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Cytohesin-1 is the guanine-nucleotide exchange factor of Arf6, a
small GTPase of Arf family, and participates in cellular morpholo-
gical changes. Knockout mice of cytohesin-1 exhibit decreased
myelination of neuronal axons in the peripheral nervous system
(PNS) “Phosphorylation of cytohesin-1 by Fyn is required for
initiation of myelination and the extent of myelination during
development (Yamauchi et al., 2012) [1]”. Herein we provide the
data regarding decreased phosphorylation levels of protein kinases
involved in two major myelination-related kinase cascades in
cytohesin-1 knockout mice.
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Fig. 1. Cytohesin-1 knockout mou
cytohesin-1 knockout mouse for
cytohesin-1.
ubject area
 Biology

ore specific subject
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Neurobiology, molecular and cellular neuroscience, developmental
biology
ype of data
 Figure

ow data was acquired
 Immunoblotting, polymerase chain reaction

ata format
 Raw data, analyzed data

xperimental factors
 Protein bands are scanned and densitometrically analyzed.

xperimental features
 Immunoblot, agarose gel electrophoresis photograph

ata source location
 Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

ata accessibility
 Data is available with this article
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Value of the data

� The data set is of value to the scientific community to need the information for signaling molecules
controlling myelination.

� The data can provide data for common intracellular signaling cascades involved in myelination.
� The data can promote further research on signaling molecules controlling myelination in vivo.
1. Data

The exons 4 to 11 of the cytohesin-1 gene were replaced with the neo gene (Fig. 1A). Deletion
of these exons was confirmed by genomic polymerase chain reaction (PCR) and immunoblotting
(Fig. 1, B and C). In immunoblotting with an antibody specific for phosphorylated Akt kinase (active
Akt), decreased phosphorylation was observed in protein samples from knockout mouse nerves
(Fig. 2, A and B). Akt is one of the central kinases controlling myelination [2–5]. Phosphorylation of
kinases belonging to the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) cascade was also decreased in knockout mouse nerves (Figs. 3–5). MAPK cascade in
neuronal and glial cells is composed of ERK1/2, MEK1/2, and B-Raf and is also well known to control
myelination [2–5].
se. (A) Schematic strategy for generating a cytohesin-1 knockout allele. (B) Genomic PCR of
the neo gene. (C) Immunoblotting of cytohesin-1 knockout mouse sciatic nerve tissue for
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2. Experimental design, materials and methods

2.1. Cytohesin-1 knockout mice

A 13.5-kb Xba I fragment of genomic DNA containing exons 4 to 11 of cytohesin-1 was obtained from
a 129/Sv mouse genomic library. The cytohesin-1–targeting vector was constructed by replacing the
~3.6-kb Xba I fragment containing exons 4 to 7 of cytohesin-1 within the fragment containing exons
4 to 11, which was ligated to the gene encoding diphtheria toxin, with a cassette of the neomycin-
resistant gene. 129/Sv embryonic stem (ES) cells were transfected with the linearized targeting vector
by electroporation. These ES cells were used to generate chimeric mice. Heterozygous offspring were
mated to wild-type C57BL/6JJms mice, and the mutations were propagated in this strain for at least 10
generations before it was crossed to produce homozygotes for experiments. Homozygous mice, as well
as heterozygous mice, were fertile under standard breeding conditions [1]. The genomic PCR for
identification of the knockout allele was performed. The primers used for genomic PCR were 5’-
CCCGGTTCTTTTTGTCAAGACCGACCTGTC-3’ (sense) and 5’-CATTCGCCGCCAAGCTCTTCAGCAATATCAC-3’
(antisense) for the neo gene [1]. PCR amplification was performed in 30 cycles, each consisting of
denaturation at 94 °C for 1 min, annealing at 68 °C for 1 min, and extension at 72 °C for 1 min. Male
mice were used for experiments if it was possible to distinguish their sex.

2.2. Immunoblotting

Mouse sciatic nerves were lysed in lysis buffer (50 mM HEPES-NaOH, pH 7.5, 20 mM MgCl2,
150 mM NaCl, 1 mM dithiothreitol, 1 mM phenylmethane sulfonylfluoride, 1 μg/ml leupeptin, 1 mM
EDTA, 1 mM Na3VO4, and 10 mM NaF) containing detergents (0.5% NP-40, 1% CHAPS, and 0.1% SDS)
[6,7]. The presence of these detergents is important for myelin protein isolation [6,7]. Equal amounts
of the proteins (20 μg total proteins) in centrifuged cell supernatants were heat-denatured for
immunoblotting using the MiniProtean TetraElectrophoresis and TransBlot TurboTransfer System
(Bio-Rad, Hercules, CA, USA). The transferred membranes were blocked with the Blocking One kit
Fig. 2. Decreased phosphorylation of Akt in cytohesin-1 knockout mice. (A) Tissue lysates (n ¼ 3) from 7-day-old sciatic nerves
of knockout (-/-) and control (þ/þ) mice were used for immunoblotting with an anti-phosphorylated Akt antibody. The
scanned bands were densitometrically analyzed for quantification. (B) Tissue lysates (n ¼ 3) from 7-day-old sciatic nerves of
knockout (-/-) and control (þ/þ) mice were used for immunoblotting with an anti-Akt. The scanned bands were densito-
metrically analyzed for quantification. Major double bands indicate Akt1 (top bands) and Akt2 (second bands). Data were
evaluated using Student's t-test (*, po 0.01; n ¼ 3).



Fig. 3. Decreased phosphorylation of ERK1/2 in cytohesin-1 knockout mice. Tissue lysates (n ¼ 3) from 7-day-old sciatic nerves
of knockout (-/-) and control (þ/þ) mice were used for immunoblotting with an anti-phosphorylated ERK1/2 (A) or anti-ERK1/
2 (B) antibody. The scanned bands were densitometrically analyzed for quantification. Major double bands indicate ERK1 and
ERK2. Data were evaluated using Student's t-test (*, po 0.01; n ¼ 3).

Fig. 4. Decreased phosphorylation of MEK1/2 in cytohesin-1 knockout mice. Tissue lysates (n ¼ 3) from 7-day-old sciatic
nerves of knockout (-/-) and control (þ/þ) mice were used for immunoblotting with an anti-phosphorylated MEK1/2 (A) or
anti-MEK1/2 (B) antibody. The scanned bands were densitometrically analyzed for quantification. Major bands involve MEK1
and MEK2. Data were evaluated using Student's t-test (*, po 0.01; n ¼ 3).
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(Nacalai Tesque, Kyoto, Japan) and immunoblotted using primary antibodies, followed by peroxidase-
conjugated secondary antibodies (Nacalai Tesque). The bound antibodies were detected using the
ImmunoStar Zeta kit (Wako, Osaka, Japan). The scanned bands were densitometrically analyzed
for quantification using UN-SCAN-IT Gel software (Silk Scientific, Orem, UT, USA). The following
antibodies were used: polyclonal anti-phosphorylated pan-Akt (active, phosphorylated Ser-473),
polyclonal anti-pan-Akt, polyclonal anti-phosphorylated ERK1/2 (active, phosphorylated Thr-202/Tyr-
204), polyclonal anti-ERK1/2, polyclonal anti-phosphorylated MEK1/2 (active, phosphorylated



Fig. 5. Decreased phosphorylation of B-Raf in cytohesin-1 knockout mice. Tissue lysates (n ¼ 3) from 7-day-old sciatic nerves
of knockout (-/-) and control (þ/þ) mice were used for immunoblotting with an anti-phosphorylated B-Raf (A) or anti-B-Raf
(B) antibody. The scanned bands were densitometrically analyzed for quantification. Bands of approximately 88 kDa indicate
B-Raf. Number signs (#) are likely to be non-specific bands. Data were evaluated using Student's t-test (*, po 0.01; n ¼ 3).
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Ser-218/Ser-222 for MEK1 and active, phosphorylated Ser-222/Ser-226 for MEK2), polyclonal anti-
MEK1/2, polyclonal anti-phosphorylated B-Raf (active, phosphorylated Ser-445), monoclonal anti-B-
Raf from Cell Signaling Technology (Danvers, MA, USA).

2.3. Statistical analysis

Data are presented as means 7 S.D. from independent experiments. Intergroup comparisons were
performed using unpaired Student's t-test. Differences were considered significant when p value was
less than 0.01.
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