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ABSTRACT

Alternative splicing of messenger RNA can generate
an array of mature transcripts, but it is not clear how
many go on to produce functionally relevant protein
isoforms. There is only limited evidence for alterna-
tive proteins in proteomics analyses and data from
population genetic variation studies indicate that
most alternative exons are evolving neutrally. Deter-
mining which transcripts produce biologically impor-
tant isoforms is key to understanding isoform func-
tion and to interpreting the real impact of somatic
mutations and germline variations. Here we have de-
veloped a method, TRIFID, to classify the functional
importance of splice isoforms. TRIFID was trained
on isoforms detected in large-scale proteomics anal-
yses and distinguishes these biologically important
splice isoforms with high confidence. Isoforms pre-
dicted as functionally important by the algorithm had
measurable cross species conservation and signifi-
cantly fewer broken functional domains. Additionally,
exons that code for these functionally important pro-
tein isoforms are under purifying selection, while ex-
ons from low scoring transcripts largely appear to
be evolving neutrally. TRIFID has been developed for
the human genome, but it could in principle be ap-
plied to other well-annotated species. We believe that
this method will generate valuable insights into the
cellular importance of alternative splicing.

INTRODUCTION

Alternative splicing (AS) is estimated to occur in almost all
multi-exon human genes (1) and it has been suggested that
alternative splicing of messenger RNA is a major source
of cellular protein diversity (2,3). The human reference
databases (4–6) contain >100 000 alternative transcripts
and even greater numbers of alternative transcripts have
been reported in large-scale experiments (7,8). As a result,
the number of annotated alternative coding transcripts in

the human genome is likely to grow considerably in the com-
ing years.

It is theoretically possible that all predicted coding tran-
scripts are translated into functional proteins. Alternative
splicing can generate many different transcripts, and many
of the alternative splice events would produce substantially
different proteins. These large differences may allow alter-
native isoforms to have a diverse range of cellular effects. Al-
ternative isoforms have been invoked to explain differences
between tissues (9) and even between species (10,11).

There are examples of differences of function between
protein splice isoforms both in vivo and in vitro (12,13) and
alternative proteins have been shown to bind different tar-
gets in vitro (14). While there is little doubt that alternative
isoforms would behave differently if they were present in
cells, it is still not clear how many alternative transcripts are
actually translated into stable functioning proteins.

It ought to be possible to validate most alternative iso-
forms through mass spectrometry-based proteomics exper-
iments, as long as alternative transcripts are translated into
protein products in sufficient quantities. However, there is
considerably less evidence for alternatively spliced protein
products in proteomics experiments than would be expected
(15,16), and in fact, there is much less evidence for alterna-
tive isoforms at the protein level than there is for alterna-
tive transcripts in transcriptomics studies (17). Instead, for
a large majority of coding genes, proteomics data supports
a single ‘principal’ isoform regardless of cell type (15,18).

The relative importance of alternative protein isoforms
has become a controversial issue (17,19–21). While a num-
ber of alternative isoforms do appear to have tissue specific
functional roles (22), a growing number of papers suggest
that alternative splicing at the transcript level may be noisy.
Transcripts sampled from simulated complementary DNA
libraries (23) and variation patterns in alternative splice sites
(24) strongly suggest that the majority of annotated splice
variants are the result of noise from the splicing machinery,
while accumulated transcriptomics evidence suggests that
many of the transcripts produced by alternative transcrip-
tion initiation (25) and alternative polyadenylation (26) are
the result of molecular errors. Analysis of cross-species con-
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servation (16,22) and human genetic variation (19,27) sup-
port the possibility that most alternative exons are unlikely
to be under purifying selective pressure.

There are fewer alternative isoforms detected in pro-
teomics experiments than would be expected from tran-
scription levels (16), even when technical issues are taken
into account (28). It is not clear why so few alternative iso-
forms are detected. Missing alternative isoforms might, for
example, be expressed in low abundance, or in limited tis-
sues or may have short half-lives post-translation (29–30).
Some transcripts may not be translated and some may also
play roles at the transcript level rather than at the protein
level (31).

The relative importance of individual alternative variants
is an issue that is becoming ever more pertinent as the num-
ber of annotated alternative transcripts grows. The most re-
cent GENCODE reference proteome (release v37, Ensembl
103) (5,32) officially recognises 19 951 protein-coding genes
and 86 054 coding transcripts. How many of these tran-
scripts code for functional proteins is still an open question.

There are vast numbers of both annotated and unanno-
tated alternative transcripts in eukaryotic species, yet al-
most nothing is known about the cellular function of their
protein isoforms. Although individual research groups have
recorded functional differences between splice isoforms,
and many of these are listed in collations of isoform func-
tion (12,13), this is only scratching at the surface, and leaves
plenty of room for computational prediction methods.

Attempts to predict functional roles for protein isoforms
can be split into three categories. The first category of pre-
dictor simply attempts to predict the functional role of
all splice isoforms. Alternative isoform function predictors
have gained in popularity in recent years, and a number of
tools for estimating function roles have been developed (33–
39). These methods assume a priori that all alternative iso-
forms have functional roles. They have to negotiate one im-
portant hurdle: there is no real training data since very few
alternative isoforms have known functions.

The second category of predictor attempts to predict a
main functional isoform. The general consensus here is
that many protein-coding genes have a single main pro-
tein isoform (15,40,41), though different approaches have
been taken to predict this main isoform. Approaches based
principally on transcript level information (40,41) turn out
to not correlate well at the protein level (15,19). APPRIS
(18) predicts principal isoforms based on the preservation
of protein features and cross-species conservation. When
we compared principal isoforms selected by APPRIS with
the isoforms with most peptide evidence and with unique
CCDS (42) variants (consensus CDS sequences based on
cDNA evidence whose coding sequences are agreed on by
distinct groups of manual curators), the agreement was
overwhelming, over 99.5% (15). Such unanimity between
three orthogonal methods demonstrated two clear facts:
firstly, a large majority of coding genes have a single main
protein isoform and secondly that APPRIS is the best pre-
dictor of this isoform.

The final class of function prediction methods predicts
the relative functional importance of alternative splice iso-
forms. Even though evidence from human population varia-
tion studies suggests that most alternative exons are not un-

der selective pressure (19,27), proteomics experiments and
conservation data show that a substantial number of genes
are likely to have more than one functionally important pro-
tein isoform. The prediction of biological relevance faces
similar obstacles to the prediction of isoform function. The
biggest difficulty in the prediction of whether a protein iso-
form is functionally important is that there is no negative
training set; it is almost impossible to demonstrate that al-
ternative isoforms do not have some function.

To date, just one method has been developed to predict
the functional relevance of alternative isoforms, PULSE
(43). PULSE got around the lack of a negative training set
by using a semi-supervised training algorithm and train-
ing only on positive examples. Unfortunately, PULSE had
a number of flaws. The main problem was that the 145
positive instances used to train the algorithm (44) were
based loosely on a set of ‘named’ alternative splice isoforms
from UniProtKB (4). That isoforms are named in UniPro-
tKB does not imply that they have cellular functions. In-
deed, some were clearly not positive cases; PULSE included
translations from 18 nonsense mediated decay transcripts in
its positive set. PULSE positive instances were supposed to
differ from the display isoforms by a single exon skipping
event, though several are actually generated by alternative
poly-adenylation events and are mistakenly tagged as frame
shifts.

Here, we have developed a random forest (RF)-based pre-
dictor of splice isoform functional importance based on un-
biased data from large-scale mass spectrometry proteomics
experiments. TRIFID uses protein isoforms detected in pro-
teomics experiments as a proxy for functional importance at
the protein level and is able to distinguish protein isoforms
that are under selective pressure from those that are not.

MATERIALS AND METHODS

Defining the training sets

Machine learning methods require positive and negative
sets in order to train a model. One of the most difficult steps
in designing a method to predict the functional importance
of protein isoforms is defining the training sets (43). Pos-
itive training cases are hard to find because there are rela-
tively few alternative isoforms with known cellular function
(45). Negative training sets are even harder to define be-
cause there are no known cases of non-functional isoforms
and it is almost impossible to demonstrate that an alterna-
tive isoform has no cellular function at all.

Although it would have been possible to generate a posi-
tive training set of likely functional alternative isoforms by
manual curation of scientific papers, the equivalent negative
training set does not exist. The solution to the problem was
to use proteomics evidence to seed both the positive and
negative sets.

Using peptide evidence as a proxy for functional impor-
tance is based on the reasoning that gene products detected
in proteomics experiments are highly likely to be function-
ally important Almost all exons with peptide evidence are
from principal isoforms (15) and principal isoforms as a
whole are under purifying selection (19), while exons from
likely non-coding genes that are not detected in proteomics
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experiments appear to be evolving neutrally (46). Few al-
ternative exons are detected in proteomics experiments and
most are not under purifying selection (19). There are ex-
ceptions to the rule though: we have shown that SINE Alu
exons are detected in proteomics experiments, but there is
no evidence to suggest that these SINE Alu insertions have
any functional role in the cell (47).

A negative training set can also be proposed, but only
for those genes that have good peptide coverage. The logic
is that any isoform from these genes that is not detected,
is either harder to detect for technical reasons, or is not
expressed in sufficient quantity to be detected at by mass
spectrometry. There are two provisos that make this work.
Firstly, the proteomics data must cover as many tissues as
possible, because alternative protein isoforms are often tis-
sue specific (22), and preferably should have replicate exper-
iments to avoid missing peptides. Secondly, isoforms that
are harder to detect for technical reasons, should not be in-
cluded in the negative set.

The use of the word ‘negative’ in this paper should not
be taken to imply that these non-detected alternative iso-
forms have no function. They may be translated in isolated
tissues or under certain conditions or developmental stages.
They might be translated, but have a short half-life. They
may be translated in undetectable quantities. Or they may
not be translated at all. Some of them, particularly some of
the nonsense mediated decay (NMD) targets (31), may have
functional roles as transcripts, but not as proteins. Although
the presence of an isoform in the negative set does not nec-
essarily mean that it is non-functional, the fact that we do
not detect it, despite close to complete peptide coverage for
at least one other isoform from the same gene, means that
it is measurably different from other isoforms in the same
gene.

Training the model based on genes with peptide evidence
means that both the positive and negative classes are pop-
ulated entirely with isoforms from genes that are well ex-
pressed. It is reasonable to assume that isoforms in less well-
expressed genes will behave in a similar way. The model was
not trained with proteomics data and although transcript
expression data was one of the features, it was always nor-
malized by gene. This means that TRIFID has no way of
knowing the expression level of the gene.

We generated the positive and negative training sets from
genes detected in a large-scale tissue-based proteomics anal-
ysis (Figure 1). We included isoforms from genes that either
had peptide evidence for two or more protein isoforms or
that had one isoform with at least 80% peptide coverage.
The negative and positive training sets were produced from
a total of 421 genes. We eliminated 396 duplicated isoforms
from these genes. Where there was an identical sequence to
another isoform in the same gene, we prioritized the isoform
with the higher transcript support level (5).

The positive classification dataset was made up of those
protein isoforms that were detected in the large-scale pro-
teomics experiments. The only filter step that affected the
positive training set was the removal of duplications.

The negative training set was formed of isoforms from
the same genes that were not detected. The negative train-
ing set had an extra filter; we excluded some isoforms that
went undetected in the proteomics analyses from the neg-

ative set because if they were present in the cell, it would
have been difficult to discriminate these isoforms in stan-
dard proteomics experiments.

The proteomics experiments used trypsin to cleave pep-
tides and trypsin cleaves after lysines and arginines in the
sequence. When lysines and arginines coincide with splice
junctions (28), it is harder to detect discriminating peptides
because the only peptides with missed cleavages can distin-
guish the splice events. Since it is difficult to tell whether they
ought to be in the positive or negative set, we removed splice
events with lysines or arginines in their splice junctions from
the negative set. We also removed isoforms where lysines
and arginines were either too far apart (regions where the
only possible discriminating tryptic peptide would be longer
than 40 residues), or too close together (where discriminat-
ing peptides would be shorter than 7 residues).

We removed a total of 171 alternative isoforms from
the negative training set for these reasons. The final clas-
sification data set contained 2,790 isoforms. The positive
instances for training the classifier totalled 712 isoforms
(25.5%), while there were 2,078 (74.5%) in the negative
training set.

Proteomics analysis

We analysed spectra from 79 experiments from one of the
largest tissue-based proteomics analyses to date (48). These
tissues are histologically normal and comprise 49 exper-
iments carried out on adult tissues, 12 experiments with
hematopoietic cells and 18 experiments with foetal tissue.
There are 30 distinct tissues and cell types in total and each
is represented by at least two replicates. We downloaded
the data from ProteomeXchange (49) with the identifier
PXD000561.

We worked with v27 of the GENCODE manual annota-
tion of the human reference gene set in this analysis. GEN-
CODE v27 (5) is equivalent to Ensembl 90. We used the of-
ficial GENCODE v27 translations in the proteomics analy-
sis and took training features from the official GENCODE
v27 gtf for these translations. The GENCODE v27 trans-
lated gene set contained 20 250 coding genes, which in-
clude read-through genes, polymorphic pseudogenes, and
immunoglobulin and t-cell receptor fragments. These cod-
ing genes were annotated with 95 584 translated transcripts,
of which 14,200 were predicted to be NMD transcripts.

We used Comet (50) to map spectra from the experiments
to the GENCODE human reference gene set, version v27.
Comet was run with the default parameters, allowing oxida-
tion of methionines. After the search, we generated poste-
rior error probability (PEP) values using Percolator (51). We
limited peptide spectrum matches (PSM) to those that had
a PEP value of 0.001, while peptides had to be fully tryptic
with a maximum of one missed cleavage, no shorter than
seven residues and no longer than 40. There were minor
differences between experiments, but we found that a PEP
value of 0.001 corresponded to a PSM q-value of ∼0.0001.

As a further step to reduce false positive identifications,
we required peptides to have at least one valid PSM in two of
the 79 experiments. All filtering steps were applied with one
idea in mind - to reduce false positives. Combining many ex-
periments will inflate the peptide false discovery rate. Most
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Figure 1. Schema and model selection, training and feature importance in the final RF model. (A) A simplified schema of the design of the TRIFID
algorithm. (B) Isoforms in the training set were annotated with features. (C) Nested cross validation (CV) strategy using an external test set to evaluate
the performance of the model (to overcome the risk of test set bias). (D) Precision-recall curves from stratified 10-fold cross validation for the best model
selected in the inner loop (75% of the training set, 2062 isoforms) once the hyperparameter tuning step has been performed. (E) Graphical representation
of the RF training process. The RF had 400 de-correlated decision trees, and the best split of each tree was based on the Gini impurity function. At each
leaf node, the minimum number of samples was set to 7, which also helps to avoid overfitting. (F) The predicted functionality score of an input isoform is
the average predicted class probabilities of the trees in the forest.
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valid peptides will appear in multiple experiments, while
the vast majority of false positive matches will be different
in each experiment. This means that the proportion of de-
tected false positive matches will increase with each added
experiment (52). The conservative PEP value and the re-
quirement for a minimum of two supporting PSMs at least
partially compensates for this. Since each tissue has at least
two replicates, this rule does not eliminate the possibility of
detecting tissue specific splicing (22). Though we could have
included tissue specificity as a feature, the isoforms we de-
tected were considered to be functional whether they were
tissue specific or not.

Peptides that mapped to more than one gene were dis-
carded. The remaining 130 212 validated peptides were used
to identify protein isoforms for each gene. We required that
valid peptides mapped to both sides of a splice event to iden-
tify an alternative splice event (15).

Training features from the GENCODE reference

Training features taken from the GENCODE v27 gtf
included transcript support level (TSL, 5), the GEN-
CODE Basic category (5) labels and the CCDS (42) la-
bels. CCDS labels are generated by the Consensus CDS
Project and a CCDS tag indicates agreement between
Ensembl/GENCODE and RefSeq manual annotators over
the entire coding sequence of the transcript. Agreed on
CCDS transcripts are generally supported by full length
cDNA evidence, but the RefSeq and Ensembl gene models
may have different 5′ and 3′ UTR (untranslated regions).

Features taken from the GENCODE gtf are detailed in
the Supplementary Material.

Features from the APPRIS database

APPRIS (18) annotates splice isoforms with protein struc-
tural and functional information and assigns a score rep-
resenting cross-species conservation. APPRIS also selects
a single protein sequence unique isoform as the ‘principal’
isoform for all coding genes (53). Translations that are se-
quence identical have the same APPRIS tag (unless they are
annotated as NMD), so genes can have more than one (se-
quence identical) Principal isoform. APPRIS defined 26 653
GENCODE v27 isoforms as ‘Principal’.

APPRIS features included SPADE (a measure of the ef-
fect of splicing on functional domain composition), Mata-
dor3D (a measure of the effect of splicing on protein struc-
ture) and CORSAIR. CORSAIR is a measure of cross-
species conservation that counts the number of homologues
that align without gaps. All features taken from APPRIS are
detailed in the Supplementary Material.

Transcript expression

To capture differences between isoforms at the transcript
level, we created a score from RNA-seq data from a large-
scale study by the Human Protein Atlas (54) in which RNA-
seq was performed on 36 different tissues samples from 122
human individuals.

We downloaded data from the Human Protein Atlas
RNA-seq experiments. To align this data to GENCODE

v27 we used STAR 2.6 (55). To avoid unwanted alignments
to repetitive regions, we forced end to end read alignments
and set the maximum number of multiple alignments al-
lowed to 50. The remaining parameters were set by default.

We used the collapsed CDS splice junction outputs to
calculate a score per transcript. We used CDS junctions
only because these junctions are translated to protein. We
recorded the maximum number of reads over all the tis-
sues for each splice junction. Once we had a score for each
splice junction, we calculated the mean for each gene over
all the splice junctions. Each transcript was represented by
its least supported splice junction (the weakest evidence for
its expression). However, since we trained the method on
a subset of highly translated genes, we had to adjust these
scores against the relative expression of each gene. So, the
final score for each transcript was the number of reads that
supported the lowest scoring junction divided by the aver-
age read count of all the CDS in the gene. To add further
information, we also calculated a normalized splice junc-
tion score for each transcript normalized against the highest
scoring transcript in each gene.

Details on the implementation and interpretation of this
method are available in Supplementary Material.

Other predictive features

We have previously noted that alternative isoforms detected
in proteomics experiments are highly enriched in certain
features such as cross-species conservation and the non-
disruption of Pfam (56) functional domain composition
(16). We added further measures of domain composition
and conservation to the features in the predictor.

We generated a series of features such as how much the
Pfam domain composition changed after a splice event
(Pfam domain impact), the number of residues lost from
Pfam domains (Pfam residues lost), the type of splicing
event (e.g. indel, substitution) and the length differences be-
tween isoforms (length delta score). These features are de-
tailed in Supplementary Material.

We also added two measures of conservation as features,
PhyloCSF (57) and Alt-CORSAIR. PhyloCSF (57) is a
comparative genomics method that can help distinguish
protein coding and non-coding regions. Alt-CORSAIR is
a method based on the CORSAIR module in APPRIS.
Alt-CORSAIR carries out BLAST searches against RefSeq
protein sequences and looks for orthologues that align com-
pletely without gaps. The Alt-CORSAIR score is the age of
the last common ancestor of the most distant orthologue
that fulfils the search criteria. Details on all these methods
can be found in the Supplementary Material.

Generating predictive features for the model

For those features that were numeric, we also generated nor-
malized scores by rescaling against the highest scoring iso-
form in each gene. For example, for normalization of the
length feature, we took the longest isoform as the reference
isoform. Normalized scores were rescaled between 0 (no
score) and 1 (the reference value). Features were normal-
ized in order to better capture differences between alterna-
tive isoforms of the same gene, and both normalized and
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raw feature scores were used in the predictor. This rescal-
ing allowed us to quantify the local effect of splicing on the
predictive features and added insights that would have been
hard to detect with the non-normalized scores.

In total, we collected 45 predictive features for both
canonical (APPRIS principal) and alternative splice iso-
forms. Features were divided into five main categories: an-
notation, evolution, expression, structure, and splicing (Fig-
ure 1A). Structural characteristics were taken from the AP-
PRIS database and capture how much an isoform devi-
ates from the highest scoring isoform in terms of map-
ping to functional domains, known protein structures,
functionally important residues and trans-membrane he-
lices. Annotation features are those that came from the
GENCODE/Ensembl annotation of the human reference
set and include attributes such as transcript support level,
length, transcript type, or CCDS support. Splicing features
were those that characterized the direct effects of the splic-
ing events, such as the number of lost residues with respect
to the longest isoform, length difference, and the effect of
the splicing event on Pfam functional domains. Expression
features came principally from RNAseq analyses. Last, but
not least, the evolutionary features were made up of se-
quence conservation scores from Alt-CORSAIR, APPRIS
and PhyloCSF.

More detailed information on the predictive features used
and the normalization processes can be found in Supple-
mentary Material. The relationship between the 45 features
in TRIFID can be found in Supplementary Figure S1.

Predictor selection

We benchmarked a range of machine learning approaches
for their capacity to combine the 45 predictive features.
To overcome the risk of test set bias, we used an inner-
outer (nested) cross validation strategy using an external
test set to evaluate model performance (Figure 1C). For the
inner loop hyperparameter tuning step, we split our data
into 10 stratified folds, preserving the percentage of samples
for each class. We performed cross-validation by iteratively
training with nine folds and using the remaining fold to test.
The outer loop was used to estimate the predictor perfor-
mance. Here the training set was created from four fifths of
the samples. Given the slightly imbalanced ratio (1:3) for
the majority class (negative instances) in the training set,
we evaluated binary classification performance with both
Matthews Correlation Coefficient (MCC; 58) and an Area
Under the Precision–Recall Curve (AUC-PR; 59). Model
selection, parameter tuning and detailed evaluation can be
found in the Supplementary Material.

We selected the RF-based algorithm as the final model.
It was one of the best performing methods, though there
was little difference between the best methods. RF algo-
rithms are widely used in binary classification tasks due to
their robust performance across a wide range of data sets.
Moreover, RF algorithms have the ability to handle categor-
ical, Boolean and continuous features and do not require
aggressive feature selection to reach adequate performance.
They can handle correlated features, and do not need a high
number of hyperparameters to avoid overfitting. RF mod-
els provide ways to perform reliable predictions even with

instances of missing data. In theory, RF models can han-
dle sets that do not have complete coverage of all predictive
features, so they could be exported to other species and an-
notation sets.

Non-linear predictive models like RF used to have the
disadvantage of being less interpretable, but recent advances
in interpretability of tree-based models have improved the
ability to explain both global influences of model features,
and the influence of features on individual predictions (60).

Feature importance calculation

We applied the SHAP feature importance calculation (60)
to measure overall feature importance in TRIFID. The
SHAP feature importance calculation is a recent advance in
the interpretability of tree-based models. It is a game theo-
retic approach that explains models globally by combining
local contributions of individual features and is supposed to
perform better than any other global approximation. The
algorithm returns measures of global feature importance
and can also provide clues as to the influence of each feature
within individual predictions.

Generating a non-redundant set of isoforms from GEN-
CODE v27 coding transcripts

More than a third of GENCODE v27 coding transcripts
differ only in their 5′ and 3′ untranslated regions (UTR) or
would produce translations that are fragments of other pro-
teins, so the set of GENCODE v27 translations is redun-
dant. For the purpose of analysis of our model we gener-
ated a non-redundant set of protein isoforms. We filtered
out translations from the same gene with identical protein
sequences and also those that were fragments of longer
protein sequences and that were tagged as being incom-
plete by GENCODE. Incomplete sequences are tagged as
‘cds end NF’ or ‘cds start NF’ in the gtf annotation file
and total 27 727 transcripts.

We also filtered translations that came from genes not
recognised as protein coding, such as immunoglobulin or T-
cell receptor fragments, and those translations tagged with
labels such as ‘nonsense mediated decay’, ‘non-stop de-
cay’ or ‘readthrough’ that are highly unlikely to produce
functional proteins. The filtering left us with 57 367 non-
redundant translations from just 19 327 coding genes (46).
Non-redundant alternative isoforms totalled 38,040.

Genetic variation

As part of the analysis of TRIFID predictions, we calcu-
lated non-synonymous to synonymous rates across differ-
ent sets of exons. To calculate genetic variation rates, we
used the human variation data from the 2504 individuals in
phase 3 of the 1000 Genomes Project (61) remapped from
GRCh37 to GRCh38 using dbSNP v149 (62). More than
99% of the variants successfully mapped from GRCh37 to
GRCh38 (46).

For the analysis, GENCODE v27 exons were separated
into principal or alternative according to their annotation
in APPRIS. Principal exons were those that generated the
principal isoform. These made up the vast majority of the
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exons (∼90%). The remaining exons were tagged as alterna-
tive exons. The effect of the variants on the GENCODE v27
transcripts was predicted using VEP (63). We calculated the
ratio of non-synonymous to synonymous variants for both
rare and common allele frequencies. We defined common
alleles as those with allele frequencies >0.005, while rare al-
leles were those with allele frequencies <0.005.

RESULTS

The final TRIFID model configuration achieved a
Matthew’s correlation coefficient (MCC) of 0.9 ± 0.027
over the inner 10-fold cross validation, and of 0.904 ±
0.021 over the outer 5-fold cross validation. The average
precision (AUC-PR) for the final model was 0.981 ± 0.001
(Figure 1D) over the inner 10-fold cross validation and
0.984 ± 0.001 over the outer 5-fold cross validation. The
fact that the RF algorithm yields an AUC-PR of 0.984
for the training set indicates that the features used to train
the classifier are able to distinguish positive from negative
cases.

It might be possible to argue that the restrictions put in
place to limit false positives and to validate the translation
of alternative isoforms might have been too strict and that
TRIFID might have benefited from a larger training set.
The number of protein isoforms in the training set was rel-
atively small, 2790 isoforms between the positive and nega-
tive training sets, fewer than 5% of the non-redundant iso-
forms annotated in the human reference set.

To test the impact of using a limited training set, we
trained the model using sub-samples of the final training set
in increments of 10%. We found that the training set MCC
reached a plateau with <50% of the training data (Figure
2A) and that the model could even have made reliable pre-
dictions with few data points. The model had an MCC of
over 0.88 and an AUC-PR of almost 0.98 with just 20% of
the training set (Figure 2B). Hence, adding further isoforms
to the training data is unlikely to lead to much improvement
in the model. The training set was more than sufficient to
train a stable model.

Model feature importance

With the SHAP scores, we were able to quantify the impor-
tance of the different features, and the features that best dis-
tinguished positive from negative isoforms in the training
sets were conservation-based (Figure 2C). The greater the
evidence of cross-species conservation, the higher the TRI-
FID score.

CORSAIR and Alt-CORSAIR both capture informa-
tion from cross-species alignments; CORSAIR is part of
APPRIS (18) and Alt-CORSAIR was developed recently
(see method section) and is based on CORSAIR. For both
CORSAIR and Alt-CORSAIR, scores that were normal-
ized against the highest scoring isoform in each gene dis-
criminated better than the raw scores.

Other important features include the length differ-
ence between the tested isoform and the longest isoform
and whether or not the transcript has a CCDS (42). A
CCDS tag indicates agreement on the coding sequence be-
tween Ensembl/GENCODE and RefSeq manual annota-
tors. Length difference was the most important feature in

PULSE (43), the only previous method developed for the
prediction of functional isoform relevance; here it is only
the 4th most important feature. The conservation of pro-
tein structure and functional domains, and transcript sup-
port level and expression also contributed to the decision
making.

TRIFID produces raw and normalized scores

With the development of TRIFID we have carried out
in depth analyses into the relationship between TRIFID
scores and the functionality of individual genes and iso-
forms. Although we know that all coding genes ought to
have at least one functional translation, we found that some
genes had nothing but low scoring isoforms; in 399 genes
all isoforms scored less than 0.25 while 1955 genes had iso-
forms with TRIFID scores of less than 0.5. One reason for
these low scores might be that these genes are not coding.
Indeed, we predicted that 171 of the genes with TRIFID
scores lower than 0.2 (74.7%) might not code for proteins
(46). Fifty of these genes (21.8%) have already been reclas-
sified as not coding by GENCODE. Other genes might have
nothing but low scoring TRIFID isoforms because their
gene model is incomplete; for example, MYCBP had the
lowest TRIFID scores in the whole gene set because in v27
its main transcript was mistakenly tagged as readthrough.

However, there are also genes where all isoforms are low
scoring that are clearly coding and that have no clear error
in their gene models. One such case is TTN. No titin isoform
has a raw TRIFID score of over 0.3, yet TTN is clearly cod-
ing and must have (at least) one functionally important iso-
form. The isoforms in TTN have low scores in CORSAIR
and Alt-CORSAIR principally because the length and the
number of exons makes it difficult to accurately determine
gene models. In general, the longer an isoform is, the more
likely that it has large indels relative to orthologues in other
species.

We found that a number of genes (often, but not al-
ways, genes with larger isoforms) had low CORSAIR and
Alt-CORSAIR conservation scores for all isoforms even if
the gene could trace its ancestry back to distant species.
These low conservation scores were reflected in low TRI-
FID scores for all the isoforms in those genes. The longer
the protein, the less chance of generating CORSAIR and
Alt-CORSAIR scores for whole sequences, and the lower
the CORSAIR and Alt-CORSAIR scores, the worse the
TRIFID scores. This bias meant that relative biological im-
portance predicted by TRIFID was often gene dependent.
This was not just true for more recently evolved genes, but
was also true for some ancient genes as can be seen Figure
3.

In order to take account of low scoring coding genes like
TTN, we generated a second set of TRIFID scores. For each
gene we normalized isoform scores against the highest scor-
ing isoform for that gene on the assumption that each bona
fide coding gene will code for at least one functional iso-
form. For genes where the highest scoring isoform is below
0.5, we normalized using 0.5 as the highest score. We do
this to avoid inflating scores for those genes that are either
composed entirely of NMD transcripts (220 genes are com-
posed entirely of NMD transcripts in GENCODE v27),
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Figure 2. TRIFID learning curve and feature importance. The Matthews correlation coefficient (A) and the average precision (B) for the training score and
cross-validation score using subsets of the data set to train the model. Results clearly show that the model is stable even with smaller subsets. (C) The SHAP
feature importance calculation (60) is a game theoretic approach that explains models globally by combining local contributions of individual features
and is supposed to perform better than any other global approximation. The top 18 features are divided into five sub-types (evolutionary, annotation,
structure/functional, expression and splicing effects) as described in the methods section. A lower case ‘n’ indicates that the feature was normalized.

that have incomplete gene models (where the correct prin-
cipal isoform is not yet annotated), or that have features to
suggest they might not be coding. If we normalise against
the highest scoring isoform in these genes, we may end up
predicting that most isoforms in these genes are functionally
important. TRIFID, CORSAIR and Alt-CORSAIR distri-
butions for known coding genes and potential non-coding
genes are shown in Supplementary Figure S2.

We calculated raw and normalized TRIFID scores for the
GENCODE v27 translations. Raw TRIFID scores had a bi-
modal distribution with a huge peak of isoforms predicted
as not functionally important below 0.05 and a smaller peak
at ∼0.9 (Supplementary Figure S3). The bi-modal distribu-
tion of TRIFID scores comes from the clear separation of
principal isoforms and alternative isoforms; most low scor-
ing isoforms are alternative isoforms, while most high scor-
ing isoforms are APPRIS principal isoforms (Supplemen-
tary Figure S4). Reassuringly, isoforms from transcripts
that are unlikely to be translated, such as nonsense mediated
decay and non-stop decay transcripts, scored <0.05 (Sup-
plementary Figure S5).

Normalized TRIFID scores are always higher than raw
TRIFID scores (Supplementary Figure S6), but the distri-
bution of normalized TRIFID scores for principal and al-
ternative isoforms has the same pattern as those of the raw
scores (Figure 4 and Supplementary Figure S7). Principal
and alternative isoforms have clearly distinct distributions.
Most principal isoforms have high scores: 17 791 (92.1%)
have normalized scores greater than 0.8 and 16 839 (87.1%)
have scores above 0.95. Just 557 APPRIS principal isoforms
(2.9%) have normalized scores <0.5.

By way of contrast, most alternative isoforms have low
normalized TRIFID scores (Figure 4). A total of 17 847
alternative isoforms (46.9%) have scores below 0.05, and
30,758 (80.9%) have normalized scores <0.5. At the same
time, 5,944 alternative isoforms (15.6%) have normalized
TRIFID scores above 0.6, and 3,567 (9.4%) scored higher
than 0.8. The pattern of the raw scores is similar (Supple-
mentary Figure S7).

Normalized TRIFID scores are stable across different
annotations. The vast majority of scores for identical iso-
forms in the v27 and v35 versions of the human reference
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Figure 3. Length and conservation scores versus TRIFID scores. Boxplots of the highest TRIFID score per gene against the length of the longest isoform
in each gene and against the highest scoring CORSAIR and Alt-CORSAIR values in each gene. Results are only shown for singleton genes with a last
common ancestor before the split with Bilateria. Bilateria gene family age was calculated from Ensembl Compara in a previous study (32,46). Box plots
show the interquartile range, median, 95% confidence interval and outliers as black dots. We binned genes by the length of their longest isoform and by
the highest CORSAIR and Alt-CORSAIR scores, and calculated average TRIFID scores for each of these bins. Since these genes are conserved back to
Bilateria, we would expect them all to have the highest possible CORSAIR and Alt-CORSAIR scores. However, many CORSAIR and Alt-CORSAIR
scores are lower than expected. The longer the protein and the lower the conservation scores, the lower the TRIFID scores. Genes with lower conservation
scores had substantially lower TRIFID values.

Figure 4. Normalized TRIFID scores and for alternative and principal iso-
forms. Non-redundant isoforms were divided into principal or alternative
according to their annotation in APPRIS. Normalized TRIFID scores for
the alternative and principal isoforms were binned in increments of 0.1
and the percentage of all isoforms in each bin plotted. Most alternative
isoforms have TRIFID scores <0.1. Almost all principal isoforms have
predictor scores above 0.9.

set are almost unchanged (Supplementary Figure S8) and
the two sets of normalised TRIFID scores have a Pearson
correlation coefficient of 0.99. Most large changes in TRI-
FID scores are due to changes in the principal isoform. For
example, CCNP/CNTD2 (the gene changed its name be-
tween v27 and v35) has the same number of isoforms in both
annotations, but one isoform was extended to complete a
Pfam domain (Supplementary Figure S9). Before it was ex-
tended, it had a normalised TRIFID score of 0, in v35 the
score was 0.742. As a result, two of the three unchanged iso-
forms had much lower normalised TRIFID scores in v35,
one even dropping from 1.0 to 0.214.

After testing with both normalized scores and the raw
TRIFID score, we believe that relative functionality is best
represented by the normalized TRIFID score. Raw TRI-
FID scores will be most useful if researchers are interested
in a set of reliable gene models and do not require a com-
plete gene set.

Below, we discuss the cases of genes ERRC6 and FGFR1
in order to illustrate the utility of TRIFID, the use of nor-
malized and raw TRIFID scores, and the challenges of pre-
dicting the functional importance of protein isoforms.

DNA excision repair protein ERCC-6 and TRIFID score nor-
malization

DNA excision repair protein ERCC-6 (gene ERCC6) is a
chromatin remodelling protein implicated in transcription
elongation and DNA damage repair. It has important roles
in a range of cellular processes (64–67). ERCC6 is anno-
tated with six translations in GENCODE v27. One is an
NMD target, a second is a 3′ CDS incomplete sequence
fragment and a third has a downstream ATG (and is no
longer annotated as part of this gene). Two of the remain-
ing isoforms are sequence identical, so there are only two
distinct full-length proteins annotated for ERCC6.

The two isoforms both appear to be functionally im-
portant, but both have raw TRIFID scores below 0.5.
The principal isoform, ENSP00000348089 (1,493 amino
acids), scores just 0.48, while the alternative isoform,
ENSP00000387966 (1,061 amino acids), scores 0.444. These
relatively low raw scores occur because neither ERCC6 iso-
form scores well in conservation measures CORSAIR and
Alt-CORSAIR, even though orthologues for the main iso-
form can be traced back to yeast (Rad26) (68). While other
TRIFID features such as CCDS and protein structure and
function support the functional importance of the two iso-
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Figure 5. A schematic illustration of the two functionally important
ERCC6 isoforms. Both isoforms have a common N-terminal, represented
by the resolved coiled coil structure of residues 84 to 160 from PDB (73)
structure 4CVO, left. The principal isoform (above right, red arrows) is
represented by structures of the SNF2 family N-terminal domain (PDB:
5HZR) and C-terminal helicase domain (PDB: 6A6I). Pathogenic muta-
tions from ClinVar (74) that map to the N-terminal domain are shown in
red (stop gained) and yellow (missense). The alternative isoform (below
right, blue arrows) is represented by the structure of the transposase IS4
domain (PDB: 6×67). The pathogenic mutation that affects ovary function
(72) is mapped to this domain and shown in red. Mapping to the PDB
structures where necessary was carried out using HHPRED (75) and all
images were generated using PyMol.

forms, the low conservation scores depress the final raw
TRIFID scores (Supplementary Figure S10).

Normalising the TRIFID scores for the two ERCC6
isoforms raises their scores to 0.96 and 0.89 and this fits
with the functional information available for the two iso-
forms. Both isoforms have an N-terminal chromatin remod-
elling domain and the principal isoform has approximately
a thousand residues in a C-terminal that includes an SNF2
family N-terminal domain and a helicase domain (Figure
5). The principal isoform is clearly highly important. Most
of the sequence is conserved in Fungi and mutations in this
isoform are known to cause Cockayne syndrome, a severe
neurological disorder.

The C-terminal of the alternative isoform is ∼600
residues long and includes a piggybac-derived transposase
domain (PGBD3). The ancestor of PGBD3 was incor-
porated before the split between cnidaria and bilateria
>650 million years ago. A fusion between ERCC6 and the
transposon-derived PGBD3 seems to have taken place in the
ancestor of primates (69). Domain fusion has the potential
to create new functions, though here the addition of a do-
main seems to have generated new functionality via alter-
native splicing, just as with genes TMPO and ZNF451 (70).
The functional role of this protein isoform (CSB-PGBD3
fusion protein) is still not wholly clear, but it has been sug-
gested that it may work in tandem with the principal iso-
form (71). Mutations specific to this isoform cause ovarian
failure (72).

TRIFID scores for fibroblast growth factor receptor 1

Fibroblast growth factor receptor 1 (FGFR1) is a
membrane-bound tyrosine-protein kinase. Fibroblast

growth factor receptors play a crucial role during develop-
ment and they are associated with the formation of solid
tumours (76,77). Fibroblast growth factor receptors have
three extracellular immunoglobulin-like receptor domains
linked to a cytosolic tyrosine kinase domain by a single
trans-membrane helix (Figure 6A).

FGFR1 is annotated with 23 coding transcripts that
would produce 10 distinct isoforms. Five isoforms have nor-
malized TRIFID scores higher than 0.5. TRIFID predicts
that the principal transcript, ENST00000447712, produces
a functionally important protein with a score of 0.973. Al-
ternative transcript ENST00000356207 (Figure 6B) skips
the second coding exon and as a result would generate an
isoform without the first immunoglobulin domain. TRI-
FID gives the isoform a normalized score of 0.692. This iso-
form has been shown to be functional with a higher affinity
for fibroblast growth factors (FGF) than the principal iso-
form (78).

A third transcript, ENST00000619564, would give rise to
an isoform without the first immunoglobulin domain and
with a C-terminal truncation in the middle of the final ex-
tracellular domain (Figure 6C). A priori, this isoform seems
less likely to be functional: if this isoform were translated,
it would be an entirely extra-cellular protein and would be
unable to bind FGF. There is no conservation evidence at
all for this isoform (Supplementary Figure S11). It has a
normalized TRIFID score of 0.006.

Transcript ENST00000397103 (Figure 6D) is an interest-
ing case. As with ENST00000356207 it also skips the second
coding exon. In addition, it substitutes exon 8 for homolo-
gous exon 9. These two exons generate distinct versions of
domain 3, a domain that plays a role in determining FGF
binding specificity (79). Exon 9 is conserved back to a last
common ancestor with vertebrates and homologues FGFR2
and FGFR3 express the equivalent of exon 9 in a tissue-
specific manner, so this exon ought to be functionally im-
portant in FGFR1 too. However, TRIFID gives this isoform
a normalized score of 0.062, in part because the particu-
lar exon combination in this transcript is not annotated in
many other species (Supplementary Figure S11), and in part
because there is no CCDS (RefSeq does not annotate this
transcript).

Despite the conservation evidence for exon 9, it has no
experimental support and nor could we find published ev-
idence for the function of the isoform. At the transcript
level, the exon is practically not detected in either Human
Protein Atlas (54) or GTEx RNA seq experiments (80), and
there are no peptides for this region in PeptideAtlas (81).
This isoform, like the equivalent isoform in FGFR2, is sup-
posed to be exclusively expressed in the mesenchyme (82), so
this may be why there is little experimental evidence. Nev-
ertheless, the evidence for the functionality of this isoform
is conflicting; GNOMAD (83) records five potential loss
of function variants for exon 9, three more than any other
FGFR1 exon.

Comparison with PULSE

We compared TRIFID with PULSE, the only previous
attempt to predict the functional relevance of splice iso-
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Figure 6. Model predictions for four fibroblast growth factor receptor 1 (FGFR1) isoforms. (A) A representation of the architecture of fibroblast growth
factor receptors with domains shown in red. The protein forms dimers through its kinase domain. The extracellular region is shaded. (B) A comparison
of principal transcript (ENST00000447712) and alternative transcript ENST00000356207. The top half of the panel shows the extracellular region coding
exon composition. ENST00000356207 loses an exon with respect to ENST00000447712 (shown with a gold box), the effect of which would be to remove
the first immunoglobulin domain, coloured in gold on the model of the extracellular portion of fibroblast growth factor receptor 1. (C) A comparison
of principal transcript and alternative transcript ENST00000397103. The top of the panel shows the coding exon composition. ENST00000397103 loses
the same exon as ENST00000356207, but would also swap exon 8 (blue box) for exon 9 (coloured in blue) and lose six bases as a result of NAGNAG
splicing (shown by an arrow). The effect on the isoform would be to remove domain 1 (gold), two residues in the region between domains 1 and 2 (shown
by arrow), and to generate a distinct but homologous version of domain 3 (residues that would differ in the domain are shown in blue). (D) A comparison
of the principal transcript and alternative transcript ENST00000619564. The top of the panel shows the coding exon composition. ENST00000619564
loses exon 8 and all downstream exons and replaces them with a shorter non-homologous exon (shown in green). The effect on fibroblast growth factor
receptor 1 would be to damage domain 3 (residues lost from domain 3 in green) and eliminate the entire downstream sequence of the protein, including
the trans-membrane helix and the tyrosine kinase domain.

forms, over GENCODE v27 alternative isoforms that had
a prediction in PULSE. There are just 2692 non-NMD
sequences in common between the two analyses because
PULSE made predictions for transcripts detected in the
Human Body Map (84) analysis and many of these are
not annotated in GENCODE. The majority (51.3%) of
alternative isoforms in this reduced set score >0.6 in
PULSE (this was the cut-off above which an isoform
was considered functional by the authors of PULSE),
while just a quarter (24.9%) have a normalized TRIFID
score >0.6.

Despite this, the comparison (Figure 7A) suggests that
there is some relationship between PULSE and normalized
TRIFID scores for alternative isoforms: 21% of isoforms
score >0.6 in both methods while 44.9% of isoforms score
<0.6 in both. However, >3 in 10 isoforms score more than
0.6 in PULSE and <0.6 in TRIFID. The Pearson correla-
tion between normalized TRIFID score and PULSE score
was 0.51.

The most important feature in PULSE (by a large mar-
gin) was similarity in length. Length delta was also an im-
portant feature in TRIFID, but other important features
such as CCDS annotation and conservation were also im-

portant. Indeed, four of the six most important features in
TRIFID according to the SHAP scores were conservation-
based. As a comparison, the correlation between PULSE
score and three conservation features used by PULSE was
0.204, 0.106 and 0.082. PULSE also reported that 36% of
functional splice variants had events that fell inside Pfam
domain boundaries. This is very close to the proportion of
events you would expect to find if the events were chosen at
random: 37% of splice events in the human reference set fall
inside Pfam domains (16). PULSE used six domain features
to train their model and correlation with the PULSE score
ranged between −0.272 and +0.078, which suggests that do-
main features had little bearing on the prediction of func-
tional importance in PULSE. In TRIFID, alternative iso-
forms predicted as functionally important have significantly
fewer altered functional domains (11.3%) than alternative
isoforms predicted as non-functional (40.6%, Fisher’s ex-
act test P < 0.00001). It is not surprising then that the iso-
forms that PULSE predicts as functional and that TRI-
FID predicts as non-functional, tend to have broken func-
tional domains and little cross-species conservation (Fig-
ure 7). Further examples are shown in Supplementary
Figure S12.
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Figure 7. A comparison between TRIFID and PULSE. (A) A scatter plot of PULSE and TRIFID scores over alternative isoforms that coincide between
the two analyses. The comparison was carried out over 2692 sequences present in both data sets. The distribution of scores for the predictors is shown
above or to the right of the graphic. Spearman’s rank correlation between the two sets was 0.504. (B) The 346-residue splice variant of IL1RAP mapped
onto PDB structure 5VI4. This isoform is generated from an exon skip that changes the frame of the protein. The exon skip occurs in the middle of the
third immunoglobulin domain (in purple) and as a result of the frame shift, the variant loses half of the domain (lost region shown in light grey) and the
downstream trans-membrane helix and downstream TIR domain. The interaction with interleukin-33 (yellow) and interleukin 1 receptor like 1 (teal) will
also be affected. The isoform is annotated only in the human genome. PULSE predicts that this isoform is functional (0.831), while TRIFID does not
(0.002). (C) The 475-residue splice variant of ATE1 mapped onto PDB structure 2ATR using HHPRED. This isoform is generated from an exon skip that
removes 41 residues including the first part of the Arginine-tRNA-protein transferase domain (lost region shown in light grey). This splice event skips a
pair of mutually exclusively spliced exons that appear to be important in substrate selection (85) and that are conserved even in Orb weaver spiders. It seems
unlikely that such important exons can be skipped without consequence for the function of the protein. PULSE predicts that this isoform is functional
(0.707) and TRIFID does not (0.037). (D) Two splice variants of MACROH2A1 mapped onto PDB structure 6fy5 using HHPRED. The first isoform is
generated from an exon skip that changes the frame at the start of the macro domain. The section of the structure that would be maintained is shown in
teal, the remainder (in yellow and light grey) would be replaced by 27 residues as a result of the frame shift. PULSE predicts that this isoform is functional
(0.676), while TRIFID does not (0.184). A second exon skip produces another frame shift that affects the same domain. Here the conserved region is
shown in purple and yellow, and the region of the domain replaced by frame-shifted residues in light grey. Neither method predicts that this isoform is
functional, but the PULSE score for this improbable protein is much higher, 0.484 against 0.008. All images were generated using PyMol.

Validating the results against an external source of informa-
tion

Although the model evaluation shows that TRIFID is able
to distinguish efficiently between positive and negative in-
stances in the training set, we required orthogonal evidence
strands to validate our predictions for the whole genome.
We used germline variation data to calculate rates of ge-
netic variation for alternative and principal isoforms. All
exons and exon fragments that overlapped principal tran-
scripts were classified as principal exons, while those exons
and exon fragments that were exclusive to alternative tran-
scripts were classified as alternative. That meant that ∼90%
of exons were classified as principal. We evaluated princi-

pal and alternative exons separately because otherwise the
results would be dominated by the variants in the principal
exons.

Exons from principal and alternative transcripts were
each binned in five subsets by TRIFID score. We calcu-
lated non-synonymous to synonymous substitution rates
for common and rare alleles from the human variation
data from the 1000 Genomes Project (61) for each of the
subsets. Exons under selective pressure should have non-
synonymous to synonymous ratios that are significantly
lower for common allele frequencies than for rare allele fre-
quencies.

The results are shown in Figure 8. Non-synonymous to
synonymous ratios for exons derived from principal tran-
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Figure 8. TRIFID scores and genomic variation for principal and alternative exons. (A) Non-synonymous to synonymous ratios for rare (yellow) and
common allele frequencies (purple) for exons from principal transcripts binned by the TRIFID score of the transcript. (B) Non-synonymous to synonymous
ratios for rare (yellow) and common allele frequencies (purple) for exons that do not overlap principal transcripts binned by the TRIFID score of their
transcript. Error bars show the confidence intervals for each subset of exons.

scripts decrease notably as normalized TRIFID score in-
creases. In each set of principal exons with scores >0.2, the
non-synonymous to synonymous ratio is significantly lower
for common alleles than it is for rare alleles, as would be
expected if these exons were under selective pressure (see
Supplementary Material for more details). The only excep-
tions are those with normalized scores <0.2. Almost three
quarters of principal isoforms with normalized scores <0.2
are from coding genes tagged as potential non-coding in a
previous study (46), suggesting that many of these lowest
scoring principal isoforms are in fact from genes that were
mis-classified as coding.

Non-synonymous to synonymous ratios for exons de-
rived from alternative transcripts also decrease with increas-
ing TRIFID score. Since there are comparatively fewer al-
ternative exons, there are relatively few common variants in
each bin (as reflected by the larger confidence intervals). De-
spite this, non-synonymous to synonymous ratios are signif-
icantly lower for common alleles than for rare alleles at nor-
malized TRIFID scores of 0.6–0.8 and >0.8. This suggests
that at least a considerable fraction of alternative transcripts
with normalized TRIFID scores >0.6 are under selective
pressure.

Non-synonymous to synonymous ratios are not signifi-
cantly lower for common alleles than for rare alleles in those
exons from transcripts with normalized TRIFID scores of
<0.6, even if the statistical power is larger given the num-
ber of instances in this category. This result suggests that
most of these exons are not under selective pressure. Iso-
forms translated from these lowest scoring exons make up
almost 85% of all alternative isoforms.

Exporting the TRIFID model to the genomes of other species

We trained TRIFID with splice variants from the human
genome. The human genome is more curated and has more
supporting evidence than any other genome. Several of the
features that we used to train TRIFID (for example CCDS
number, transcript support and RNA support) are either
not available or are less complete for non-human reference
sets. However, eight of the ten most important features are
available for all eukaryotic species that can be annotated in
APPRIS.

We retrained TRIFID with the 25 features that would be
available for all species in order to analyse the effectiveness
of a generic predictor of functional isoforms. We compared
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precision recall curves from the generic predictor with those
of the human-specific predictor. In this case, we used the
whole training set (outer loop) to validate the general per-
formance over the whole set of training isoforms. In this
configuration, the overall AUC-PR of the human-specific
TRIFID is 0.985, while the AUC-PR of the generic TRI-
FID is lower, but only drops to 0.974 (Supplementary Fig-
ure S13). This suggests that there ought to be enough dis-
criminatory power in the remaining features to allow us to
export TRIFID to other species.

DISCUSSION

In order to understand the true complexity of the proteome
and to detect function-altering mutations and variants in
clinical practice, it is important to determine which pro-
tein isoforms are biologically relevant and which are not.
For that reason, we have developed a machine learning al-
gorithm to classify all isoforms for a given gene and to
predict which isoforms are most likely to be functionally
important.

The predictor, TRIFID, uses proteomics evidence as a
proxy for functionality and was trained and validated on
peptide data. The model had an overall AUC-PR of 0.985.
We found that TRIFID scores were gene dependent because
the CORSAIR and Alt-CORSAIR modules in TRIFID do
not always detect cross-species conservation. This can be
overcome somewhat by using the normalized scores, at the
risk of over-predicting functionally important variants.

Analysis of non-synonymous to synonymous ratios of
germline variants shows that alternative isoforms with nor-
malized TRIFID scores of more than 0.6 are under selective
pressure and that most alternative isoforms with lower TRI-
FID scores appear to be evolving neutrally. These results
demonstrate that TRIFID can distinguish functionally im-
portant isoforms. Normalized TRIFID score can be used to
select those alternative isoforms that are more likely to have
biological roles; 15.6% of alternative isoforms in the GEN-
CODE human gene set have a normalized TRIFID score
greater than 0.6.

Cross-species conservation of isoforms was the most im-
portant feature for distinguishing biological relevance; the
greater the evidence of cross-species conservation, the more
likely the isoform was predicted to be functional. Isoforms
that were predicted as functional impacted Pfam domains
significantly less often than isoforms predicted as non-
functional.

Although TRIFID predicts that fewer than 1 in 6 alter-
native proteins are functionally important, there are several
caveats. Firstly, many alternative isoforms are predicted as
functionally important based on their similarity to the main
isoform. It is not clear how many of those isoforms that dif-
fer by micro-indels of four or fewer amino acids really are
functional. At the same time, the conservation-based met-
rics in TRIFID do not always detect cross species conserva-
tion, and even though this is partly corrected through nor-
malization of the TRIFID score, it almost certainly means
that TRIFID will miss some functional isoforms.

Finally, it should be pointed out that transcripts may have
functional roles that do not involve a protein product (33),
TRIFID does not predict functional importance at the tran-

script level. Also, although TRIFID was trained on tissue-
based proteomics data, it does not predict tissue specificity.

We have shown that TRIFID could also be exported to
other species even though some features are not available
for all species. This could make TRIFID a useful tool for
genome annotation, though it is important to note that the
predictor will work better on well annotated species. The
method arrives just in time to deal with the likely explosion
of new transcript models from short and long-read sequenc-
ing studies (86,87).

The results of our research provide important insights
into understanding the importance of alternative splicing
at the protein level. From a clinical standpoint, a method
that can predict the relative functional importance of pro-
tein isoforms will be a particularly valuable tool to help un-
derstand the pathogenic effects of mutations on splice vari-
ants. Potential pathogenic mutations are of clinical interest,
but it is important to know if these mutations affect exons
from biologically relevant splice variants, as in the example
of ERCC6.

We believe our dataset of likely functional isoforms
would be of great value to better our understanding of al-
ternative splicing, for example focusing on datasets with less
noise and enriched in real functional events.

DATA AVAILABILITY

The datasets supporting the conclusions of this article
are available in the gitlab repository at https://gitlab.com/
bu cnio/trifid.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

The authors would like to thank Irwin Jungreis for making
the PhyloCSF data available.

FUNDING

National Human Genome Research Institute of the Na-
tional Institutes of Health [2 U41 HG007234]; Span-
ish Ministry of Science, Innovation and Universities
[PGC2018-097019-B-I00]; Carlos III Institute of Health-
Fondo de Investigación Sanitaria PRB3 [IPT17/0019 -
ISCIII-SGEFI / ERDF, ProteoRed]; ‘la Caixa’ Banking
Foundation [HR17-00247].
Conflict of interest statement. None declared.

REFERENCES
1. Wang,E.T., Sandberg,R., Luo,S., Khrebtukova,I., Zhang,L.,

Mayr,C., Kingsmore,S.F., Schroth,G.P. and Burge,C.B. (2008)
Alternative isoform regulation in human tissue transcriptomes.
Nature, 456, 470–476.

2. Black,D.L. (2000) Protein diversity from alternative splicing: a
challenge for bioinformatics and post-genome biology. Cell, 103,
367–370.

3. Graveley,B.R. (2001) Alternative splicing: increasing diversity in the
proteomic world. Trends Genet., 17, 100–107.

https://gitlab.com/bu_cnio/trifid
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab044#supplementary-data


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 15

4. The UniProt Consortium. (2017) UniProt: the universal protein
knowledgebase. Nucleic Acids Res., 45, D158–D159.

5. Frankish,A., Diekhans,M., Ferreira,A.M., Johnson,R., Jungreis,I.,
Loveland,J., Mudge,J.M., Sisu,C., Wright,.J, Armstrong,J. et al.
(2019) GENCODE reference annotation for the human and mouse
genomes. Nucleic Acids Res., 47, D766–D773.

6. Sayers,E.W., Beck,J., Brister,J.R., Bolton,E.E., Canese,K.,
Comeau,D.C., Funk,K., Ketter,A., Kim,S., Kimchi,A. et al. (2020)
Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res., 48, D9–D16.

7. Hu,Z., Scott,H.S., Qin,G., Zheng,G., Chu,X., Xie,L., Adelson,D.L.,
Oftedal,B.E., Venugopal,P., Babic,M. et al. (2015) Revealing missing
human protein isoforms based on ab initio prediction RNA-seq and
proteomics, Sci. Rep., 5, 10940.

8. Pertea,M., Shumate,A., Pertea,G., Varabyou,A., Breitwieser,F.P.,
Chang,Y.C., Madugundu,A.K., Pandey,A. and Salzberg,S.L. (2018)
CHESS: a new human gene catalog curated from thousands of
large-scale RNA sequencing experiments reveals extensive
transcriptional noise. Genome Biol., 19, 208.

9. Buljan,M., Chalancon,G., Eustermann,S., Wagner,G.P.,
Fuxreiter,M., Bateman,A. and Babu,M.M. (2012) Tissue-specific
splicing of disordered segments that embed binding motifs rewires
protein interaction networks. Mol. Cell, 46, 871–883.
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