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Abstract: Background: Genetic variation provides a foundation for understanding evolu-
tion. With the rise of artificial intelligence, machine learning has emerged as a powerful
tool for identifying genomic footprints of evolutionary processes through simulation-based
predictive modeling. However, existing approaches require prior knowledge of the factors
shaping genetic variation, whereas uncovering anomalous genomic regions regardless of
their causes remains an equally important and complementary endeavor. Methods: To ad-
dress this problem, we introduce ANDES (ANomaly DEtection using Summary statistics),
a suite of algorithms that apply statistical techniques to extract features for unsupervised
anomaly detection. A key innovation of ANDES is its ability to account for autocovariation
due to linkage disequilibrium by fitting curves to contiguous windows and computing their
first and second derivatives, thereby capturing the “velocity” and “acceleration” of genetic
variation. These features are then used to train models that flag biologically significant
or artifactual regions. Results: Application to human genomic data demonstrates that
ANDES successfully detects anomalous regions that colocalize with genes under positive or
balancing selection. Moreover, these analyses reveal a non-uniform distribution of anoma-
lies, which are enriched in specific autosomes, intergenic regions, introns, and regions with
low GC content, repetitive sequences, and poor mappability. Conclusions: ANDES thus
offers a novel, model-agnostic framework for uncovering anomalous genomic regions in
both model and non-model organisms.

Keywords: anomaly detection; feature extraction; functional data analysis; isolation forest;
support vector machine

1. Introduction
Observed genetic variation arises from a combination of biological and technical

factors [1]. Biological sources include mutation, recombination, gene flow, genetic drift,
and natural selection. Mutation generates novel genetic variants that can be shuffled into
new haplotypes by recombination, spread across populations by gene flow, lost at random
by genetic drift, or purged or retained by natural selection [2,3]. Detecting genomic regions
affected by these and other evolutionary processes can therefore provide insights into
both evolutionary history and disease mechanisms [1,3,4]. In contrast, technical sources of
genetic variation stem from errors introduced during DNA isolation and sequencing [5,6],
mapping [7], and contamination [8]. These artifacts can distort measurements and bias
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downstream analyses, making their identification essential for accurately interpreting
patterns of genetic variation.

Genetic variation is often quantified using summary statistics, which are concise
measures that capture diversity within and among populations [1,3,9–16]. Over the past
several decades, these statistics have been used to identify numerous genomic regions
of interest, including those impacted by natural selection [12,13,17]. However, because
they do not explicitly incorporate haplotype structure and often assume independence
among loci [13,18], classical summary statistics [9,10] may not fully represent the effects
of linkage disequilibrium [19]. To account for linkage disequilibrium, researchers have
developed advanced statistics that utilize haplotype information or patterns of genetic
variation across the genome to address autocovariation in diversity [20,21]. For example,
likelihood-based methods offer advantages over classical summary statistics by leveraging
the spatial distribution and marginal allele frequencies of linked sites [22–26]. Yet, even
these approaches often rely on a limited set of user-selected features or statistics, which
may constrain their ability to detect more complex or unanticipated patterns.

In contrast, machine learning algorithms can operate with or without summary statis-
tics, providing a unique edge over likelihood-based approaches. They are also well-suited
for analyzing high-dimensional genomic data, automatically learning relevant features, cap-
turing complex relationships, detecting subtle patterns in data, and enhancing the flexibility
and adaptability of analyses [27]. A key strength of machine learning lies in its capacity
to establish interpretable links between input and output variables, achieved through the
learned weights of an optimal model architecture [28,29]. Moreover, machine learning
prioritizes predictive accuracy over explicit parameter estimation, allowing it to uncover
meaningful patterns even when the underlying models are incomplete or uncertain [27,30].

Many powerful machine learning methods have been developed to identify genomic
footprints of specific evolutionary processes [27,29,31–49]. However, it is equally important
to locate anomalous genomic regions irrespective of the forces driving them, as this may
broaden the range of detectable biological phenomena and help flag problematic regions
of the genome. This task falls under the domain of anomaly detection, which aims to
identify data points or outliers that deviate from expectations defined by the distribution
of most observed data [50]. Several strategies for anomaly detection have been utilized in
evolutionary genomics, such as clustering, dimensionality reduction, and distance-based
methods [51–54]. The overarching goal of such methods is to identify unusual patterns in a
set of measured features extracted from raw genomic data. Because these features capture
essential information, their quality plays a critical role in determining model performance
and predictive accuracy [55].

In this context, the statistical framework of functional data analysis (FDA) has gar-
nered attention in evolutionary genomics for its ability to extract meaningful features
and patterns from continuous data [56]. FDA treats measured values as the outputs of
underlying functions, thereby capturing the inherent relatedness among data points [57,58].
Because it enables the analysis of complex variation over time or space, FDA can detect
temporal and spatial autocovariance in genetic data that may be overlooked by traditional
summary statistics [39,43]. Methods that directly model feature autocovariation have been
successfully integrated into modern machine and deep learning frameworks, achieving
notable performance in fault and anomaly detection applications [59–61]. Therefore, by
leveraging the power of FDA for anomaly detection, researchers can uncover genomic
regions influenced by a diverse range of evolutionary processes.

In this study, we used statistical techniques—specifically moments and FDA–to extract
features from consecutive genomic windows of summary statistics computed from single
nucleotide polymorphisms (SNPs). We introduce ANDES (ANomaly DEtection using
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Summary statistics), a suite of methods that merge the power of unsupervised anomaly de-
tection algorithms with feature extraction techniques that model genomic autocovariation.
This framework identifies aberrant genomic regions potentially shaped by biological or
technical factors without requiring knowledge of the underlying genetic and demographic
factors shaping variation in a given study system. Specifically, ANDES assigns anomaly
scores in the form of p-values to individual genomic positions and then applies a signifi-
cance threshold to flag regions as anomalous. In an empirical analysis of whole-genome
sequences from Central European humans, we compare and characterize the regions identi-
fied by these methods, highlighting four that provide diverse information about autosomes
and distinct genomic regions. ANDES is implemented as an open-source package available
at https://github.com/riakanjilal/ANDES (accessed on 19 March 2024) and is broadly
applicable to genomic data from both model and non-model organisms.

2. Materials and Methods
In this section, we begin by describing how genomic variation was pre-processed and

summarized into a set of summary statistics. We then outline two approaches for extracting
features from these statistics: one based on computing moments of their distributions within
genomic windows and another using functional data analysis to model their genomic
autocovariation. Next, we detail the distance-based and machine learning models used
to detect genomic anomalies from these features, explain how statistical significance is
assigned to identify outliers, and conclude with a description of the steps taken in our
empirical analysis.

2.1. Data Preprocessing and Computation of Summary Statistics

Most contemporary genomic datasets consist of unphased genotype calls for numerous
SNPs across the genome. To enable broad applicability across study systems, we used
unphased multilocus genotypes (MLGs) derived from biallelic SNPs to assess patterns of
genetic variation [62–64]. Specifically, we represented each individual’s genotype at an SNP
as the number of alternate alleles and used these values to compute a set of eight summary
statistics within sliding windows of ℓ SNPs. These statistics captured the frequencies of
common MLGs and the moments of the distribution of pairwise allele-sharing differences
among individuals [65,66]. To characterize spatial patterns in these statistics, we applied
two complementary feature extraction strategies: (1) looking at moments summarizing
their distribution across w consecutive windows and (2) functional data analysis (FDA)
to model autocovariation. The resulting features were used as input to unsupervised
anomaly detection algorithms designed to identify genomic regions potentially influenced
by biological processes or technical artifacts.

We considered only genotypes at biallelic SNPs, coding the genotype of individual
i ∈ {1, 2, . . . , n} on autosome j ∈ {1, 2, . . . , 22} at SNP k ∈ {1, 2, . . . , Lj} as the observed
number of copies of the alternate allele gijk ∈ {0, 1, 2} and collected these genotypes in the
n × Lj-dimensional matrix:

Gj =


g1j1 g1j2 . . . g1jLj

g2j1 g2j2 . . . g2jLj
...

...
. . .

...
gnj1 gnj2 . . . gnjLj

. (1)

https://github.com/riakanjilal/ANDES
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For autosome j, we extracted a window of ℓ = 51 contiguous SNPs spanning SNP k to
k + ℓ− 1 to create the n × ℓ-dimensional submatrix:

Gjk =


g1jk g1j(k+1) . . . g1j(k+ℓ−1)

g2jk g2j(k+1) . . . g2j(k+ℓ−1)
...

...
. . .

...
gnjk gnj(k+1) . . . gnj(k+ℓ−1)

, (2)

with windows shifted by a stride of one SNP for all k ∈ {1, 2, . . . , Lj − ℓ+ 1}.
We next computed m = 8 summary statistics from Gjk that captured properties of the

distribution of MLG diversity across the n sampled individuals in the window of ℓ SNPs.
Specifically, for each of the n(n − 1)/2 distinct pairs of individuals i and i′ (rows of Gjk),
we calculated the Manhattan distance [67]:

d(i, i′) =
1
ℓ

k+ℓ−1

∑
t=k

|gijt − gi′ jt|, (3)

which quantified the difference between their MLG strings, scaled by the number of SNPs
in the window. We then summarized the distribution of these distances, {d(i, i′) : i, i′ =
1, 2, . . . , n and i < i′}, by computing the mean, variance, skewness, and kurtosis, denoted
as µjk, σ2

jk, γjk, and β jk, respectively. In addition, we computed the frequencies of the
four most common MLGs across the n individuals, denoted as f1,jk, f2,jk, f3,jk, and f4,jk,
respectively. We selected these summary statistics to capture distortions in MLG spectra
and moments of MLG similarity distributions, both of which have proven to be useful in
distinguishing between evolutionary events in supervised learning contexts [39,63]. These
statistics represent key properties of genomic variation while remaining agnostic to the
specific evolutionary processes generating them.

We collected these m summary statistics into the m = 8-dimensional column vector:

Sjk = [µjk, σ2
jk, γjk, β jk, f1,jk, f2,jk, f3,jk, f4,jk], (4)

and stacked these vectors as rows across the Lj − ℓ+ 1 windows of autosome j into the
(Lj − ℓ+ 1)× m-dimensional matrix:

Sj =
[
ST

j1, ST
j2, . . . , ST

j(Lj−ℓ+1)

]
, (5)

where superscript T denotes transpose.

2.2. Feature Generation from Summary Statistics

To extract features from the set of m summary statistics for autosome j, we selected a
stretch of w = 129 consecutive window locations spanning entries of Sj (Equation (4)) from
k to k + w − 1 to create the w × m-dimensional submatrix:

Sjk =
[
ST

jk, ST
j(k+1), . . . , ST

j(k+w−1)

]
, (6)

and considered all k ∈ {1, 2, . . . , Lj − ℓ− w + 2}, with computations shifted by a stride of
one window. We then generated features from Sjk (Equation (6)) using two strategies.

The first feature generation strategy was to compute moments for each of the m = 8
summary statistics to capture properties of their distribution across the w windows. For
each summary statistic, we computed four moments: mean, variance, skewness, and
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kurtosis. This resulted in a total of p = 4m = 32 features, which we collected in the
p-dimensional column vector:

XMoments
jk =

[
XMoments

jk1 , XMoments
jk2 , . . . , XMoments

jkp

]
,

where XMoments
jkt is the value of feature t ∈ {1, 2, . . . , p} summarizing diversity across

windows k to k + w − 1 on autosome j.
The second strategy was to employ FDA to approximate the functional form of each

summary statistic across the stretch of w windows using B = 10 cubic spline basis functions
(Equation (14)). We also evaluated the velocity and acceleration of each approximated
function using the first and second derivatives of the basis expansions, each represented
by B basis functions (see Section 3.1). We selected cubic splines over other basis functions
due to their smoothness, local control, numerical stability, and sparsity, which make them
ideal for modeling smooth functional data with complex local behavior [57]. We set B = 10
as a compromise between capturing the overall shape of each summary statistic and
maintaining computational tractability at a genome-wide scale. This procedure resulted in
a total of p = 3Bm = 240 features representing the basis expansion coefficients from the
original functions and their first and second derivatives for each summary statistic. These
features were collected in the p-dimensional column vector

XFDA
jk =

[
XFDA

jk1 , XFDA
jk2 , . . . , XFDA

jkp

]
,

where XFDA
jkt is the value of feature t ∈ {1, 2, . . . , p}, representing the contribution of a basis

function to explaining autocovariation patterns in diversity across windows k to k + w − 1
on autosome j.

For each strategy, we assembled the extracted features on autosome j in the
(Lj − ℓ− w + 2)× p-dimensional matrix:

XMethod
j =

[(
XMethod

j1
)T ,

(
XMethod

j2
)T , . . . ,

(
XMethod

j(Lj−ℓ−w+2)

)T
]
,

and combined the feature matrices across all 22 autosomes into a single N × p-dimensional
matrix:

XMethod =
[
XMethod

1 , XMethod
2 , . . . , XMethod

22

]
, (7)

where N = ∑22
j=1 Lj − 22(ℓ + w − 2) is the total number of observed window stretches.

The variable method indicated whether the features were derived from the moments or
FDA strategy.

2.3. Construction of Anomaly Detection Algorithms

We applied three anomaly detection algorithms to each of the two feature sets (see
Section 2.2), yielding six distinct techniques for outlier identification. Each algorithm took
as input the N × p-dimensional matrix XMethod (Equation (7)), where N is the number of
observations and p is the number of features, and output a set of anomaly scores. One
method, Mahalanobis distance (MD), computed scores directly as − log10(p-value) from
the input feature matrix. The other two methods, isolation forest (IF) and one-class support
vector machine (SVM), produced raw anomaly scores, which we then transformed into
− log10(p-value) by applying MD to their score distributions. We chose IF and SVM for
their complementary strengths: IF offers scalability and low computational cost in high
dimensions, while SVM is well-suited to detecting nonlinear structure in data [68,69].

IF identifies anomalies by constructing an ensemble of randomly partitioned isolation
trees and flagging observations with short average path lengths across these trees. Two
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parameters govern this process: the number of trees and the sub-sampling size used to
build each one. During tree construction, observations are recursively partitioned by
randomly selecting a feature and a split value. Because anomalous observations are both
rare and distinct, they tend to be isolated in fewer steps, resulting in shorter path lengths.
Thus, a low average path length across the forest indicates a high likelihood of being an
anomaly [68].

To elaborate, each isolation tree recursively divides the dataset until all observations
are isolated in terminal nodes (leaves). Assuming that all observations are distinct, a fully
grown tree will contain N external nodes and N − 1 internal nodes. For each observation,
the anomaly score is inversely related to the average number of edges traversed to isolate
it, aggregated across all trees in the forest. The shorter this path, the more likely it is that
the observation is anomalous.

In contrast, an SVM defines a decision boundary that separates typical from anoma-
lous observations by learning an affine function characterized by an intercept θ0 and a
p-dimensional coefficient vector θ. These coefficients represent the relative importance of
each feature in defining the boundary. To capture nonlinear relationships, the algorithm
applies a feature map ϕ : X → ϕ(X) that projects the data into a higher-dimensional space,
where it learns a linear decision boundary of the form {x | θ0 + θTϕ(x) = 0} [70,71]. In
this space, each observation X is assigned a label via sign(θ0 + θTϕ(X)), where sign(x)
equals 1 if x > 0, 0 if x = 0, and −1 if x < 0. This approach allows the SVM to distinguish
anomalous data points that deviate from the bulk of the distribution, even when these
deviations are subtle or nonlinear.

2.4. Identification of Anomalous Regions

Anomaly scores produced by the IF and SVM models were log-transformed to nor-
malize and increase the spread of their distributions. For each method, we computed
squared Mahalanobis distances across the N observations. For the IF and SVM methods,
each observation was represented by a single score, so the number of features used was
p = 1. In particular, for a given observation encoded as a p-dimensional column vector, the
squared Mahalanobis distance was defined as

D2 = (X − X)TC−1(X − X),

where X is the sample mean across observations and C is the p × p sample covariance
matrix [72].

These distances follow a Hotelling’s T-squared distribution [73,74], which can be
transformed to an F distribution with degrees of freedom p and N − p using the relation [75]

Fp,N−p =
N − p

p(N − 1)
D2. (8)

We used this expression to compute p-values for each observation.
However, quantile–quantile plots revealed inflation in the distribution of p-values

relative to the expected uniform distribution [76]. To correct this issue, we applied a lin-
ear regression approach [77] to estimate an inflation factor λ. Specifically, we fit a linear
regression model through the origin to predict the χ2 quantile function computed for our
unadjusted p-values from the χ2 quantiles derived from a set of uniform probabilities.
We then divided the uncorrected χ2 quantiles by λ and converted these adjusted values
into p-values. To account for multiple testing, we applied a Bonferroni correction [78]
with a significance threshold of α = 0.05/106 = 5 × 10−8, where the denominator ac-
counts for approximately one million independent loci in the human genome, as is widely
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used in association studies [79]. Observations with p-values below this threshold were
considered outliers.

To visualize genomic variation at the MHC locus, we generated images of MLG
diversity at outlier windows associated with HLA genes. To plot the image of MLG diversity
for a given outlier data point, we examined the consecutive ℓ+ w − 1 SNPs that defined
the data point and collected the genotypes into the n × (w + ℓ− 1)-dimensional matrix:

G =


g11 g12 . . . g1(w+ℓ−1)

g21 g22 . . . g2(w+ℓ−1)
...

...
. . .

...
gn1 gn2 . . . gn(w+ℓ−1)

, (9)

where gij ∈ {0, 1, 2} denotes the number of minor alleles for individual i ∈ {1, 2, . . . , n}
at SNP j ∈ {1, 2, . . . , w + ℓ − 1}. From this matrix, we extracted ℓ-SNP windows from
positions k to k + ℓ− 1 and generated submatrices for all k ∈ {1, 2, . . . , w}, with a stride of
one SNP, which we denote as

Gk =


g1k g1(k+1) . . . g1(k+ℓ−1)

g2k g2(k+1) . . . g2(k+ℓ−1)
...

...
. . .

...
gnk gn(k+1) . . . gn(k+ℓ−1)

. (10)

We sorted the rows of each Gk in ascending order by their L1-norm and denoted the sorted
matrix as

GSort
k =


gSort

1k gSort
1(k+1) . . . gSort

1(k+ℓ−1)

gSort
2k gSort

2(k+1) . . . gSort
2(k+ℓ−1)

...
...

. . .
...

gSort
nk gSort

n(k+1) . . . gSort
n(k+ℓ−1)

. (11)

Let Ij(k) ∈ {0, 1} be an indicator variable denoting whether SNP j is present in GSort
k and

let ψj(k) ∈ {1, 2, . . . , ℓ} denote its corresponding column index if present. We then defined
a n × (w + ℓ− 1) data matrix of the form

X =


x11 x12 . . . x1(w+ℓ−1)

x21 x22 . . . x2(w+ℓ−1)
...

...
. . .

...
xn1 xn2 . . . xn(w+ℓ−1)

, (12)

where

xij =
∑w

k=1 gSort
iψj(k)

· Ij(k)

∑w
k=1 Ij(k)

(13)

is the mean allele count for individual i across all windows that include SNP j. This final
matrix X was used to generate images of local MLG diversity at outlier regions.

2.5. Application of Methods to Empirical Data

We applied ANDES to autosomal genotype data from 99 individuals of Central Eu-
ropean ancestry (CEU) from the 1000 Genomes Project [80]. First, we generated MLGs
from biallelic SNP data using the allel module from the scikit-allel package [81] and
computed summary statistics using the stat and special.distance modules from the
SciPy library [82] in Python [83]. Next, we computed moment and FDA features. Moment
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features were calculated in Python using the stat module of SciPy [82,83], whereas FDA
features were calculated in R [84] using the methodology outlined by [85], implemented via
the fda package [86]. For the MD-M and MD-F methods, anomaly scores were computed
directly from moment and FDA features using the mahalanobis function in the MASS pack-
age [87] of R [84]. For IF-M and IF-F, we trained isolation forests with default parameters
using the IsolationForest function in the Scikit-Learn library [88] and then computed
anomaly scores for all observations using the decision_function function. These scores
were transformed into − log10(p-value) using the mahalanobis function from the MASS
package [87].

Similarly, for SVM-M and SVM-F, we trained one-class SVMs using the OneClassSVM
function from Scikit-Learn library [88] in Python [83], with parameters kernel= ‘rbf’
and gamma = ‘auto’. Due to the poor scalability of SVMs with large sample sizes, we em-
ployed mini-batch training and systematic sampling. Because SVM models scale poorly (at
least quadratically) with the number of input samples, we selected 18 large mini-batches—
distributed across 22 chromosomes—to maximize batch size while ensuring that model
training remained computationally tractable. Specifically, we partitioned each feature
matrix XMethod into m = 18 non-overlapping subsets through systematic sampling within
each subset. To mitigate correlations between observations across subsets, we started
at the ith observation, where i ∈ {1, 2, . . . , m}, and then selected every 10th observa-
tion thereafter, yielding 18 mini-batches for training the SVM. After model training, we
used the score_sample function to compute anomaly scores, which were transformed
to − log10(p-values) using the mahalanobis function in R [84]. From the six methods im-
plemented in ANDES, we selected four (MD-M, MD-F, IF-M, and IF-F) for downstream
analyses based on their tendency to produce orthogonal outlier patterns.

To evaluate associations of outliers with biologically-relevant genomic regions, we
intersected locations of the N observations with annotations from the “RefSeq”, “known-
Gene”, and “gc5Base” tables of the hg19 reference genome via the UCSC Genome
Browser [89]. These annotations were used to classify outliers as intergenic or genic,
and further assign genic regions to exons, introns, 5′UTRs, and 3′UTRs, considering only
the longest transcript per gene. Similarly, we also investigated associations of outliers
with technical artifacts by intersecting their locations with repetitive regions from the
“fa.masked” table and extracting alignability and mappability scores from the CRG 100mer
track [90] from the UCSC Genome Browser [89]. Regions with CRG scores ≤ 0.9 were
considered low-confidence due to poor alignability or mappability [91].

2.6. Statistical Analyses

All statistical analyses were performed using the stat module from the SciPy li-
brary [82] in Python. Multinomial tests were used to compare observed distributions of
outlier windows to those expected under a uniform distribution and evaluate whether
observed outlier windows were uniformly distributed across 22 autosomes and four re-
gions of protein-coding genes (exons, introns, 5′UTRs, and 3′UTRs). Two-tailed binomial
tests were employed to compare observed and expected numbers of outlier windows and
evaluate their over- and underrepresentations on individual chromosomes, in intergenic
regions, in each of the four regions of protein-coding genes, in regions with low GC content,
in repetitive regions, and in regions with low CRG (mappability and alignability) scores.
For each binomial test, we set the number of successes x as the number of observed outlier
windows in the region of interest, the number of trials n as the total number of outlier
windows, and the probability of success p as the expected proportion of outlier windows
in that region.
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Because linkage disequilibrium introduces correlations among adjacent genomic win-
dows, the assumption of statistical independence required for these tests may be violated,
potentially inflating significance values. To address this issue, we performed 104 permu-
tations for each test: shuffling chromosome labels for chromosome-wise analyses and
region labels for region-wise analyses. These permutations produced a null distribution
of p-values for each anomaly detection method. For each original test, we calculated the
fraction of permuted p-values that was smaller than the observed p-value, referring to this
fraction as the permutation p-value. We considered results significant if this value was
below a defined threshold α. We set α = 0.05 for multinomial tests. For binomial tests, we
utilized the Bonferroni-corrected thresholds of α = 0.05/22 = 2.27 × 10−3 for chromosome-
wise analyses, α = 0.05/4 = 1.25 × 10−2 for protein-coding region-wise analyses with four
labels, and α = 0.05/2 = 2.50 × 10−2 for all genomic region-wise analyses with two labels.

2.7. Gene Ontology Enrichment Analyses

We performed Gene Ontology (GO) enrichment analyses to assess functional en-
richment in genes with high anomaly scores using the web-based GOrilla tool at https:
//cbl-gorilla.cs.technion.ac.il/ [92,93] (accessed on 16 February 2023). In particular, genes
were ranked by anomaly score for each of the four methods (Supplementary Tables S11–S14)
and then used as input to GOrilla, which searches for enriched GO terms that appear
densely at the top of a ranked list of genes [92,93]. For each run, we chose “Homo sapiens”
as the organism, set the running mode to “Single ranked list of genes”, and selected all
ontologies (process, function, and component). To account for multiple testing, we only
considered terms as significantly enriched if their false discovery rate q-value < 0.05.

3. Results
3.1. Design of Anomaly Detection Algorithms

To detect regions of the genome with unusual patterns of variation, we began by
computing eight summary statistics from MLGs across sliding windows of ℓ SNPs. These
statistics included the frequencies of the four most common MLGs, as well as the mean
(central tendency), variance (spread), skewness (asymmetry), and kurtosis (tail weight) of
pairwise allele-sharing differences among individuals [65,66]. To capture spatial structure,
we analyzed how these statistics varied across w consecutive windows, centered at each
focal window.

We extracted features from these statistics using two strategies. First, for each of
the eight statistics, we computed its mean, variance, skewness, and kurtosis across the
w windows, yielding 32 moment-based features. Second, we used FDA to model the
spatial patterns of each statistic. Specifically, we treated the statistic as a function of
genomic position and approximated it using a linear combination of B = 10 cubic spline
basis functions:

f (t) ≈
B

∑
b=1

cb ϕb(t), (14)

where ϕb(t) is the bth univariate basis function and cb is the associated bth basis coefficient
that provides the degree that ϕb(t) contributes to f (t). To enrich this representation, we
also included coefficients from the first and second derivatives of each function, capturing
the local “velocity” and “acceleration” of change. This yielded 3B features per statistic or
240 total FDA-based features. All features were assigned to the center position of their
corresponding w-window stretch.

To identify anomalous regions, we applied three unsupervised anomaly detection
algorithms to each of the two feature sets, generating six distinct methods (Figure 1). Briefly,
MLGs were used to compute eight summary statistics, from which the two sets of features

https://cbl-gorilla.cs.technion.ac.il/
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were extracted to implement anomaly detection. Each feature set was then analyzed using
three algorithms, yielding anomaly scores that we transformed into p-values (see Section 2).
We considered both distance-based [94] and machine learning [68,95] approaches. For the
distance-based approach, we calculated Mahalanobis distances (MDs) [72,96] across the
full set of features for all genomic regions and derived p-values from these distances. We
refer to these methods as MD-M and MD-F, denoting MD-based anomaly detection applied
to moment and FDA features, respectively. For the machine learning-based approaches, we
used two widely adopted algorithms: isolation forest (IF) [68] and one-class support vector
machine (SVM) [95]. Both generate anomaly scores, which we converted to p-values to
allow for consistent thresholding across all methods. We refer to the IF-based methods using
moment and FDA features as IF-M and IF-F, respectively, and the SVM-based methods as
SVM-M and SVM-F.

Summary statistics (8)

Anomaly 
scores 

MD-M IF-M SVM-M MD-F IF-F SVM-F

MLGs

Moment features (32)

SVMIFMD

FDA features (240)

SVMIFMD

Anomaly 
scores 

Anomaly 
scores 

Anomaly 
scores 

Anomaly 
scores 

Anomaly 
scores 

Figure 1. Schematic overview of the six ANDES methods for anomaly detection. MLGs were used to
compute summary statistics, which were then transformed into sets of moment and FDA features.
Each feature set was analyzed using three anomaly detection algorithms, yielding six distinct sets of
anomaly scores.

3.2. Comparison of Anomaly Detection Methods

As a proof of concept, we applied ANDES to autosomal genotype calls from 99 indi-
viduals of Central European ancestry (CEU) from the 1000 Genomes Project dataset [80].
We considered only biallelic SNPs and encoded genotypes as counts (zero, one, or two) of
alternate alleles. Within each ℓ = 51 SNP window, MLGs were formed as strings of these
values and used to compute summary statistics, which then served as the basis for feature
construction and input to ANDES.

To assess how the six ANDES methods differed in practice, we compared overlap
among the genomic windows flagged as significant outliers (Figure 2). We found that
outlier windows detected by methods based on moment features were generally not
recapitulated by those based on FDA features, and vice versa. Among methods using
the same feature type, IF-based methods often detected distinct windows compared to
MD- or SVM-based approaches. In contrast, MD and SVM tended to identify similar sets
of outliers. Based on these observations, we selected MD-M, MD-F, IF-M, and IF-F for
further analyses due to their relatively orthogonal behavior and potential to capture distinct
genomic signatures. Using a genome-wide significance threshold of α = 5 × 10−8 (see
Section 2), these four methods detected 8291 (MD-M), 11,808 (IF-M), 17,468 (MD-F), and
13,590 (IF-F) outlier windows.
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MD-M

IF-M

SVM-M

MD-F

IF-F

SVM-F

MD-M IF-M SVM-M MD-F IF-F SVM-FMD-M IF-M SVM-M MD-F IF-F SVM-F

Figure 2. Heatmaps showing the overlap of significant outlier windows across the six ANDES
methods. Each cell indicates the fraction of outlier windows identified by one method (row i)
that were also detected by another method (column j), producing an asymmetric matrix. Higher
values reflect greater agreement between methods, helping to visualize their relative similarity
or distinctiveness.

We next visualized the genome-wide distributions of anomaly scores from each of the
four selected methods (Supplementary Figure S1). All four methods produced significant
peaks across the genome, with sharper and more defined peaks for the MD-based methods.
Consistent with this observation, there were fewer peaks for MD-based methods, with
totals of 777, 8470, 792, and 10,560 peaks for the MD-M, IF-M, MD-F, and IF-F methods,
respectively. Notably, all four methods harbored a high density of peaks on chromosome
6 (Figure 3A), with MD-M displaying one particularly large cluster of peaks at the major
histocompatibility complex (MHC) locus that is thought to have undergone natural selec-
tion in humans [97,98]. Zooming into this region, the four methods shared a number of
isolated peaks (Figure 3B), with several corresponding to the human leukocyte antigen
(HLA) genes previously associated with balancing selection, including HLA-B, HLA-DRB1,
HLA-DRB5, HLA-DPA1, HLA-DPB1, and HLA-DOB [99–101].

To examine these outlier signals more closely, we generated images of MLG diversity
for top outlier windows near HLA genes (Figure 4, see Section 2). These plots revealed
distinctive patterns of reduced diversity. In particular, the window flagged by MD-M at
the HLA-F-AS1 gene was characterized by high frequencies of heterozygous genotypes
(Figure 4A), while the windows flagged by IF-M at the HLA-DPA1 gene and IF-F at the
HLA-DPB1 gene both displayed intermediate frequencies of homozygous major alleles and
heterozygous genotypes that were accompanied by low frequencies of homozygous minor
alleles (Figure 4B,C). Such patterns may reflect past balancing selection, which can maintain
genetic diversity by favoring heterozygosity or preserving multiple alleles at a locus.
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MD-M MD-M

IF-M IF-M

A B

MD-F MD-F

IF-F IF-F

Figure 3. Manhattan plots of anomaly scores for (A) chromosome 6 and (B) the MHC region on
chromosome 6 for the MD-M, IF-M, MD-F, and IF-F methods. The x-axis denotes the center positions
of windows, the horizontal red line marks the genome-wide significance threshold (α = 5 × 10−8),
and orange crosses indicate peaks associated with specific labeled genes.

Coordinate: Chr-6, Pos-29706691, Gene – HLA-F-AS1 Coordinate: Chr-6, Pos-33034956, Gene – HLA-DPA1 Coordinate: Chr-6, Pos-33053942, Gene – HLA-DPB1

C

M
ea

n 
of

 M
LG

s

BA

SNPsSNPs SNPs

Figure 4. Images of MLG diversity of top outlier windows associated with HLA genes for (A) MD-M,
(B) IF-M, and (C) IF-F. MD-F did not identify any HLA-associated outliers. Each image displays mean
values of sorted genotype matrices (GSort

k ; see Section 2), with rows representing MLGs and columns
representing SNPs across all windows k ∈ {1, 2, . . . , w}. Pixel values range from zero (darkest,
homozygous major allele) to two (brightest, homozygous minor allele), with intermediate shades
indicating high frequencies of heterozygous genotypes. MLGs are sorted top to bottom by mean
genotype value, so rows near the top generally have more homozygous major alleles. “Coordinate”
labels indicate the chromosome, position, and gene associated with each outlier window.



Genes 2025, 16, 710 13 of 20

3.3. Characterization of Anomalous Regions

The goal of ANDES was to identify anomalous regions affected by biological phe-
nomena or technical artifacts. Because such regions were expected to be non-uniformly
distributed across the genome, we first compared the observed numbers of outlier win-
dows on each chromosome to those expected under a uniform distribution. For all four
selected methods, outlier windows deviated significantly from uniformity, with consistent
overrepresentations on chromosome 4 (Supplementary Table S1). Similarly, we observed
significant overrepresentations of outlier windows in intergenic regions for all methods
(Supplementary Table S2). To investigate the biological relevance of outlier windows, we
also compared their distributions across exons, introns, and 5′ and 3′ untranslated regions
(UTRs) of protein-coding genes. Consistent with our other findings, outlier windows were
non-uniformly distributed across genic regions, with overrepresentations in introns for
three of the methods (Supplementary Table S3). Outlier windows were also enriched in
regions with low GC content for all methods (Supplementary Table S4), repetitive regions
for all methods (Supplementary Table S5), and low CRG alignability and mappability scores
for three methods (Supplementary Table S6). Filtering regions with repeats and low CRG
scores did not substantially alter genomic region-wise distributions or low GC content of
resulting outlier windows (Supplementary Tables S7–S10; see Section 2).

To gain insight into the biological processes associated with outlier genes, we per-
formed Gene Ontology (GO) enrichment analyses for each method using ranked lists of
protein-coding genes, where rankings were based on the minimum p-value across asso-
ciated outlier windows (Supplementary Tables S11–S14; see Section 2). These analyses
uncovered many of the same enriched GO terms across all four methods. Within the
cellular component domain, the common terms were “neuron part”, “cell projection”,
“synapse part”, “plasma membrane”, and “membrane” (Supplementary Tables S15–S18).
For the biological processes domain, “cell adhesion” and “biological adhesion” were
consistently enriched (Supplementary Tables S19–S22). The molecular function domain
yielded a broader set of shared terms, including “ion binding”, “ion transmembrane trans-
porter activity”, “ion channel activity”, “channel activity”, “substrate-specific channel
activity”, “gated channel activity”, “cation channel activity”, “passive transmembrane
transporter activity”, “metal ion transmembrane transporter activity”, “inorganic molec-
ular entity transmembrane transporter activity”, “ATP-dependent microtubule motor
activity, minus-end-directed”, “adenylate cyclase inhibiting G protein-coupled glutamate
receptor activity”, “G protein-coupled glutamate receptor activity”, “ATPase activity, cou-
pled”, “cell adhesion molecule binding”, “cyclic-nucleotide phosphodiesterase activity”,
“3’,5’-cyclic-nucleotide phosphodiesterase activity”, “ATP binding”, and “actin binding”
(Supplementary Tables S23–S26). Taken together, these results suggest that top-ranking
outlier genes identified by ANDES are often involved in neuronal processes, particularly
those related to nervous system development and neuronal signaling.

While the enriched GO categories were broadly consistent, the identities of top-ranking
genes varied among methods. The MD-M method ranked XIRP2 highest, which encodes an
actin-binding protein that stabilizes actin filaments. The IF-M method identified DNAH9,
a gene encoding a dynein heavy chain involved in the movement of cilia and flagella.
For the MD-F method, the top gene was SEMA6C, which encodes a signaling molecule
implicated in the cellular response following central nervous system injury. The IF-F
method prioritized VAV2, a guanine nucleotide exchange factor for Rho GTPases that
regulates actin cytoskeleton dynamics. Among these genes, DNAH9 has shown evidence
of positive selection in several non-human mammals [102–107], while VAV2 has been
identified as a target of selection in the Yoruba population [108]. Despite variation in the
specific genes flagged by each method, correlations in gene rankings aligned with broader
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patterns observed across methods (Figure 2). The strongest correlations occurred between
methods using the same set of features (ρ = 0.68 for MD-M and IF-M; ρ = 0.63 for MD-F
and IF-F), followed by those using the same anomaly detection algorithm (ρ = 0.52 for
MD-M and MD-F; ρ = 0.55 for IF-M and IF-F), and, lastly, by those using different features
and algorithms (ρ = 0.51 for MD-M and IF-F; ρ = 0.50 for MD-F and IF-M).

4. Discussion
In this study, we presented ANDES, a suite of anomaly detection methods for identify-

ing genomic regions that exhibit aberrant patterns of genetic variation due to biological
or technical factors. ANDES detects such regions using unsupervised anomaly detection
models trained on statistical features extracted from summaries of genetic variation. Impor-
tantly, ANDES explicitly accounts for expected autocovariation in genetic diversity caused
by linkage disequilibrium by incorporating FDA techniques into its feature extraction
process. Because it operates on MLGs and does not rely on assumptions about underlying
evolutionary processes, ANDES is broadly applicable across both model and non-model
systems for detecting anomalous genomic regions, regardless of their source.

Within the ANDES framework, we implemented both distance-based (MD) and ma-
chine learning-based (IF and SVM) anomaly detection algorithms, each offering distinct
advantages. Distance-based approaches are conceptually straightforward and computa-
tionally efficient, making them suitable for large datasets. In particular, the scale-invariance
property of MD ensures that features contribute proportionally, even if they differ in scale,
and this approach also effectively incorporates correlations among features [109,110]. Addi-
tionally, MD enables the direct computation of p-values, enabling the uniform application
of significance thresholds for anomaly detection. Notably, most anomaly scores generated
by MD-F yielded p-values close to one, suggesting that FDA effectively captures local ge-
nomic trends by modeling expected autocovariation under linkage disequilibrium, which
may explain its identification of fewer peaks than MD-M in our empirical analysis. In
contrast, machine learning algorithms were selected for their performance with unlabeled
data and adaptability to complex, nonlinear patterns. IF, in particular, scales well to large
datasets and can efficiently isolate anomalies, making it more computationally tractable
than an SVM. In light of these findings, we recommend MD-F as the default method when
applying ANDES due to its ability to capture genomic correlations induced by linkage
disequilibrium, computational efficiency, and capacity to directly compute p-values with a
distribution appropriately skewed toward non-significant values (i.e., non-outliers).

The application of ANDES to European human genomes uncovered numerous anoma-
lous peaks within the MHC region (Figure 3B), a locus known to be affected by both
biological and technical factors. Specifically, the MHC locus harbors many genes that
underwent balancing selection in humans [99–101], and our results corroborate this, iden-
tifying several peaks in this region (Figure 4). These signals may reflect the persistence
of multiple alleles maintained by balancing selection, resulting in elevated heterozygos-
ity [111]. The MHC locus is also ridden with structural variation, complicating genome
assembly [112] and potentially introducing variant calling, genotyping, and phasing errors.
Thus, the density of peaks in this region likely results from a combination of biological
processes and technical artifacts, both of which are important to consider in evolutionary
and biomedical studies.

Our characterization of anomalous regions revealed that outlier windows were non-
uniformly distributed across the genome, with overreprentations on specific autosomes,
in intergenic relative to genic regions, in introns compared to other regions of protein-
coding genes, and in regions with low GC content, repetitive elements, or poor mappability
(Supplementary Tables S1 and S6). Removing repetitive and low mappability regions did
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not substantially alter these patterns (Supplementary Tables S7–S10), suggesting that these
technical factors did not drive the overall distributions of outlier windows. Prior work
suggests that structural variation, which may contribute to both biological signals and
technical artifacts, can significantly affect gene function through regulatory mechanisms and
adaptation [113]. Moreover, adaptive signals have been shown to correlate more strongly
with regulatory than with protein-coding regions [114], consistent with our observation
that outlier regions are enriched in noncoding sequences.

Additionally, GO enrichment analyses of protein-coding genes ranked by anomaly
scores uncovered enrichments of functions related to neuronal development and signaling
(Supplementary Tables S15–S26). These enrichments likely reflect both biological relevance
and model sensitivity. Neuronal genes are often regulated by complex networks of en-
hancers and other elements [115], which can generate intricate patterns of variation. These
loci may also be subject to recent selective pressures linked to behavioral, cognitive, or
sensory traits in humans. Because ANDES operates without assuming specific evolutionary
mechanisms, it may be particularly sensitive to detecting such complex regulatory architec-
tures. Further, though gene rankings were highly correlated among methods, top-ranked
genes varied, with two previously identified as targets of positive selection [102–108].
Collectively, these results showcase the ability of ANDES to pinpoint anomalous genomic
regions associated with diverse biological phenomena or technical artifacts, providing a
valuable tool for dissecting the evolutionary processes underlying genomic diversity.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes16060710/s1: Figure S1: Manhattan plots of anomaly scores
computed using (A) MD-M, (B) IF-M, (C) MD-F, and (D) IF-F; Table S1: Observed and expected
outlier windows across autosomes for MD-M, IF-M, MD-F, and IF-F; Figure S2: Plots depicting top
peaks identified by (A) MD-M, (B) IF-M, (C) MD-F, and (D) IF-F; Table S2: Observed and expected
outlier windows in intergenic regions for MD-M, IF-M, MD-F, and IF-F; Table S3: Observed and
expected outlier windows across four regions of protein-coding genes for MD-M, IF-M, MD-F, and IF-
F; Table S4: Observed and expected outlier windows in genomic regions with low GC content (<50%)
for MD-M, IF-M, MD-F, and IF-F; Table S5: Observed and expected outlier windows in repetitive
regions for MD-M, IF-M, MD-F, and IF-F; Table S6: Observed and expected outlier windows in
genomic regions with low CRG scores (≤0.9) for MD-M, IF-M, MD-F, and IF-F; Table S7: Observed
and expected outlier windows across autosomes after removing repetitive regions and regions with
low CRG scores (≤0.9) for MD-M, IF-M, MD-F, and IF-F; Table S8: Observed and expected outlier
windows in intergenic regions after removing repetitive regions and regions with low CRG scores
(≤0.9) for MD-M, IF-M, MD-F, and IF-F; Table S9: Observed and expected outlier windows across
four regions of protein-coding genes after removing repetitive regions and regions with low CRG
scores (≤0.9) for MD-M, IF-M, MD-F, and IF-F; Table S10: Observed and expected outlier windows
with low GC content (<50%) after removing repetitive regions and regions with low CRG scores
(≤0.9) for MD-M, IF-M, MD-F, and IF-F; Tables S11–S14: Ranked lists of all protein-coding genes
utilized as input for the GO analysis for MD-M, IF-M, MD-F, and IF-F, respectively; Tables S15–S18:
Identification of statistically significant and enriched GO terms through GO component analysis using
ranked lists of all protein-coding genes for MD-M, IF-M, MD-F, and IF-F, respectively; Tables S19–S22:
Identification of statistically significant and enriched GO terms through GO process analysis using a
ranked list of all protein-coding genes for MD-M, IF-M, MD-F, and IF-F, respectively; Tables S23–S26:
Identification of statistically significant and enriched GO terms through GO function analysis using a
ranked list of all protein-coding genes for MD-M, IF-M, MD-F, and IF-F, respectively.
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