, so their lengths
are not independent of each other. Hence, we expect that the within-
population variance is smaller than across-population variance. On
the other hand, if introgression is recent enough, then the chance of
coalescence is small, and the correlation between tract lengths within
population will be small.

Indeed, for most of the scenarios with 50 and 100 generations
since the time of introgression (Table 4) the variances of the tract
lengths are similar. For larger times, the across-populations and
within-population variance are different by up to 20%, reflecting
the increased probability of coalescence among selected haplotypes
that share a recombination event within the admixed population.

Run time

Calculation of the expected tract length for 100 introgression sce-
narios takes just 106 sec for a Python implementation executed on
MacBook Pro (2.9 GHz Intel Core i5) when using the logistic function
to approximate the allele frequency trajectory. Transition rates are

Table 3 Deterministic prediction for the expected tract length in a neutral model compared to the theoretical expectation under SMC’

model.
Proportion Time Expected tract length (deterministic approximation) Expected tract length (theoretical) Relative error

0.01 10 0.20194 0.200923 0.5%
100 0.0201956 0.0200946 0.5%
1000 0.00202122 0.00201177 0.5%
0.05 10 0.210491 0.209387 0.5%
100 0.021054 0.0209442 0.5%
1000 0.00211024 0.0020999 0.5%

0.1 10 0.222252 0.222278 0.01%
100 0.022233 0.0222778 0.2%
1000 0.00223105 0.00227824 2.1%
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Table 4 Simulated across and within population variance and the across population variance estimated from the deterministic model. The
percents show the relative error of the deterministic approximation compared to the simulations both for across and within population
values. The introgression with 0.0006 (or, 0.06%) admixture proportion was chosen to approximate Denisovan introgression into Tibetans.
The introgression with 0.025 (or, 2.5%) admixture proportion was chosen to approximate Neanderthal introgression into non-Africans.

Introgression parameters

Standard deviation of tract length

Proportion Selection Time Deterministic approximation S|mu|ated. . Slmglated .
(across populations) (within population all replicates)

0.01 0.001 50 0.028513 0.029397 3.01% 0.027405 4.04%
100 0.014260 0.013484 5.75% 0.013376 6.61%
500 0.002858 0.002795 2.25% 0.002334 22.45%

1000 0.001433 0.001454 1.44% 0.001131 26.7%
0.01 0.01 50 0.028534 0.028719 0.64% 0.027571 3.49%
100 0.014283 0.013762 3.79% 0.013481 5.95%

500 0.002904 0.003050 4.79% 0.002621 10.8%
1000 0.001548 0.001548 0.0% 0.001438 7.65%
0.05 0.001 50 0.029728 0.030492 2.51% 0.0295%90 0.47%
100 0.014875 0.014932 0.38% 0.014642 1.59%
500 0.002993 0.003035 1.38% 0.002757 8.56%
1000 0.001509 0.001554 2.9% 0.001336 12.95%
0.05 0.01 50 0.029834 0.030620 2.57% 0.029731 0.35%
100 0.014989 0.014980 0.06% 0.014830 1.07%
500 0.003196 0.003246 1.54% 0.003120 2.44%

1000 0.001835 0.001888 2.81% 0.001785 2.8%
0.0006 0.01 1500 0.001125 0.001173 4.09% 0.000962 16.94%
1750 0.001014 0.000998 1.6% 0.000889 14.06%
2000 0.000930 0.000954 2.52% 0.000811 14.67%
2250 0.000864 0.000884 2.26% 0.000751 15.05%
0.0006 0.02 1500 0.001350 0.001423 5.13% 0.001241 8.78%
1750 0.001230 0.001312 6.25% 0.001132 8.66%
2000 0.001136 0.001221 6.96% 0.001050 8.19%
2250 0.001061 0.001179 10.01% 0.000974 8.93%
0.025 0.001 1500 0.001015 0.001052 3.52% 0.000806 25.93%
1750 0.000878 0.000840 4.52% 0.000677 29.69%
2000 0.000776 0.000835 7.07% 0.000589 31.75%
2250 0.000696 0.000691 0.72% 0.000535 30.09%

2500 0.000633 0.000608 4.11% 0.000477 32.7%
0.025 0.005 1500 0.001082 0.001136 4.75% 0.000991 9.18%
1750 0.000956 0.000970 1.44% 0.000875 9.26%
2000 0.000863 0.000887 2.71% 0.000784 10.08%
2250 0.000793 0.000836 5.14% 0.000726 9.23%
2500 0.000737 0.000779 5.39% 0.000672 9.67%

evaluated at 1000 points (different values of r). The code is available at
the GitHub repository associated with this project https://github.-
com/vlshchur/DAIM.

Dependence of mean tract length on
different parameters
The deterministic approach facilitates the calculation of expected
tract lengths for a wide array of parameters. In Figure 2 we illustrate
the dependency of the mean tract length on the admixture fraction
given the time of introgression and selection coefficient. As expected,
a larger admixture fraction results in longer expected tract lengths. In
Figure 3 we illustrate the dependency on the selection coefficient
given the time of introgression and admixture proportion. Again,
stronger selection results in longer expected ancestry tract lengths.
The strength of selection has a stronger effect on the expected tract
length than the admixture proportion. For example, consider an
adaptive introgression model with time T = 1000, selection coeffi-
cient s = 0.01 and admixture proportion 0.025. The expected tract
length is 0.0025 Morgans under this model. If we double the
admixture proportion to 0.05, the expected tract length increases
to 0.0029 Morgans, or approximately 13%. If on the other hand we

-=.G3:Genes| Genomes | Genetics

Volume 10 October 2020 |

increase the strength of selection by a factor of two, then the expected
tract length increases by 41% and becomes 0.0036 Morgans.

The new approximation facilitates investigation of another im-
portant dependency, which would otherwise require prohibitively
large numbers of simulations, namely the dependency of the expected
tract length on the observed allele frequency. In Figure 4 we dem-
onstrate that conditioning on the allele frequency at the time of
sampling, stronger selection actually reduces the expected tract
length. This is explained by the fact that stronger selection decreases
(going backward in time) the allele frequency faster than weaker
selection. Hence, the probability of recombining back to a haplotype
that contains the selected allele following a recombination event is
smaller for scenarios with stronger selection. More formally, assume
that we compare two scenarios with selection coefficients s; and s, (all
other parameters are the same), and that s; <s,. Let o) be the
logistic trajectory for selection coefficient s;. We condition on the
observed allele frequencies at time fo, hence oV (t)) = 0@ (ty).
Ancestral recombination occurs on a chromosome independent of
the strength of selection. Assume that recombination occurred at time
t, > to. The expected allele frequency at time t,, which is defined by
the logistic function, is larger for the smaller selection coefficient:

Introgressed Tract Length Distribution | 3669


https://github.com/vlshchur/DAIM
https://github.com/vlshchur/DAIM

0.22-

0.21-

0.20-

0.030-

0.025-

Mean tract length (Morgans)
g
o

0.010-

0.008 -

0.004 -

0.002-
0.000 0.025 0.050 0.075
Introgression proportion

Selection coefficient —+ 001 -+ 005 -+ 0.1

oW (t,) > 0@ (t,). Hence, the chance that the remaining part of the
chromosome coalesces back to a haplotype that contains the selected
allele is higher for s;.

Denisovan introgression into Tibetans

A well-known example of adaptive introgression is Denisovan in-
trogression into Tibetans which facilitated altitude adaptation by
introducing an adaptive allele of EPAS] affecting red blood cell
production into the ancestors of modern Tibetans (Yi et al. 2010;
Huerta-Sanchez et al. 2014). We wondered how selection might affect
estimates of the time of introgression, conditioning on the present-
day allele frequency of EPASI of 85% (Huerta-Sanchez et al. 2014)
and an overal genomic admixture proportion of w; = 0.060.03%
(Sankararaman et al. 2016).

The admixture proportion is very small, and the logistic function
will therefore be quite inaccurate. For a range of values of selection
coefficient (s = 0.005,0.006, . . ., 0.02), we numerically estimated the
expected trajectories (using the stochastic trajectory simulator) for
the given admixture proportion. Given the frequency of the adapted
allele in the modern population, the time since introgression is
estimated as the time needed for the allele to reach this observed
allele frequency following the expected trajectory.

We summarize the dependency of the introgression time on the
strength of selection in Table 5 for the mean value w; = 0.06%. It is
clear from the table that dating the time of introgression from the
tract length under the hypothesis of neutrality, would cause un-
derestimation of the time of introgression by about 20 — 25%. For
example, if the estimated tract length is 0.00117 Morgans, the
corresponding introgression time without selection affecting the allele
frequency is 1791 generations, or about 45000 years. However, taking
selection into account, this tract length corresponds to selection
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coefficient s = 0.006 and an introgression time of 2282 generations,
or 57000 years ago. Therefore, analyses that seek to understand the
timing of introgression events of adaptively introgressed alleles will be
greatly facilitated by incorporating the dependency on the strength of
selection on the expected tract length distribution. The best option for
providing bounds for the time of introgression of single tracts, if these
tracts cannot be assumed to be part of a larger introgression pulse that
included other fragments, would be to jointly estimate the introgres-
sion time, the selection coefficient, and the time of introgression,
using tract length, allele frequency, and other information such as
local haplotype homozygosity and/or local genealogical information.

DISCUSSION

Adaptive introgression is an important and common phenomenon in
evolutionary genetics (Hedrick 2013). In this paper we derived an
accurate approximation model for the ancestry tract length distri-
bution under adaptive introgression, near a selected site, with a
single admixture pulse. This framework facilitated calculations of
the distribution of tract lengths under a range of plausible adaptive
introgression scenarios. However, we emphasize that future work
should consider additional demographic models including contin-
uous migration or multiple pulses. We demonstrated, perhaps
counter-intuitively, that conditioned on the observed allele fre-
quency, stronger selection produces shorter admixture tracts. Fur-
thermore, as an example, we showed that selection should be taken
into account when dating the well-known case of altitude adapta-
tion in Tibetans through the introgression of EPASI1 gene from
Denisovans. When ignoring the impacts of selection, the time since
introgression might be underestimated by as much as 20-25% if
conditioning on the allele frequency. If the allele frequency is
allowed to be random, the effect would be opposite.
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Our results illustrate that selection should be carefully considered
and incorporated when studying adaptive introgression events. More
generally, this framework opens new possibilities for understanding
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Figure 3 Dependence of the expected tract length
on the strength of selection for different times of
introgression. Different panels correspond to differ-
ent times of introgression (10, 100 and 1000 gener-
ations respectively). Different colors correspond to
different introgression proportion values (0.01, 0.05,
0.1).

the timing of admixture and the strength of adaptive introgression
across a wide range of populations. Our work therefore lays the
groundwork for the development of new inference frameworks that

Figure 4 Dependence of expected tract length on
the strength of selection conditioned on the allele
frequency at the time of sampling. Different panels
correspond to different times of introgression (10,
100 and 1000 generations respectively). Different
colors correspond to different allele-frequency val-
ues at the time of sampling (0.1, 0.2, 0.5, 0.9).
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Table 5 The effect of assumptions regarding the strength of selection on estimates of the time of the Denisovan introgression into
Tibetans for EPAS1. We assume an initial introgression fraction of 0.06% (Sankararaman et al. 2016), and a present-day allele frequency for
the EPAS1 allele of 85% in Tibetans (Huerta-Sanchez et al. 2014). Under deterministic approximation, the value of the selection coefficient
then determines the time of introgression needed for the allele to reach the observed allele frequency at the time of sampling (present time).
We calculate the expected length of introgressed Denisovan tracts overlapping EPAS1 allele for each such scenario. In the column “expected
tract length (no selection)” we show the expected tract length for the given introgression proportion and time since introgression under
hypothesis of no selection using formula 3. The last column shows the relative difference between the expected tract length estimated while

taking into account selection and while ignoring it.

Selection Time(in generations) Expected tract length Expected tract length (no selection) Relative error
0.005 2672 0.00101 0.00080 20.8%
0.006 2282 0.00117 0.00093 20.5%
0.007 2030 0.00130 0.00104 20.0%
0.008 1791 0.00146 0.00117 19.9%
0.009 1619 0.00160 0.00129 19.4%
0.01 1467 0.00175 0.00141 19.4%
0.011 1350 0.00190 0.00153 19.5%
0.012 1264 0.00201 0.00163 18.9%
0.013 1170 0.00217 0.00176 18.9%
0.014 1100 0.00230 0.00187 18.7%
0.015 1041 0.00242 0.00197 18.6%
0.016 983 0.00256 0.00209 18.4%
0.017 928 0.00270 0.00221 18.1%
0.018 883 0.00283 0.00232 18.0%
0.019 844 0.00296 0.00242 18.2%

0.02 806 0.00309 0.00253 18.1%

can detect adaptive introgression using tract lengths and allele
frequencies. Particularly, in light of the fact that adaptive introgres-
sion is common historically, and may be accelerated in the future by
anthropogenic impacts such as climate change, e.g., (Muhlfeld et al.
2014), developing a strong theoretical basis for understanding the
impacts of adaptive introgression on patterns of genetic variation is
crucial for interpreting the genomic consequences of admixture.
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