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ABSTRACT

Motivation: Comprehensive understanding of cellular processes
requires development of approaches which consider the energetic
balances in the cell. The existing approaches that address this
problem are based on defining energy-equivalent costs which do not
include the effects of a changing environment. By incorporating these
effects, one could provide a framework for integrating ‘omics’ data
from various levels of the system in order to provide interpretations
with respect to the energy state and to elicit conclusions about
putative global energy-related response mechanisms in the cell.
Results: Here we define a cost measure for amino acid synthesis
based on flux balance analysis of a genome-scale metabolic
network, and develop methods for its integration with proteomics
and metabolomics data. This is a first measure which accounts
for the effect of different environmental conditions. We applied this
approach to a genome-scale network of Arabidopsis thaliana and
calculated the costs for all amino acids and proteins present in the
network under light and dark conditions. Integration of function and
process ontology terms in the analysis of protein abundances and
their costs indicates that, during the night, the cell favors cheaper
proteins compared with the light environment. However, this does
not imply that there is squandering of resources during the day. The
results from the association analysis between the costs, levels and
well-defined expenses of amino acid synthesis, indicate that our
approach not only captures the adjustment made at the switch of
conditions, but also could explain the anticipation of resource usage
via a global energy-related regulatory mechanism of amino acid and
protein synthesis.
Contact: nikoloski@mpimp-golm.mpg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The complexity of a cell is reflected in the necessity to balance
the conflicting demands for resources to maintain cell vitality
and function with those to support growth (Warner, 1999). The
study of cell metabolism has traditionally focused on determining
the factors that influence metabolic rate, at levels of both
metabolic pathway and the whole organism (Heinrich and Schuster,
1996). Recently assembled condition- and tissue-specific metabolic
network models (Shlomi et al., 2008) offer means for determining
another compelling feature of metabolic pathways—their metabolic
efficiency. In addition, the advances in omics technologies have
yielded datasets from various levels of cell organization, which
could be employed to make more refined biological interpretations
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by coupling metabolic rates, efficiencies and levels of the key system
constituents (e.g. gene, proteins and metabolites).

Metabolic efficiency can be regarded as the energy-equivalent
production of a pathway relative to the energy-equivalent costs for
maintaining the pathway (Koehn, 1991). It is related to the energy
balance of the cell given by the difference of energy supply and
demand. The supply is a direct consequence of the environment,
while the demand is influenced by the processes which ensure
cell functions and the mechanisms for adaptation. Therefore, it
is necessary that any quantification of the cellular energy state
incorporates the environmental effects.

Plant growth depends on the photosynthetic assimilation of carbon
dioxide and the uptake and assimilation of inorganic nutrients
(Stitt and Krapp, 1999), of which nitrogen is quantitatively most
important (Marschner, 1995). There is a close interplay between
carbon and nitrogen metabolism in higher plants (Stitt et al., 2002).
Photosynthesis provides carbon skeletons, reducing equivalents and
ATP, required for assimilating inorganic nitrogen and synthesizing
nucleotides, amino acids and proteins (Foyer et al., 2003; Stitt and
Krapp, 1999). On the other hand, nitrogen-containing metabolites
allow for utilization of carbon in growth.

Amino acids, bridging the carbon- and nitrogen-utilization
pathways and necessary for protein synthesis, thus, play a pivotal
role in coordinating the interactions between these two parts of
metabolism. The concentrations of amino acids are likely determined
by the interplay of several other processes, such as: export, storage
and synthesis of metabolites other than proteins (Noctor et al.,
2002). They are also closely linked with protein turnover in different
nitrogen- and carbon-starved conditions (Scheible et al., 2004; Thum
et al., 2004). Moreover, amino acid daily balances in conjunction
with those of carbohydrates, may serve as good indicator of
environmental stress, e.g. water deficit (Santos and Pimentel, 2009).

Plants typically grow in a diurnal light/dark cycle, providing an
amenable system to analyze the temporal dynamics of changes
in amino acid contents and their effects on metabolism (Gibon
et al., 2006). For instance, it has been demonstrated that Nicotiana
tabacum plants grown in short days have relatively high levels
of glutamate and aspartate, and extremely low levels of most of
the minor amino acids (i.e. amino acids synthesized by longer
and dedicated pathways, usually present at lower levels compared
with major amino acids) in their source leaves at the end of the
night; moreover, illumination yields to decrease in glutamate and an
increase in the minor amino acids. Due to the proximal regulation,
the overall amino acid level often changes in parallel to those of
sugars. This observation has led to the suggestion that sugars may
exert a global control on amino acid metabolism (Matt et al., 1998).
On the other hand, recent studies point out that, in Arabidopsis
thaliana, fumarate and malate levels show diurnal changes similar
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to those of starch and sucrose: they increase during the day and
decrease during the night, suggesting that they function as transient
carbon storage molecules (Fahnenstich et al., 2007; Zell et al., 2010).
Fumarate is synthesized from malate, which is an intermediate of
the TCA cycle. As both fumarate and malate play an important role
as precursors of amino acid synthesis, this raises the question of
possible energy considerations in keeping certain levels of amino
acids.

One of the challenges in amino acid metabolism research is
the development of approaches for testing the hypothesis that the
observed amino acid contents are related, and possibly explained, by
mechanisms for maintaining the energy balances. Such an approach
may then shed light on the long-standing problems of whether or not
there is a general control of amino acid synthesis in plants and how it
relates to protein synthesis (Noctor et al., 2002). Here, we develop
such an approach by proposing a cost measure with respect to a
given genome-scale metabolic network of A.thaliana and a specified
set of environmental conditions. The results from applying the cost
measure are then used to interpret publically available datasets of
amino acid concentrations and protein abundances for A.thaliana
under light and dark conditions.

2 APPROACH
The existing approaches for determining the cost of amino acid
synthesis can be classified into three groups: the first includes
the approaches which use the physical properties and atomic
composition of amino acids as proxies for their cost. The second
group of approaches employs a simplified set of pathways to derive
the cost of amino acid synthesis from the simplified stoichiometries,
while the third group comprises the approaches which rely on
genome-scale metabolic networks.

2.1 Cost from physicochemical properties
Approaches in this group are based on the premise that the
physicochemical properties of an amino acid, such as: its weight,
atomic content and structural properties, reflect biosynthetic costs,
resource investment and perhaps cytoplasmic toxicity (Dufon,
1997). Seligmann (2003) used the molecular weight of an amino
acid as a proxy for energetic costs, as it is constant across species.
Thus, it can be employed for testing various hypothesis even if the
amino acid synthetic pathways are unknown. The approach was used
to demonstrate that molecular weight is minimized across a range
of bacterial and eukaryotic genomes (Seligmann, 2003). However,
such a cost cannot account for the effect of varying environmental
conditions.

With respect to the potential costs of the atomic content
in biomolecules, Mazel and Marliere (1989) showed that, in
the cyanobacterium Calothrix, abundant proteins expressed under
sulfur-limiting conditions are depleted for sulfur-containing cysteine
and methionine residues. Baudouin-Cornu et al. (2001) found
significant correlations between atomic composition and metabolic
function in sulfur- and carbon-assimilatory enzymes, which appear
depleted in sulfur and carbon, respectively, in both Escherichia
coli and Sacchromyces cerevisiae. In addition, by considering 141
genomes, Bragg et al. (2006) showed that the sulfur content of
the encoded proteins exhibits large variance and strongly reflects
the environmental conditions of an investigated species. While

these findings indeed indicate that atomic composition plays an
important role in biosynthetic costs, the existing measures based
on physicochemical properties do not account for these factors.

2.2 Cost from simplified pathways
In the second group of approaches, the cost of an amino acid is
calculated based on: (i) the Embden–Meyerhof pathway, which
converts glucose 6-phosphate to pyruvate; (ii) TCA cycle, which
oxidizes acetyl CoA to carbon dioxide (CO2); and (iii) the pentose
phosphate pathway, which oxidizes glucose 6-phosphate to CO2.
These pathways are not only the energy generators, but they also
contain the molecules from which all amino acids are produced.
Energy in the form of ATP is lost whenever a metabolite is
diverted from the oxidation of glucose to the synthesis of an amino
acid. Therefore, ATP is the common currency through which the
bioenergetic costs of amino acids (as well as proteins, nucleotides
and related molecules) and, hence, the costs of molecular variation
can be compared.

Starting from the ATP equivalents required for synthesis of each
of the amino acids (Neidhardt et al., 1990), Craig and Weber (1998)
define the synthetic cost of an amino acid as the sum of the number
of ATPs sacrificed when the amino acid’s precursor metabolite is
diverted from one of the three metabolic pathways and the number
of ATP equivalents directly invested in its synthesis, starting from
the respective precursor. By assuming that all additional costs are
constant for different amino acids, the authors investigated the
effects on the synthesis and evolution of a small number of E.coli
proteins.

Akashi and Gojobori (2002) used a modified version of this
approach to show that, in E.coli and Bacillus subtilis, predicted
gene expression levels based on codon usage bias show a negative
correlation with average protein cost. Recently, Heizer et al. (2006)
extended these findings to four additional prokaryotic species,
including also photoautotrophs, which demonstrates that this cost
optimization occurs regardless of whether the energy source is
organic or inorganic. Moreover, Swire (2007) used the cost measure
of Craig and Weber (1998) to generate a modified measure, and
showed that cost selection affects multiple prokaryotic, archaeal
and eukaryotic genomes. Based on Craig and Weber (1998) and
accounting for the confounding energy factors related to mRNA
and protein synthesis, Wagner (2007) demonstrated that both mRNA
and protein expression can change by only small amounts in yeast
without additional expenditures that could have altered natural
selection.

The approaches in this group have the twofold disadvantage
of neglecting the effects of the existing differences in the energy
and amino acid production pathways from various organisms and
disregarding the influence of environmental conditions.

2.3 Cost from genome-scale models
The existing approaches for determining the cost of amino acid
synthesis by means of genome-scale models are based on the
principle of supply and demand, i.e. the scarcity of an atom increases
the cost of synthesizing molecules including the atom.

Carlson (2007) used the concept of elementary flux modes in the
genome-scale network of E.coli to show that this organism favors
the expression of pathways using inexpensive proteins in stress-
inducing environments (defining different supplies and demands).
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For the same organism, Varma et al. (1993) used flux balance
analysis (FBA; see Section 3) to show that the cost of using
molecules involved in energy production changes according to
the availability of oxygen. Barton et al. (2008) extended this
approach to estimate and compare cost of synthesizing amino acids
in S.cerevisiae for four nutrient-limiting conditions (i.e. glucose,
nitrogen, sulfur and phosphorus) by: (i) examining the sensitivity
of growth rate to the required quantity of the amino acid per gram
of biomass, and (ii) multiplying the obtained relative cost by the
biomass requirement of the amino acid in the FBA model. Although
this approach of fixing biomass and minimizing influx has the
advantage of scaling each cost to the same growth rate and account
for environmental effects, it may not be robust due to the applied
method for perturbing the required amount of amino acid per gram
of biomass production. Moreover, the application of this approach
to plants strongly depends on the quality of the biomass reaction and
the assumption of biomass optimization which is debatable even for
unicellular organisms (Schuetz et al., 2007).

2.4 Our approach
Here, we develop an FBA-based approach for estimating the cost
of amino acid synthesis based on a recently published genome-
scale metabolic network of A.thaliana. The approach overcomes the
drawbacks of biomass optimization used in plants, by considering
the minimization of nutrient uptake. To investigate the effect
of diurnal changes on the amino acid content, we consider the
two environmental conditions—light and dark—by modifying the
metabolic model according to existing biological knowledge. The
calculated costs for the two conditions are then used to interpret
publically available proteomics and metabolomics measurements
for A.thaliana.

2.5 Datasets
For the dataset from Gibon et al. (2006), A. Col0 WT plants were at
least 3 weeks before the measurements transferred to a small growth
cabinet with a 12 h light period of 160 µE and 20◦C throughout day
and night. Harvests of 15 plant rosettes at a time point were carried
out sequentially every 2 h within a day/night cycle. Each sample
typically contained three rosettes and was powdered under liquid
nitrogen and stored at −80◦C. Each experiment was repeated two
times. The extraction and assay of metabolites was done by GC-MS
and LC-MS. The amino acid levels used in this study are expressed
as ratios between samples and the median calculated for control
samples.

The proteomics dataset was obtained from plants grown in a
8 h light period of 145 µE with color fluorescent lights and 20◦C
throughout the day/night cycle for 3 weeks before harvesting. Five
independent samples of five whole rosettes per sample were gathered
and immediately frozen in liquid nitrogen. Sampling was performed
in the last hour of the day or of the night, respectively, and completed
within 1 h. The relative protein abundance was estimated by emPAI
as described in Ishihama et al. (2005).

3 METHODS

3.1 Genome-scale metabolic model of A.thaliana
We use a recently published model of A.thaliana (Poolman et al., 2009),
which is the first genome-scale metabolic model of a plant species.

The original model consists of 1253 metabolites related via 1406 reactions.
The model is capable of producing biomass components, i.e. all amino
acids, nucleotide bases, palmitate as a ‘generic lipid’, starch and cellulose,
solely from the metabolic precursors: glucose, nitrate NO3, ammonia NH3,
sulfate SO4 and phosphate Pi. The precursor metabolites and the biomass
components have external counterparts. Together with H+ and H2O, which
are external due to inconsistencies in H+ and O balances in the included
reactions, there are, in total, 44 external metabolites.

The given network was altered in order to provide a biologically
meaningful cost measure. The transporter reactions for the influx of precursor
metabolites were switched from reversible to irreversible in the direction of
influx since the reverse reactions do not take place. The biomass component
transporter reactions were constrained to efflux in order to prevent energy
production from the degradation of biomass components, which should not
enter the system once they have been produced and exported out. The
reversibility of few reactions were also altered based on existing knowledge
about the physiology of these reactions (cf. Supplementary table). Moreover,
in the degradation pathway of threonine and lysine, the reversibility of some
reactions had to be altered to avoid production by the reverse degradation
pathway (Supplementary Material).

The transporter reactions for bringing amino acids and nucleotides out
of the system were corrected to include the energetic costs. Amino acid
transporter reactions have been altered in the following way:

a+3ATP→x_a+2ADP+2Pi +1AMP+1PPi, (1)

where a denotes an arbitrary amino acid, x_a the corresponding external
metabolite and PPi denotes pyrophosphate. Nucleotide transporter reactions
have been corrected such:

u+1ATP→x_u+1AMP+1PPi, (2)

where u denotes an arbitrary nucleotide and x_u its external counterpart.
For plant metabolism, we consider two different scenarios: dark (night

environment) and light (day environment). The transporter influx reaction
of glucose is used in both environments. In the day environment, the
phosphofructokinase is set to zero. In the night environment, the fructose
1,6-biphosphatase and phosphoribulokinase reactions are constrained to zero
flux since they are mostly inactive; the same argument holds for the RuBisCo
reaction, incorporating CO2, and for sedoheptulose-biphosphatase, which is
the most important factor for the RuBP regeneration in the Calvin Cycle.

3.2 FBA
FBA is a modeling framework developed to characterize the synthesizing
capabilities of metabolic networks. For every metabolite Xi, a mass balance
is derived as dXi/dt =∑

sijvj −bi, where sij is the stoichiometric coefficient
associated with each flux vj , through reaction j, and bi, the net transport
flux of Xi. The mass conservation relation under the steady-state conditions
(dXi/dt =0) reduces to the expression:

S·v−b=0, (3)

where S is the stoichiometric matrix (m rows and n columns), v is the vector
of n metabolic fluxes and b is the vector representing m transport fluxes.
The transport fluxes for internal metabolites are set to zero. As the system
described in Equation (3) is underdetermined (n>m), there exist multiple
solutions corresponding to feasible flux distributions, each representing a
particular metabolic state satisfying these stoichiometric constraints. The
transport fluxes represent environmental conditions that, along with the
genotype, define the metabolic state. The question addressed by FBA is
then, which of these feasible metabolic states is manifested in the studied
metabolic network model.

FBA relies on the assumption that the metabolic system exhibits a
metabolic state that is optimal under some criteria. Usually, this objective is
expressed as linear combination of fluxes contained in v, which leads to a
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linear programming (LP) problem:

min(max)z=∑
civi, s.t.

Sv−b=0,

αi ≤vi ≤βi,

with z representing the phenotypic property, and c is a vector of coefficients
which are either costs or benefits derived from fluxes. The bounds αi and
βi, represent known constraints, i.e. the minimum and maximum values of
fluxes and, thus, determine reaction reversibility.

Proposition 1. Linear scaling of the constraints for the elements of v leads
to a linear scaling of the outcome of optimizing z.

Proof. Given a stoichiometric matrix S, let v be a vector such that Sv=0,
vk =dk with k ⊂{1,...,n} and min cT v=r. To show that when v′

k =g ·dk ,
min cT v′ =g ·r with v′ =g ·v, we assume that ∃ṽ �=v′ with ṽk =g ·dk such that
cT ṽ<g ·r and Sṽ=0. A scaled vector v′′ := 1

g · ṽ then fulfills the conditions

Sv′′ =0 and v′′
k =dk and we arrive at contradiction that cT v′′ <r =min cT v.

The most common choice for the objective function is the maximization of
yield, which allows a wide range of predictions consistent with experimental
observations for simple model organisms (Edwards and Palsson, 2002;
Schuster et al., 2008). This function could be employed for environments
with nutrient excess. Other optimization functions include: minimization
of ATP production, to determine the conditions for energy efficiency and
minimization of nutrient uptake, modeling the case of nutrient scarcity
(Schuetz et al., 2007).

3.3 Novel FBA-based cost measure
We define the cost of an amino acid a, denoted by Ca as the sum of the energy
equivalents of the precursor metabolites necessary for its synthesis. Let the
number of molecules of a precursor metabolite p involved in the synthesis of
the amino acid a be denoted by Np

a . The value of Np
a is defined by the ratio

of the influx vp of the metabolite p and the efflux of the amino acid a, i.e.

Np
a = vp

va
, (4)

yielding the number of precursor molecules used in the production of one
molecule of the amino acid a.

Note that the value of Np
a is positive, since the influx of a precursor

metabolite, like the efflux of an amino acid, is defined as positive. The set
of precursor metabolites is given by M ={glucose, NH3, NO3, SO4, Pi}.
In the FBA formulation, we minimize the glucose uptake for both day and
night environments. According to Proposition 1, the fluxes vp and va scale
equally, so we can set efflux va to an arbitrary (positive) value. Moreover,
the influx of all precursor metabolites is unconstrained from above, while
the effluxes of all amino acids, other than a, are constrained to zero. In other
words, the solution of the defined linear program yields a distribution of
influxes for the precursor metabolites which scale linearly with the efflux of
the only amino acid that can be produced under the objective of minimizing
the energy equivalents reflected in the uptake of glucose.

Let ep denote the number of ATP molecules equivalent to one molecule
of metabolite p. The cost of the amino acid a can then be formulated as:

Ca =
∑

p∈M

ep ·Np
a . (5)

The values of ep for different precursor metabolites were set, according
to (Zerihun et al., 1998), as: eglucose =36, eNO3 =12 and eNH3 =1.33. Our
results indicate that the remaining precursor, SO4, plays a negligible role and
is not included in the cost; moreover, Pi is not utilized in the production of
any amino acid. Note that the cost of redox equivalents is fully accounted

Table 1. Comparison of amino acid cost measures

Env. (units) Our cost CW AG Sel

Day (ATP) Night (ATP) ATP ATP g/mol

Cys 19.33 19.33 24.5 24.7 121.16
Asp 25.33 31.30 1 12.7 133.10
Asn 26.66 32.63 4 14.7 132.12
Glu 31.33 49.33 8.5 15.3 147.13
Gln 32.66 50.66 9.5 16.3 146.15
Ser 19.33 19.33 15 11.7 105.09
Gly 13.33 13.33 14.5 11.7 75.07
Thr 25.33 31.33 6 18.7 119.12
His 39.99 45.99 33 38.3 155.16
Ala 19.33 19.33 12.5 11.7 89.09
Tyr 55.33 61.33 56.5 50 181.19
Arg 41.32 53.32 18.5 27.3 174.20
Val 31.33 37.33 25 23.3 117.15
Trp 68.66 74.66 78.5 74.3 204.23
Met 31.33 43.33 18.5 34.3 149.21
Phe 55.33 61.33 63 52 165.19
Ile 37.33 49.33 20 32.3 131.17
Leu 37.33 55.33 33 27.3 131.17
Lys 38.66 50.65 18.5 30.3 146.19
Pro 31.33 49.33 12.5 20.3 115.13

FBA-based cost measure of amino acid synthesis in terms of ATP for the day (first
column) and the night (second column) environment. Columns labeled CW, AG and
Sel contain the costs according to Craig and Weber (1998), Akashi and Gojobori (2002)
and Seligmann (2003), respectively.

by the utilization of glucose. The FBA analysis was performed by using the
CellNetAnalyzer package for MATLAB (Klamt et al., 2007).

4 RESULTS AND DISCUSSION
By applying our approach, the cost of amino acid synthesis for two
different scenarios—day and night—were calculated and presented
in Table 1. We then investigated the effect of considering two
environmental conditions by employing the Kendall rank correlation
coefficient. Our cost measure for the day condition is significantly
correlated (P<0.01) with the cost from Craig and Weber, τ =0.51;
Akashi and Gojobori, τ =0.73; and Seligmann, τ =0.69, also
presented in Table 1; however, for the night environment, significant
correlation is not present between our cost and that of Craig and
Weber.

With respect to the energetic relations between the day and night
environments, without distinguishing the function and conversion
ability of the amino acids, the two costs are significantly correlated,
τ =0.864, P<0.01. Significant correlations (P<0.01) can also be
demonstrated for the environment-specific costs within the groups
of minor (i.e. His, Arg, Tyr, Trp, Met, Val, Phe, Ile, Leu and Lys) and
major amino acids, with τ =0.744 and τ =0.988. However, there is
no statistical significance for observing concordant and discordant
pairs of costs within the ketogenic amino acids, including: Leu, Lys,
Ile, Phe, Thr, Tyr, Trp. In contrast to the glycogenic amino acids
which can be converted into glucose, ketogenic amino acids can be
converted into ketone bodies by both breakdown of lipids and the
formation of energy source.
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Table 2. Association of protein costs and GO slim categories

nP τ day τ night

Function
Hydrolase activity 20 −0.097∗ 0.037∗
Kinase activity 7 0∗ −0.666∗
Transferase activity 17 −0.240∗ −0.322∗
Other enzyme activity 66 −0.341 −0.289
DNA or RNA binding 11 0∗ −0.050∗
Nucleotide binding 41 −0.316 −0.314
Protein binding 14 0.142∗ −0.314∗
Other binding 62 −0.302 −0.254
Structural molecule activity 46 −0.210 −0.080∗
Other molecular functions 10 0.6∗ 0∗

Process
Transport 11 −0.71 −0.428∗
Other cellular processes 100 −0.346 −0.388
Protein metabolism 64 −0.474 −0.406
Other metabolic processes 103 −0.360 −0.339
Other biological processes 76 −0.099∗ −0.160∗

Only GO slim categories for which nP , the number of proteins, is greater than zero are
shown. The Kendall rank correlation coefficients which are not significant at level 0.05
are marked with * following the value for τ.

Akashi and Gojobori (2002) pointed out that A- and T-rich codons
tend to encode more costly amino acids, supported by significant
Kendall rank correlation coefficient (P<0.05). We conducted a
similar analysis for the costs from the two considered scenarios
and did not find any significant association with the mean codon
GC content, despite the significant correlation between our and the
cost measure of Akashi and Gojobori (2002). This indicates that the
usage of our cost measure to explain levels of the considered system
constituents (i.e. amino acids and proteins) may not be confounded
by GC-content effects.

These three findings demonstrate that, indeed, both energetic and
physicochemical characteristics of the amino acids shape their costs,
and that by considering only one of the aspects on its own, we cannot
distinguish between the investigated environments.

Next, we calculate the cost CP of a protein P with n amino
acids ai, 1≤ i≤n according to CP =4·16n+∑n

i=1Cai +2. The term
4·16n+2 indicates the number of ATP molecules consumed in the
three main stages of protein synthesis: initiation, elongation and
release (Zerihun et al., 1998). Proteins of A.thaliana from different
functional and process categories may differ in terms of their levels
and energetic costs between the two different environments. To
control for these effects, we examined the associations between
costs and protein concentrations within both, function and process,
categories for the two investigated conditions.

From the 1153 and 2109 identified proteins, 616 and 978 were
reliably quantified for the day and night conditions, respectively.
From these, there were 202 proteins with assigned function
category and 196 proteins with resolved process category in both
conditions. We then considered how these proteins, occurring in
both environments, are distributed across the GO slim function and
process terms obtained from TAIR (Berardini et al., 2004).

The Kendall rank correlation coefficients between costs and
protein levels for both, function and process categories were
negative for the two conditions, as indicated in Table 2. This finding
implies that it is more likely for expensive proteins to be present
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Fig. 1. Scale-free relationship between relative abundances and costs of
proteins for day and night environment. Proteins which occur at same
levels with different price are binned. The x-axis shows the average protein
abundance per bin, while the y-axis depicts the average cost of proteins per
bin. Both day and night environments exhibit two scale-free laws: one at
average protein abundances below 8 and the other above a value of 8.

at low levels as compared with cheap proteins. Interestingly, we
observed that the determined associations are smaller in the day
as compared with the night. This suggests that our cost measure
captures the economizing mode in which the cell may enter during
the night, forcing it to increase the level of cheaper proteins.

Moreover, by investigating the relationship between the
abundance of proteins and their respective costs, we were able
to determine two scale-free laws. The first scale-free law holds
for proteins which are present at small relative levels (below 8);
its exponent for the day is −0.697 (Fig. 1), while for the night
environment it is −1.154. The second scale-free law holds for
proteins with relative abundance above 8 units, again with a larger
exponent of −0.064 for the day condition as compared to −0.089 for
the night condition. The larger exponents for the night demonstrate
that the pressure for cheaper proteins is more prominent in the night.

We point out that these findings in terms of proteomics data do not
necessarily imply that there is squandering of resources in the day
environment. To demonstrate that this, indeed, is the case, we revisit
the levels of amino acids which are essential for protein synthesis.

In terms of the Kendall correlation coefficient, the association
between the five costs for 14 amino acids (i.e. Glu, Gln, Asp,
Ala, Pro, Thr, Ile, Leu, Val, Met, Phe, Tyr, Trp and Arg) and their
experimentally determined levels in A.thaliana Col0 wild-type for
12 h of light followed by 12 h of darkness is shown in Figure 2. It
can be seen that all costs behave similarly for the day environment,
while our cost for the night environment shows difference in trend.

This becomes pronounced when we compare the cost measures
via the expense for production of amino acids, determined by
expense=∑

a la ·Ca, where Ca is the cost of an amino acid and la is
its level. The behavior of the expense for the three measures yielding
ATP-equivalent cost is shown in Figure 3. It is striking that both
measures, from Craig and Weber (1998) and Akashi and Gojobori
(2002), show smaller expense at the end of the night (Hours 24)
compared with the beginning of the day (Hour 0) as well as a sharp
decline in the expenses at the switching point between light and dark.
On the other hand, our measures for the day and night environments
resolve this discrepancy and also provide quantification for the
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Fig. 2. Association between amino acid levels and their costs. The Kendall
rank correlation coefficients between the amino acids and the day costs
(orange), night cost (black), CW cost from Craig and Weber (1998) (blue),
AG cost from Akashi and Gojobori (2002) and the cost from Seligmann
(2003) are calculated for a period of 24 h. The night environment is depicted
in gray. Correlations which are not significant (P≥0.05) are shown with
filled points.
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Fig. 3. Expenses for amino acid synthesis calculated in ATP times relative
concentration. The expenses for our day cost (orange) and night cost (black)
as well as the costs from Craig and Weber (1998) (blue) and Seligmann
(2003) (red) are calculated for a period of 24 h. The night environment is
depicted in gray. The expense for Seligmann’s cost is not shown due to
difference in units.

adjustment to the switch in conditions; namely, the increasing trend
in the expenses from the light condition continues for two more
hours in the dark, followed by decline ‘symmetric’ to the expenses
incurred under the light condition.

Assuming that the cell has a maximum allowable energy budget
(Hand and Hardewig, 1996), these findings imply that the energy
status may be an important mechanism for the control of amino acid
synthesis and its related processes, allowing spending which would
not jeopardize the vitality of the cell.

Finally, we point out that the approach can be applied to
any environmental condition which can be appropriately reflected
in a given genome-scale metabolic network (e.g. via exclusion
and inclusion of reactions, as performed here, or by choosing
suitable uptake and production rates which match experimental
observations). The biological interpretation of the results directly

depends on: (i) the quality of the metabolic network and (ii) the
choice of the optimization criterion.

It has to be mentioned that the network of A.thaliana employed
in this study contains inconsistencies in H+ and O, which has been
resolved by setting H+ and H2O to external. This may lead to an
oxidative potential and, thus, to production of energy out of nothing.
Moreover, the considered model is not compartmentalized, but is
consistent with a standard view of metabolic compartmentation
between plastid and cytosol (Poolman et al., 2009). Moreover,
according to Poolman et al. (2009), the lack of a separate plastidic
compartment can be seen to be justifiable for heterotrophic plant
cells, which may not be the case for autotrophic plants. Finally,
although we do not explicitly consider the protein turnover cost,
our measure qualitatively reflects the turnover cost due to protein
synthesis.

It may be debatable whether or not the chosen objective in the
FBA analysis should be linear in plants species, as it is often the
practice with FBA-based studies of micro-organisms. However,
we believe that minimization of the nutrient uptake is suitable for
scarce resources and could be used to investigate the effects of such
scenario on the cost of amino acid and protein synthesis. We note that
the consideration of a nonlinear optimization function would require
an extension of the approach since in this case Proposition 1 does
not hold. In this case, the cost calculation can be slightly altered to
incorporate measured data for the biomass transporter reaction flux
rates. The objective function of the nonlinear program then yields
the uptake fluxes vp for the situation of full production of measured
biomass components. The calculation is repeated with setting the
transporter reaction flux rate va of the amino acid of interest to
zero, yielding the precursor metabolite uptake fluxes va→0

p for
the altered constraint. Then the cost is given by the difference of
precursor metabolite uptake fluxes for the two situations divided
by the measured efflux rate of the compound of interest, i.e.
Ca = (vp −va→0

p )/va. This approach will be investigated for other
published plant organ-specific compartmentalized networks (e.g.
Grafahrend-Belau et al., 2009) and their coupling with ‘omics’ data.

5 CONCLUSIONS
We developed the first environment-specific cost measure for amino
acid synthesis based on FBA of genome-scale metabolic networks.
This measure allows for calculating the costs of protein synthesis
under different environmental scenarios. In addition, we devised
an approach for integrating the ATP-equivalent amino acid and
protein costs with function- and process-resolved metabolomics
and proteomics data. By applying the approach on a genome-scale
network of A.thaliana under light and dark conditions, with the
help of the available omics data, we demonstrated that the control
of the cellular energy balance may play an important role as a
global regulatory mechanism of not only amino acid but also protein
synthesis.
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