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Abstract
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are used extensively for insect

control in sprays and transgenic plants, but their efficacy is reduced by evolution of resis-

tance in pests. Here we evaluated reduced activation of Cry1Ac protoxin as a potential

mechanism of resistance in the invasive pest Helicoverpa armigera. Based on the concen-

tration killing 50% of larvae (LC50) for a laboratory-selected resistant strain (LF120) divided

by the LC50 for its susceptible parent strain (LF), the resistance ratio was 1600 for Cry1Ac

protoxin and 1200 for trypsin-activated Cry1Ac toxin. The high level of resistance to acti-

vated toxin as well as to protoxin indicates reduced activation of protoxin is not a major

mechanism of resistance to Cry1Ac in LF120. For both insect strains, treatment with either

the trypsin inhibitor N-a-tosyl-L-lysine chloromethyl ketone (TLCK) or the chymotrypsin

inhibitor N-a-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not significantly affect

the LC50 of Cry1Ac protoxin. Enzyme activity was higher for LF than LF120 for trypsin-like

proteases, but did not differ between strains for chymotrypsin-like proteases. The results

here are consistent with previous reports indicating that reduced activation of protoxin is

generally not a major mechanism of resistance to Bt proteins.

Introduction
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have been used extensively
for pest control in sprays and genetically engineered crops [1–3]. These Bt proteins kill some
major insect pests, but are not toxic to most other organisms, including humans [4–7]. The
area planted worldwide to transgenic crops producing Bt proteins increased to 84 million hect-
ares (ha) in 2015, with a cumulative total of>732 million ha since 1996 [1]. Although Bt crops
have provided substantial environmental and economic benefits [8–14], evolution of pest resis-
tance to Bt proteins can reduce or eliminate these benefits [15–18].

Understanding the mode of action and the mechanisms of resistance to Bt proteins can help
to enhance and sustain their efficacy against pests. Many studies have focused on the closely
related crystalline Bt proteins Cry1Ab and Cry1Ac, which kill lepidopteran pests and are pro-
duced by widely adopted transgenic Bt corn, cotton, and soybeans [1–3, 19–21]. Models of Bt
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mode of action agree that the full-length forms of Cry1Ab and Cry1Ac proteins called proto-
xins are converted by insect midgut proteases to activated toxins that bind to insect midgut
receptors, eventually leading to death of susceptible insects [19–21]. This activation entails
removal of approximately 40 amino acids from the amino terminus and 500 amino acids from
the carboxyl terminus, converting the protoxins of approximately 130 kDa to activated toxins
of approximately 55 to 65 kDa [19–21].

Whereas the established “classical”model for Cry1A mode of action asserts that only the
activated toxins of ca. 55 to 65 kDa can bind to receptors and kill insects [19–21], some recent
evidence supports a “dual”model in which activated toxins exert toxicity via a primary path-
way and intact protoxins or some other portion of protoxins exert toxicity via a different path-
way [22–24]. Consistent with both models, reduced conversion of protoxin to activated toxin
by midgut proteases can cause greater resistance to protoxins than activated toxins [24–33].

Here we examined activation of Cry1Ac protoxin by proteases in resistant and susceptible
strains ofHelicoverpa armigera, one of the world’s most damaging crop pests [34]. After nearly
two decades of exposure to transgenic cotton plants producing Cry1Ac, field populations of H.
armigera have remained susceptible to Cry1Ac in Australia [35] and have shown small, but sig-
nificant increases in resistance to Cry1Ac in China [36–38]. In the laboratory, many strains of
H. armigera have been selected for high levels of resistance to Cry1Ac [29, 37, 39–41].

We analyzed two previously described strains from China: the susceptible LF strain and the
resistant LF120 strain [29, 40–42]. The LF120 strain had>1000-fold lab-selected resistance to
Cry1Ac and was derived from the LF strain via a series of progressively more resistant strains [29,
40–42]. We evaluated activation of Cry1Ac protoxin by two types of midgut serine proteases:
trypsin-like proteases, which are inhibited by N-a-tosyl-L-lysine chloromethyl ketone (TLCK),
and chymotrypsin-like proteases, which are inhibited by N-a-tosyl-L-phenylalanine chloromethyl
ketone (TPCK). The results imply that trypsin-like proteases were more important than chymo-
trypsin-like proteases in activation of Cry1Ac protoxin and that reduced activation of Cry1Ac
protoxin has at most a minor role in resistance to Cry1Ac of the LF120 strain ofH. armigera.

Results

Effects of Cry1Ac protoxin and activated toxin on mortality of resistant
(LF120) and susceptible (LF) larvae
Relative to its susceptible parent strain (LF), the LF120 strain of H. armigera was highly resis-
tant to Cry1Ac protoxin and activated toxin (Table 1). The resistance ratio, calculated as the
concentration of Cry1Ac killing 50% (LC50) for LF120 larvae divided by the LC50 for LF larvae,
was 1600 for protoxin and 1200 for activated toxin (Table 1). For each strain, based on the con-
servative criterion of non-overlap between the 95% fiducial limits (FL), LC50 values did not dif-
fer significantly between Cry1Ac protoxin and activated toxin (Table 1).

Effects of protease inhibitors on toxicity of Cry1Ac protoxin to resistant
and susceptible larvae
The trypsin inhibitor TLCK and the chymotrypsin inhibitor TPCK did not significantly affect
the LC50 of Cry1Ac protoxin for LF or LF120 (Table 2). In the protease inhibitor experiment
(Table 2), all larvae were pre-treated with the solvent DMSO (see Methods). A comparison of
the results between Table 1 (no DMSO) and Table 2 (DMSO) shows that DMSO did not signif-
icantly affect the LC50 values of Cry1Ac protoxin for either strain. In the protease inhibitor
experiment, resistance ratios for LF120 relative to LF were 1200 for Cry1Ac protoxin, 690 for
Cry1Ac protoxin + TLCK, and 890 for Cry1Ac protoxin + TPCK (Table 2).
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Effects of protease inhibitors on activation of Cry1Ac by trypsin,
chymotrypsin, and midgut extract from susceptible larvae
As expected, after both 30 min and 2 h of incubation, the trypsin inhibitor TLCK significantly
reduced activation of Cry1Ac protoxin by trypsin (Fig 1) and the chymotrypsin inhibitor TPCK
significantly reduced activation of Cry1Ac protoxin by chymotrypsin (Fig 2). By contrast, in experi-
ments where Cry1Ac protoxin was activated by a midgut extract from susceptible LF larvae, TLCK
significantly reduced activation after 30 min of incubation but not after 2 h of incubation (Fig 3),
and TPCK did not significantly reduce activation after either 30 min or 2 h of incubation (Fig 4).

Protease activity in susceptible and resistant larvae
The activity of trypsin-like proteases was 33-fold higher in the susceptible strain than in the
resistant strain (P = 0.02), but the activity of chymotrypsin-like proteases did not differ signifi-
cantly between strains (P = 0.55) (Fig 5).

Activation of Cry1Ac protoxin by midgut extracts from resistant and
susceptible larvae
The percentage of Cry1Ac protoxin activated by midgut extracts was significantly higher for
the susceptible strain than the resistant strain at 30 min (P = 0.014, Fig 6), but did not differ

Table 1. Effects of Cry1Ac protoxin and activated toxin onmortality of resistant (LF120) and susceptible (LF) larvae of H. armigera.

Strain Treatment Slope ± SEa LC50 (95% FL)b RRc

LF Protoxin 0.95 ± 0.11 13.0 (6.9–21) 1.0

LF120 Protoxin 0.58 ± 0.08 20,800 (12,000–47,000) 1600*

LF Activated toxin 1.18 ± 0.13 12.0 (7.5–17) 1.0

LF120 Activated toxin 0.56 ± 0.09 14,800 (7400–32,000) 1200*

a Slope of the concentration-mortality line and its standard error
b Concentration killing 50% with 95% fiducial limits in ng Cry1Ac per cm2 diet
c Resistance ratio, LC50 for LF120 divided by LC50 for LF.

*Asterisks indicate significantly higher LC50 for LF120 than LF by the conservative criterion of non-overlap of 95% FL.

doi:10.1371/journal.pone.0156560.t001

Table 2. Effects of protease inhibitors TLCK and TPCK on toxicity of Cry1Ac protoxin to resistant (LF120) and susceptible (LF) larvae of H.
armigera.

Strain Treatmenta Slope ± SEb LC50 (95% FL)c RRd IRe

LF Protoxin 2.32 ± 0.26 11.6 (2.6–16) 1.0 NA

LF Protoxin + TLCK 1.61 ± 0.26 27.2 (11–49) 1.0 2.3

LF Protoxin + TPCK 1.90 ± 0.26 20.1 (14–27) 1.0 1.7

LF120 Protoxin 0.70 ± 0.09 13,600 (9000–22,000) 1200* NA

LF120 Protoxin + TLCK 0.74 ± 0.09 13,900 (6400–43,000) 690* 1.0

LF120 Protoxin + TPCK 0.63 ± 0.09 24,200 (15,000–48,000) 890* 1.8

a All larvae were pre-treated with the solvent DMSO (see Methods).
b Slope of the concentration-mortality line and its standard error
c Concentration killing 50% with 95% fiducial limits in ng Cry1Ac per cm2 diet
d Resistance ratio, LC50 for LF120 divided by LC50 for LF.

*Asterisks indicate significantly higher LC50 for LF120 than LF by the conservative criterion of non-overlap of 95% FL.
e Inhibition ratio (IR), LC50 of Cry1Ac protoxin with inhibitor divided by the LC50 of Cry1Ac protoxin without inhibitor.

doi:10.1371/journal.pone.0156560.t002
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significantly between strains at 60, 120, and 180 min (P = 0.063, 0.72 and 0.98 at 60, 120 and
180 min, respectively, Fig 6).

Induction of proteases by Cry1Ac in susceptible larvae
In fifth instar of the susceptible LF strain of H. armigera, feeding for 12 h on diet treated with
Cry1Ac protoxin increased the activity of both trypsin-like and chymotrypsin-like proteases
(S1 Fig). The activity of each type of protease increased linearly as the concentration of Cry1Ac
increased (S1 Fig). Relative to untreated diet, the highest concentration of protoxin tested

Fig 1. Activation of Cry1Ac protoxin by trypsin with and without the trypsin inhibitor TLCK. (A) Representative
SDS-PAGE gel. (B) Percentage activation (mean and SE) based on optical density of the activated toxin band (65 kDa)
relative to the band with only protoxin (lane 2) calculated by Image J quantification from three replicates. Asterisks indicate
significantly lower activation with inhibitor than without for a given incubation period: 30 min for lanes 4 and 5 versus lane 3
and 2 h for lanes 7 and 8 versus lane 6 (t-tests, P < 0.05). Lane 1, molecular weight markers (kDa); Lane 2, Cry1Ac protoxin;
Lanes 3 and 6, Cry1Ac protoxin and trypsin; Lanes 4 and 7, Cry1Ac protoxin and 10:1 trypsin + TLCK; Lanes 5 and 8, Cry1Ac
protoxin and 1:1 trypsin + TLCK.

doi:10.1371/journal.pone.0156560.g001

Fig 2. Activation of Cry1Ac protoxin by chymotrypsin with and without the chymotrypsin inhibitor TPCK. (A)
Representative SDS-PAGE gel. (B) Percentage activation (mean and SE) based on optical density of the activated toxin band
(65 kDa) relative to the band with only protoxin (lane 2) calculated by Image J quantification from three replicates. Asterisks
indicate significantly lower activation with inhibitor than without for a given incubation period: 30 min for lanes 4 and 5 versus
lane 3 and 2 h for lanes 7 and 8 versus lane 6. Lane 1, molecular weight markers (kDa); Lane 2, Cry1Ac protoxin; Lanes 3 and
6, Cry1Ac protoxin and chymotrypsin; Lanes 4 and 7, Cry1Ac protoxin and 10:1 chymotrypsin + TPCK; Lanes 5 and 8, Cry1Ac
protoxin and 1:1 chymotrypsin + TPCK.

doi:10.1371/journal.pone.0156560.g002
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(13 μg Cry1Ac per g diet) caused a 7.9-fold increase in the activity of trypsin-like proteases and
a 3.6-fold increase in the activity of chymotrypsin-like proteases (S1 Fig).

Discussion
The results here show that relative to the susceptible LF strain ofH. armigera, the LF120 strain
had a resistance ratio of 1600 for Cry1Ac protoxin and 1200 for Cry1Ac activated toxin

Fig 3. Activation of Cry1Ac protoxin by midgut extract from the susceptible strain LF ofH. armigerawith and without
the trypsin inhibitor TLCK. (A) Representative SDS-PAGE gel. (B) Percentage activation (mean and SE) based on optical
density of the activated toxin band (65 kDa) relative to the band with only protoxin (lane 2) calculated by Image J quantification
from three replicates. Asterisks indicate significantly lower activation with inhibitor than without for a given incubation period:
30 min for lanes 4 and 5 versus lane 3 and 2 h for lanes 7 and 8 versus lane 6 (t-tests, P < 0.05). Lane 1, molecular weight
markers (kDa); Lane 2, Cry1Ac protoxin; Lanes 3 and 6, Cry1Ac protoxin and midgut extract; Lanes 4 and 7, Cry1Ac protoxin
and 10:1 midgut extract + TLCK; Lanes 5 and 8, Cry1Ac protoxin and 1:1 midgut extract + TLCK.

doi:10.1371/journal.pone.0156560.g003

Fig 4. Activation of Cry1Ac protoxin bymidgut extract from the susceptible strain LF ofH. armigerawith and without
the chymotrypsin inhibitor TPCK. (A) Representative SDS-PAGE gel. (B) Percentage activation (mean and SE) based on
optical density of the activated toxin band (65 kDa) relative to the band with only protoxin (lane 2) calculated by Image J
quantification from three replicates. For each incubation period (30 min for lanes 3–5 and 2 h for lanes 6–8), the inhibitor
TPCK had no significant effect on activation (t-tests, P > 0.05). Lane 1, molecular weight markers (kDa); Lane 2, Cry1Ac
protoxin; Lanes 3 and 6, Cry1Ac protoxin and midgut extract; Lanes 4 and 7, Cry1Ac protoxin and 10:1 midgut extract
+ TPCK; Lanes 5 and 8, Cry1Ac protoxin and 1:1 midgut extract + TPCK.

doi:10.1371/journal.pone.0156560.g004
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(Table 1). Because the resistance ratio was similar for Cry1Ac protoxin and activated toxin,
these results suggest that reduced activation of Cry1Ac protoxin was not a major mechanism
of resistance in LF120 relative to LF. We can compare the results here with previous results
from LF and the strains derived progressively from LF that were selected in the laboratory with
Cry1Ac protoxin to achieve progressively higher resistance: LF5 (least resistant), LF10, LF20,
LF30, LF60, and LF120 (most resistant) [29, 40–42]. Consistent with the results here, Chen
et al. reported that LF120 was highly resistant to Cry1Ac activated toxin (resistance
ratio = 1700 in that study versus 1200 in this study, Table 1) [42]. Also consistent with our
results, Xiao et al. found that the LF60 strain, the immediate parent strain from which LF120
was derived, had a similar resistance ratio for Cry1Ac protoxin (1400) and Cry1Ac activated
toxin (1100) [41]. For both LF60 and LF120 (Table 1), the LC50 value did not differ signifi-
cantly between Cry1Ac protoxin and activated toxin [41]. The resistance ratio for Cry1Ac pro-
toxin divided by the resistance ratio for Cry1Ac activated toxin was 1.3 for LF120 (Table 1) and
1.3 for LF60 [41]. These results imply that decreased activation of Cry1Ac protoxin had a simi-
lar, minor role in resistance of both of these strains.

By contrast with LF120 and LF60, for the LF5 strain derived directly from LF, the LC50

value was significantly higher for Cry1Ac protoxin than activated toxin, and the resistance
ratio was 2.8 times higher for Cry1Ac protoxin (110) than activated toxin (39) [29]. The resis-
tance in LF5 is genetically linked with a mutation that decreases transcription of the trypsin

Fig 5. Protease activity in fifth instars of the susceptible LF strain and resistant LF120 strain ofH.
armigera. (A) Trypsin-like proteases. (B) Chymotrypsin-like proteases. The asterisk indicates significantly
lower trypsin-like activity for LF120 than LF. Chymotrypsin activity did not differ significantly between strains.

doi:10.1371/journal.pone.0156560.g005

Fig 6. Time course of the activation of Cry1Ac protoxin bymidgut extracts from the susceptible LF strain and
resistant LF120 strain ofH. armigera. (A) Representative SDS-PAGE gel. (B) Percentage activation (mean and SE)
based on optical density of the activated toxin band (65 kDa) relative to the band with only protoxin (P) calculated by
Image J quantification from three replicates. M: Protein marker; P: Only protoxin; 30, 60, 120 and 180 were the
incubation time points (min). The asterisk indicates significantly lower activation for LF120 than LF at 30 min. Activation
did not differ significantly between strains at 60, 120, and 180 min.

doi:10.1371/journal.pone.0156560.g006
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geneHaTryR by 99% and reducing transcription of this gene in susceptible LF larvae with
RNA interference doubled the survival on diet treated with Cry1Ac protoxin [29]. The results
imply that production of the trypsin protease encoded byHaTryR is important for activation
of Cry1Ac protoxin. Transcription of the four other trypsin genes examined did not differ
between LF and LF5 [29]. Because LF5 was a precursor strain of LF120, the mutation causing
reduced transcription of HaTryR in LF5 might also occur in LF120 and contribute to its resis-
tance to Cry1Ac protoxin. Although it remains to be determined if this mutation occurs in
LF120, our results do show that the activity of trypsin-like proteases were greater in LF than
LF120 (Fig 5), consistent with the idea that decreased activity of trypsin-like proteases contrib-
uted to resistance in LF120.

In contrast to the association between resistance and reduced trypsin-like activity, the activ-
ity of chymotrypsin-like proteases did not differ significantly between LF and LF120 (Fig 5).
Consistent with these results, reduced chemotrypsin activity was not associated with the resis-
tance of LF10, LF20, and LF30 relative to LF5 [40].

As expected, the trypsin inhibitor TLCK decreased activation of Cry1Ac protoxin by trypsin
and the chymotrypsin inhibitor TPCK decreased activation of Cry1Ac protoxin by chymotryp-
sin (Figs 1 and 2). However, neither TLCK nor TPCK significantly increased the LC50 of
Cry1Ac protoxin against LF or LF120 (Table 2), which implies that blocking only trypsin-like
proteases or only chymotrypsin-like proteases did not have a major effect on toxicity of
Cry1Ac protoxin. In addition, activation of Cry1Ac protoxin by midgut extract from LF larvae
was reduced by TLCK, but not by TPCK (Figs 3 and 4), which indicates the reduction in activa-
tion achieved was greater by blocking trypsin-like proteases with TLCK than by blocking chy-
motrypsin-like proteases with TPCK. Nonetheless, the decrease in activation caused by TLCK
was greater and lasted longer for trypsin (Fig 1) than for the midgut extract (Fig 3), which
implies that proteases other than trypsin contribute to activation of Cry1Ac protoxin by the
midgut extract.

Overall, the evidence reported here and from related studies [29, 40–42], indicates that in
LF120 and the other resistant strains ofH. armigera derived by laboratory selection from the
susceptible LF strain, reduced activation of Cry1Ac protoxin associated with lower activity of
trypsin-like proteases is a minor mechanism of resistance. In particular, reduced activation of
Cry1Ac protoxin cannot explain the>1000-fold resistance to Cry1Ac activated toxin in the
LF60 and LF120 strains (Table 1) [41, 42]. Accordingly, other mechanisms probably account
for most of the resistance in these two strains. For example, mis-splicing of the gene encoding
ABCC2 is linked with resistance to Cry1Ac in LF60 [41]. The results reported here and previ-
ously from the resistant strains derived from LF mirror the patterns seen with other strains of
H. armigera and other insects, where high levels of resistance are most commonly caused by
mutations that disrupt binding of Cry proteins to midgut target sites [32–33].

Materials and Methods

Insects
The susceptible LF strain was started with 200 larvae collected from Langfang County, Hebei
Province of China in 1998 and reared in the laboratory without exposure to Bt toxins or insec-
ticides. The resistant LF120 strain was derived from the LF strain via selection of a series of pro-
gressively more resistant strains: LF5, LF10, LF20, LF30, LF60, and LF120 [29, 40–42, 43]. Each
resistant strain was selected by diet incorporation of MVPII (Dow AgroSciences), a commercial
formulation containing a hybrid protoxin similar to CryAc protoxin [44]. The concentration
for selection for each strain corresponds with the number from 5 to 120 following LF in the
strain name. LF120 was selected at 120 μg Cry1Ac protoxin per ml of diet [42]. All larvae were
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reared on artificial diet. The insects were maintained at 27 ± 1°C, 60 ± 10% relative humidity
(RH), and a photoperiod of 14L:10D h [45].

Cry1Ac protoxin and activated toxin
Cry1Ac protoxin crystals were obtained from the HD-73 strain of B. thuringiensis (kindly sup-
plied by Biotechnology Research Group, Institute of Plant Protection, Chinese Academy of
Agricultural Sciences). The Cry1Ac protoxin was prepared as described by Wang et al. [46]. To
active Cry1Ac, at 37°C for 6 h in 10 ml, pH10.0, 50 mMNa2CO3 buffer with 0.4 mg of trypsin
from bovine pancreas (SIGMA) (25:1 protein concentration). Activated Cry1Ac was then pre-
cipitated by adding 4 M acetic acid dropwise to the activation reaction tube to adjust pH to 4.5,
incubating at 4°C for 15 min, and centrifuge at 10,000 x g for 15 min. The upper supernatant
was transferred into a clean tube and used as the stock solution for bioassays. the concentra-
tions of Cry1Ac protoxin or activated Cry1Ac toxin in the stock solution were estimated by
electrophoresis of 10 μl 250 μg/ml BSA solution as well as 10 μl of Cry1Ac protoxin or activated
Cry1Ac toxin stock solution on a SDS–PAGE gel and quantification of the intensity of the cor-
responding bands with Image J software [47].

Diet bioassays
We used surface overlay diet bioassays [48] with seven concentrations of Cry1Ac protoxin or
activated toxin against each strain: 0 to 96 ng/cm2 diet against LF and 0 to 56,700 ng/cm2 diet
for LF120. We diluted Cry1Ac with 50 mM pH 10.0 Na2CO3 buffer, and the buffer alone was
used as a control. Sixty μL of each dilution was applied to the surface of the artificial diet that
had been dispensed in 24-well plates and allowed to cool. When the surface of the diet was dry,
one neonate was placed in each well. Each 24-well plate constituted one replicate, and three
replicates were used per treatment, yielding a total of 504 larvae tested for each bioassay. Mor-
tality was recorded after 7 d.

Effects of the trypsin inhibitor TLCK and chymotrypsin inhibitor TPCK in
bioassays
To test effects of the protease inhibitors TLCK and TPCK (Sigma Chemical Compnay), we dis-
solved 10 mg of each inhibitor in 1 ml DMSO (dimethylsulfoxide) and applied 1 microliter of
each dilution to the dorsum of two-day-old larvae [49]. In these experiments DMSO without
inhibitor was applied to the dorsum of two-day-old larvae. After treatment with TLCK, TPCK,
or DMSO without inhibitor, larvae were immediately used in bioassays as described above.

Cry1Ac protoxin activation by trypsin and chymotrypsin
We activated Cry1Ac protoxin with bovine trypsin (Sigma Chemical Company) alone, with
trypsin and the trypsin inhibitor TLCK, with chymotrypsin (alpha-chymotrypsin, AMRESCO)
alone, and with chymotrypsin and the chymotrypsin inhibitor TPCK. We tested each inhibitor
at ratios of 10 mg protease: 1 mg inhibitor or 1 mg protease: 1 mg inhibitor. We added each
mixture of protease and inhibitor to Cry1Ac protoxin at the rate of 1 mg protease: 100 mg
Cry1Ac protoxin to digest for 30 min and 2 h. We separated the digested Cry1Ac protein by
8% SDS-PAGE, stained with Coomassie brilliant blue R250, and analyzed band intensity using
the Image J software [47].
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Cry1Ac protoxin activation by midgut extracts
We activated Cry1Ac protoxin with midgut extracts from LF and LF120 larvae alone and with
protease inhibitors. We prepared LF midgut extract as described below and Cry1Ac activation
and analysis as described above. Three biological replicates were used in this experiment.
100 μg of Cry1Ac protoxin (1 mg/mL) in pH 10.0 Na2CO3 buffer was incubated with 1 μL
NaCl (negative control) or midgut extract from LF and LF120 (1 μg total protein per reaction)
at 37°C for 30, 60, 120 and 160 min, respectively. Then the reactions were stopped by adding
25 μL 5 × SDS-PAGE loading dye and boiling for 10 min, and separated on a 8% SDS-PAGE
gel at 120 V for 1.5 h.

Midgut extracts
We prepared midgut extracts from LF and LF120 as described by Wang and Qin [50]. In brief,
10 midguts of early fifth instars were dissected and homogenized in 1.5 ml of homogenization
buffer (0.15 M NaCl) on ice as one biological replicate. The homogenate was centrifuged at 4°C
and 10,000 g for 15 min to remove debris [40, 51]. The supernatant was collected, and the pro-
tein concentration was determined with the Bradford method using a Protein Assay kit (Pierce,
Rockford, IL) and BSA as the protein standard [52]. Three technical replicates were used to
determine the protein concentration. All midgut extracts were diluted to 1 mg/ml (1mg pro-
teins per 1 ml 0.15 M NaCl) before being used in the activity and activation assays.

Protease activity
We tested the protease activity of midgut extracts from LF and LF120. We used BApNA (α-
benzoyl-DL-arginine-p-nitroanilide) and SAAPFpNA (N-succinyl-alanine-alanine- proline-
phenylalanine-p-nitroanilide) (Sigma Chemical Company) as substrates to study the activitiy
of trypsin-like proteases and chymotrypsin-like proteases, respectively. We prepared midgut
extracts as described above. We mixed 10 μl of midgut extracts (1 mg protein per ml 0.15 M
NaCl) with 45 μl of glycine and sodium hydroxide buffer (pH 10.0) [40, 50]. The activity of
trypsin-like protease was determined by adding 100 μl BApNA (1 mg/ml). For chymotrypsin-
like protease, 5 μL of midgut solution was mixed with 90 μl glycine and sodium hydroxide
buffer (pH 10.0) [40, 50]. The activity of chymotrypsin-like protease was determined by adding
45 μl of SAAPFpNA (1 mg/ml). The absorbance at 405 nm was monitored for 15 min, with
measurements taken every 10 seconds [40, 50]. The enzyme activity was expressed as the
change in absorbance per minute per mg of protein for each midgut extract. We conducted
three biological replicates per strain.

Induction of proteases in LF larvae by Cry1Ac
We used 10 early fifth instars of LF for each treatment with three biological replicates per treat-
ment. After larvae were starved for 12 h, we put them on diet containing a range of 0 to 13.3 μg
Cry1Ac protoxin per g diet. After larvae were on the diet for 12 h, we dissected their midguts,
prepared midgut extracts, and used the methods described above to measure the protease activ-
ity of the midgut extracts.

Statistical analysis
We calculated the LC50, its 95% fiducial limits, and slope of the concentration-mortality using
probit analysis [53]. We calculated the resistance ratio (RR) by dividing the LC50 for LF120 by
the LC50 of LF. We calculated the inhibition ratio (IR) by dividing the LC50 from the treatment
with inhibitor (e.g., Cry1Ac protoxin + TLCK) by the LC50 from the treatment without
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inhibitor (e.g., Cry1Ac protoxin alone). The molecular weight was 130 kDa for Cry1Ac proto-
xin and ca. 65 kDa for activated Cry1Ac protoxin, as quantified with the Image J software [47].
The percentage of Cry1Ac protoxin activated was calculated by dividing the optical density of
the activated toxin band of each treatment by the optical density of the protoxin band of the
negative control on the same gel. We used t-tests [54] to evaluate differences between strains in
protease activity and activation of Cry1Ac protoxin. Cry1Ac protoxin activation data were arc-
sine transformed before analysis. We used linear regression [55] to evaluate the association
between the concentration of Cry1Ac in diet and activity of trypsin-like proteases and chymo-
trypsin-like proteases in fifth instars of the susceptible LF strain.

Supporting Information
S1 Fig. Cry1Ac increases activity of proteases in fifth instars from the susceptible LF strain
ofH. armigera.Mean and standard error (SE) are shown from three replicates. (A) Trypsin-
like proteases. Linear regression: R2 = 0.99, df = 3, P = 0.00048. (B) Chymotrypsin-like prote-
ases. Linear regression: R2 = 0.99, df = 3, P = 0.00053.
(TIF)

S1 Table. Data for Fig 1. Activation of Cry1Ac protoxin by trypsin with and without the tryp-
sin inhibitor TLCK.
(DOCX)

S2 Table. Data for Fig 2. Activation of Cry1Ac protoxin by chymotrypsin with and without
the chymotrypsin inhibitor TPCK.
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S3 Table. Data for Fig 3. Activation of Cry1Ac protoxin by midgut extract with and without
the trypsin inhibitor TLCK.
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