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KRAS is a key oncogenic driver in lung adenocarcinoma (LUAD). Chro-

matin-remodeling gene SMARCA4 is comutated with KRAS in LUAD; how-

ever, the impact of SMARCA4 mutations on clinical outcome has not been

adequately established. This study sought to shed light on the clinical signifi-

cance of SMARCA4 mutations in LUAD. The association of SMARCA4

mutations with survival outcomes was interrogated in four independent

cohorts totaling 564 patients: KRAS-mutant patients with LUAD who

received nonimmunotherapy treatment from (a) The Cancer Genome Atlas

(TCGA) and (b) the MSK-IMPACT Clinical Sequencing (MSK-CT) cohorts;

and KRAS-mutant patients with LUAD who received immune checkpoint

inhibitor-based immunotherapy treatment from (c) the MSK-IMPACT

(MSK-IO) and (d) the Wake Forest Baptist Comprehensive Cancer Center

(WFBCCC) immunotherapy cohorts. Of the patients receiving nonim-

munotherapy treatment, in the TCGA cohort (n = 155), KRAS-mutant

patients harboring SMARCA4 mutations (KS) showed poorer clinical out-

come [P = 6e-04 for disease-free survival (DFS) and 0.031 for overall survival

(OS), respectively], compared to KRAS-TP53 comutant (KP) and KRAS-only

mutant (K) patients; in the MSK-CT cohort (n = 314), KS patients also

exhibited shorter OS than KP (P = 0.03) or K (P = 0.022) patients. Of

patients receiving immunotherapy, KS patients consistently exhibited the

shortest progression-free survival (PFS; P = 0.0091) in the MSK-IO (n = 77),

and the shortest PFS (P = 0.0026) and OS (P = 0.0014) in the WFBCCC

(n = 18) cohorts, respectively. Therefore, mutations of SMARCA4 represent a

genetic factor leading to adverse clinical outcome in lung adenocarcinoma

treated by either nonimmunotherapy or immunotherapy.
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1. Background

Lung cancer is the leading cause of cancer-related

death worldwide, with 5-year survival rates of ~ 18%.

Non-small-cell lung cancer (NSCLC) comprises 85%

of all lung cancer cases, mainly including adenocarci-

noma (LUAD), squamous cell carcinoma (LUSC), and

large cell carcinoma. Great strides have been made in

recent years with the development of immune check-

point inhibitor treatment targeting PD-1/PD-L1 medi-

ated immunosuppression, which have shown efficacy

in up to 30% of NSCLC patients [1–6]. The expression

of PD-1/PD-L1 was reported to be associated with

enhanced benefits from immunotherapy, but debates

exist because of discordant results across different

studies [1,2,4–11]. Currently, a higher tumor mutation

burden (TMB) is undergoing evaluation as a predictive

biomarker in many tumor types [7,12–14].
The mutations in KRAS are a common oncogenic

driver in ~ 20% NSCLC [15,16]. The goal of develop-

ing specific therapeutic strategies for the KRAS-mutant

patients has thus far proven elusive. For example,

KRAS mutations are associated with shortest survivals

in NSCLC patients treated with carboplatin plus pacli-

taxel as well as single anti-EGFR TKI agent [17].

Recently, it was shown that STK11/LKB1 or TP53

comutations can stratify KRAS-mutant LUAD patient

into different subgroups with distinct biology, thera-

peutic vulnerabilities and immune profiles [18], and

immunotherapy response [19].

The SWItch/Sucrose NonFermentable (SWI/SNF)

complex is a major chromatin-remodeling complex

that controls DNA accessibility to transcriptional fac-

tors and regulates transcriptional programming [20].

Genomic alterations in the components of the SWI/

SNF chromatin-remodeling complex have been identi-

fied in multiple types of cancers [21]. A recent study

reported that mutations in the chromatin-remodeling

gene PBRM1 were associated with response to

immunotherapy through IFN-c signaling pathway, a

key effector for antitumor T-cell function, in clear

cell renal cell carcinoma [22,23]. Mutations in the

PBRM1 in NSCLC are rare; however, mutations in

the SMARCA4 gene occur frequently in NSCLC

[16,24] and tended to co-occur with KRAS mutations

[16]. One recent study showed that SMARCA4 acted

as a tumor suppressor by cooperating with p53 loss

and Kras activation, and SMARCA4-mutant tumors

were sensitive to inhibition of oxidative phosphoryla-

tion [25]. Another study showed that the reduced

expression of SMARCA4 contributes to poor out-

comes in lung cancer [26]. However, the prognostic

values of SMARCA4 mutations in KRAS-mutant

LUAD patients who received either nonimmunother-

apy or immunotherapy treatment have not been well

defined.

In this study, we evaluated the prognostic value of

SMARCA4 mutations in KRAS-mutant LUAD within

four independent cohorts consisting of patients

received nonimmunotherapy or immunotherapy treat-

ment.

2. Materials and methods

For the Cancer Genome Atlas (TCGA) cohort,

matched somatic mutation, gene expression, and

clinical data of 560 patients with LUAD were

retrieved. We obtained the clinical and somatic

mutation data of 62 principal tumor types for

MSK-IMPACT Clinical Sequencing Cohort and

extracted the data of LUAD patients [27]. We

excluded patients who received immunotherapy treat-

ment indicated in their later publication [14] (as the

MSK-IO cohort including 186 patients) to establish

an MSK-CT cohort of 1033 patients received nonim-

munotherapy treatment.

We extracted the 127 LUAD patients who were

treated with immunotherapy between March 1, 2015,

and November 30, 2017, at the Wake Forest Baptist

Comprehensive Cancer Center (WFBCCC) immune-

oncology program. The experiments were undertaken

with the understanding and written consent of each

subject, and the study methodologies conformed to the

standards set by the Declaration of Helsinki. Efficacy

was assessed by the treating physician and categorized

according to RECIST guidelines [28] and defined as

durable clinical benefit [DCB; complete response (CR)/

partial response (PR) or stable disease (SD) that lasted

> 6 months] or no durable benefit (NDB, PD, or SD

that lasted ≤ 6 months). Progression-free survival

(PFS) was defined as the time from the date of initial

immunotherapy administration to the date of progres-

sion or death, and overall survival (OS) was to the

date of death or last follow-up, respectively. If the

patient was alive at the date of last contact, his/her

data were censored at that time point. Genomic pro-

files were available for 39 patients who were enrolled

into the Wake Forest Precision Oncology Initiative

(ClinicalTrials.gov Identifier: NCT02566421).

Only patients harboring KRAS mutations and with

survival data were included in the study, resulting in

155 (27.7% of 560) and 314 (30.4% of 1033) patients

received nonimmunotherapy treatment in the TCGA

and MSK-CT cohorts, and 77 (41.4% of 186) and 18

(46.2% of 39) patients received immunotherapy treat-

ment in the MSK-IO and the WFBCCC cohorts.
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2.1. Statistical analysis

Tests used to analyze clinical and genomic data

included the Mann–Whitney U-test (two-group com-

parisons), chi-square test (three-group comparisons),

and Fisher’s exact test (proportion comparisons). Sur-

vival curves were estimated using Kaplan–Meier

methodology and compared between two groups using

the log-rank test and Cox proportional hazards regres-

sion analysis. Hazard ratios (HRs) and 95% CIs were

generated by Cox proportional hazards models where

P < 0.05 and these statistics were estimable (i.e., when

at least one event occurred in both groups being com-

pared). All analyses were performed using R software,

version 3.2.1 (https://www.r-project.org).

3. Results

3.1. SMARCA4 mutations are associated with

shorter survival of patients who received

nonimmunotherapy treatment

KRAS is one of the most frequently mutated genes in

LUAD, which occur in 155 (30%) patients in the

TCGA cohort. These patients were reprehensive of the

overall LUAD cohort with median patient age of

67 years (range 33–87) and high percentage of current/

former smokers (94.8%). 5.8% (9) of the KRAS-mu-

tant patients harbored SMARCA4 mutations in the

TCGA cohort and were classified as KRAS-

SMARCA4 comutant (KS); 33.5% (52) patients har-

bored TP53 mutations and were classified as the

KRAS-TP53 comutant (KP) subgroup; and 60.6%

(94) patients did not carry SMARCA4 or TP53 muta-

tions and were classified as K (Fig. 1). The SMARCA4

mutations were not associated with any risk factors

such as age at diagnosis, tumor stage, race/ethnicity,

or smoking history (Table S1).

Disease-free survival (DFS) differed between the

three groups (P = 6e-4), with significantly shorter DFS

for patients in the KS subgroup compared with either

KP (HR 4.47, 95% CI 1.52–13.22, P = 0.003) or K

(HR 2.43 95% CI 1.46–4.05, P = 1.2e-4) patients in

pair-wise comparisons (Fig. 2A). In contrast, KP and

K patient had similar DFS (P = 0.64). We also com-

pared the survivals between KS (SMARCA4-mutant)

and KP + K (SMARCA4-wild-type) patients, and

found that KS patients exhibited significantly shorter

DFS (HR 5.34 95% CI 2.05–14.14, P = 1.3e-4)

(Fig. 2B).

Overall survival also varied significantly between the

three groups (P = 0.031). The KS patients exhibited

shorter DFS than the K subgroup (HR 1.63, 95% CI

1.05–2.55, P = 0.024). Although the difference in OS

between KS and KP was not significant (P = 0.21), the

median OS in KS was 15.37 months compared with

18.48 months in KP (Fig. 2C). In addition, the two-

group comparison showed significantly shorter OS in

KS (SMARCA4-mutant) compared with K + KP

(SMARCA4-wild-type) patients (HR 2.32, 95% CI

1.01–5.44, P = 0.047) (Fig. 2D).

We validated these observations in an independent

MSK-CT cohort [27], consisting of 314 KRAS-mutant

patients. High percentage of current/former smokers

(78.0%) were also observed. Across the entire cohort,

10.8% (34) patients were classified as KS, 34.1% (107)

were KP, and 55.1% (173) were K (Fig. 1 and

Table S2). Significantly shorter OS was observed for

patients with KS compared with K (HR 1.39, 95% CI

1.04–1.85, P = 0.022) or KP (HR 1.94, 95% CI 1.06–
3.57, P = 0.03) (Fig. 3A), and K and KP have similar

OS (P = 0.99). In the two-group comparison, OS was

significantly shorter in KS (SMARCA4-mutant) com-

pared with K + KP (SMARCA4-wild-type) patients

(HR 1.95, 95% CI 1.13–3.38, P = 0.015; Fig. 3B).

On the other hand, genes such as STK11 have been

identified as biomarkers for a subgroup (KL) of

KRAS-mutant LUAD patients and associated with

poorer immunotherapy response [19]. In the TCGA

cohort, SMARCA4 does not show co-occurring muta-

tions with STK11, but the two genes are significantly

comutated in the MSK-CT cohort (Fig. 1). Overall,

KS patients experienced the shortest survival in the

TCGA (P = 0.00028 for DFS and 0.029 for OS;

Fig. S1A,B) and MSK-CT (P = 0.038 for OS;

Fig. S1C) cohorts, although the differences between

KL and KS groups are not significant (P > 0.05).

3.2. SMARCA4 mutations are associated with

shorter survival of patients who received

immunotherapy treatment

We then examined whether SMARCA4 mutations

impacted KRAS-mutant patient response to

immunotherapy. Seventy-seven LUAD patients har-

boring KRAS mutations were extracted from the

MSK-IO cohort [14]. The median age of patients was

68 (range 37–86), and the majority (93.5%) was ever

smokers. Based on SMARCA4 and TP53 mutation

status, 11.7% (9) tumors were classified as KS, 32.5%

(25) were KP, and 55.8% (43) were K. Demographic

and clinical characteristics were generally well balanced

between the comutation defined groups. The clinical

benefit rates to immunotherapy in KS, KP, and K

groups were not significantly different (P = 0.42),
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Fig. 1. Global somatic mutation landscape of KRAS, TP53, STK11, KEAP1, and SMARCA4 genes in the TCGA, MSK-CT, MSK-IO, and

WFBCCC cohorts. Comutations were determined with Fisher’s exact test. Black *,**,**: P < 0.05, 0.01, 0.001 for co-occurrence; red

***: P < 0.001 for exclusive occurrence.
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probably due to the small sample size; however, smal-

ler proportion of KS patients (2/9 = 22.2%) achieved

DCB than KP (10/23 = 43.5%) or K (13/43 = 30.2%)

patients (Fig. S1 and Table S3).

Significantly different PFS was observed between

the three groups (P = 0.0091). The KS patients exhib-

ited the shorter PFS compared with KP (HR 2.82,

95% CI 1.17–6.81, P = 0.016) tumors in pair-wise

comparisons. Although the difference in PFS between

KS and K was not significant (P = 0.18), the median

OS in KS was 1.73 months compared with

2.77 months in KP. Interestingly, KP patients exhib-

ited longer survival than K patients (HR 0.48, 95% CI

0.26–0.86, P = 0.012) (Fig. 4A). We merged the KP

and K patients to test the difference between

SMARCA4-mutant and wild-type patients.

SMARCA4-mutant (KS) patients exhibit significantly

shorter PFS than wild-type (K + KP) patients (HR

2.15, 95% CI 1.46–4.35, P = 0.048, median PFS 1.73

vs. 4.22 months) (Fig. 4B).

We also validated the prognostic values of

SMARCA4 mutations in KRAS-mutant LUAD

patients upon immunotherapy using 18 patient samples

from the WFBCCC. Patients were classified into KS

(11.1%), KP (44.4%), and K (44.4%) subgroups

(Fig. 1 and Table S4). In this small cohort, the clinical

benefit rates to checkpoint inhibitor-based

immunotherapy in KS, KP, and K groups were signifi-

cantly different (P = 0.03). KS patients were resistant

to treatment, while KP patients were mostly sensitive.
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treatment from the TCGA cohort.

Kaplan–Meier survival analysis of

survival in (A, C) the KS, KP, and K

subgroups and (B, D) in the two-

group comparison between

SMRACA4-mutant and wild-type

KRAS-mutant patients.
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The three groups of KRAS-mutant LUAD

patients exhibited significantly different OS

(P =0.042) and PFS (P = 0.0014). The KS patients

exhibited the shortest OS and PFS compared with

either KP (HR 2.46, 95% CI 1.05–6.61, P = 0.0019

and P = 0.0019 with HR and 95% CI evaluable)

and K (HR 2.46, 95% CI 1.01–6.61, P = 0.042 and

HR 3.06, 95% CI 1.03–10.28, P = 0.029) patients in

pair-wise comparisons (Fig. 5A,C). Further signifi-

cantly deceased OS and PFS were observed in KS

(SMARCA4-mutant) patients compared with

K + KP (wild-type) ones (HR 11.98, 95% CI 1.66–
26.6, P = 0.0018 and HR 18.7, 95% CI 1.65–21.6,
P = 0.0011) (Fig. 5B,D), consistent with the obser-

vations in the MSK-IO cohort. Altogether, these

data indicated that SMARCA4 abrogation likely

determines immunotherapy resistance in KRAS-mu-

tant LUAD.

In addition, analysis showed that STK11 is comu-

tated with SMARCA4 in the MSK-IO cohort but not

in the WFBCCC cohort. We further included the KL

patient group and tested the survival outcomes of

KRAS-mutant patients upon immunotherapy treat-

ment. Consistent with our observation in the analysis

of patients who received nonimmunotherapy treat-

ment, KL patients experienced the worst survivals in

the MSK-IO (P = 0.036 for PFS; Fig. S1D) and

WFBCCC (P = 0.00055 for PFS and 7e-04 for OS;

Fig. S1E,F) cohorts.

3.3. SMARCA4 mutations are significantly

enriched among tumors with

immunosuppressive tumor microenvironment
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Fig. 5. SMARCA4 mutations are

associated with shorter PFS and

OS of KRAS-mutant LUAD patients

treated with immunotherapy

treatment from the WFBCCC

cohort. Kaplan–Meier survival

analysis of survival (A, C) in the KS,

KP, and K subgroups and (B, D) in

the two-group comparison between

SMRACA4-mutant and wild-type

KRAS-mutant patients.
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TCGA cohort which has RNA-seq data available.

Using CIBERSORT [29] and the LM22 signature gene

(Table S5) to quantify the proportion of each individ-

ual immune cell type, we found that KS patients had

significantly lower estimated proportions of CD8 and

activated CD4 memory T cells than either K

(P = 0.015 and 0.035) or KP (P = 0.043 and 0.023),

indicating an immunosuppressive tumor microenviron-

ment in the KS patients (Figs 6 and S2). We did not

observe differences between KP and K patients

(P = 0.66 and 0.35), which may explain the similar

outcomes of these two groups of patients in the TCGA

cohort.

4. Discussion

Alterations in chromatin-remodeling complex, SWI/

SNF, including SMARCA4, have been found in

NSCLC [16,24,30,31]. In this study, we interrogated

the clinical significance of SMARCA4 mutations in

KRAS-mutant LUAD in the TCGA and the MSK-CT

cohorts in the absence of immunotherapy and the

MSK-IO and the WFBCCC cohorts who received

immunotherapy. Our analysis indicates that genomic

alterations in the chromatin-remodeling gene,

SMARCA4, as a negative prognostic factor to KRAS-

mutant LUAD patients no matter received nonim-

munotherapy or immunotherapy treatment. The muta-

tions may induce an immunosuppressive tumor

environment by modulating the immune cell compo-

nents. Although the completed determinants of

response to treatment are not yet completed defined,

our study suggests that nonimmunotherapy and

immune checkpoint inhibitor-based immunotherapy

treatment may not benefit this subset of patients.

More frequent KRAS mutations were observed in

ever smokers than that occurred in never smokers

[24,32–34], and associated with a significant increase in

TMB [35]. Previous studies indicated that a subset of

KRAS-mutant NSCLC patients who carry other muta-

tions may have a better response to immunotherapy

treatment [2,35–37]. We determined that KP patients

exhibited better survival than KS and K patients when

receiving immune checkpoint inhibitor-based

immunotherapy, which is consistent with previous

report [35]. The underlying mechanism may be that

KP patients contained the largest proportion of CD8

and activated CD4 memory T cells, supporting by pre-

vious report that TP53 and KRAS mutations had

remarkable effects on increasing PD-L1 expression,

facilitating T-cell infiltration, and augmenting tumor

immunogenicity [35]. On the other hand, no improve-

ment of survival was observed in the KS group of

patients who received immunotherapy. A possible

explanation for this is that the two groups of patients

have the similar TMB (Fig. S3), which was shown as a

predictive biomarker in many tumor types [7,12–14].
Moreover, similar PD-L1 expression levels were

observed between the KL and KS groups of patients

(Fig. S4), which suggests their similar outcomes to

immune checkpoint inhibitor-based immunotherapy.

SMARCA4 inactivation was shown to promote

NSCLC aggressiveness by altering chromatin organiza-

tion [30], and the reduced expression of SMARCA4

contributes to poor outcomes in lung cancer [26,38,39].

SMARCA4 mutations were distributed throughout the

gene and involved most domains (Fig. S5). Here, we

showed that SMARCA4-KRAS comutant patients

(KS) exhibited poorer survival of patients who

received either nonimmunotherapy or immunotherapy

treatment. On the other hand, quantitative IHC for

BRG1 can capture SMARCA4-deficient tumor [40,41]

which is associated with SMARCA4 mutations

(Fig. S6A). Therefore, evaluation of BRG1 expression

by IHC may further enhance the predictive utility for

nonimmunotherapy or immunotherapy treatment to

NSCLC. Further, recent study reported that mutation

types determined the expression levels of SMARCA4,

which is also observed in the TCGA cohort that trun-

cating (nonsense) but not missense mutations, are cor-

related with the loss of SMARCA4 expression

(Fig. S6B); however, due to the small number of
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Fig. 6. Tumor microenvironment varied among three groups of

patients. KS patients contained the lowest proportions of CD8 and

activated CD4 memory T cells than either K or KP patients. The

plot for all 22 types of immune cells was shown in Fig. S2. *P<.05;

Mann–Whitney U-test.
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patients carrying nonsense mutations (Fig. S5), the

comparison of survivals did not show significant differ-

ence (P > 0.05; Fig. S6C).

SMARCA4 mutation is a unique biomarker for the

stratification of KRAS-mutant patients with LUAD.

Many biomarkers have been reported to stratify

patients with LUAD and predict patient outcomes.

For instance, STK11/LKB1 mutations can stratify

KRAS-mutant LUAD into different subgroups with

distinct biology, therapeutic vulnerabilities and

immune profiles [18] and immunotherapy response

[19]; however, STK11 mutations do not serve as a

prognostic marker for patients who received nonim-

munotherapy treatment [19,37,42,43]. In contrast,

SMARCA4 mutations are associated with shorter sur-

vivals of patients who received nonimmunotherapy

treatment in both TCGA (P = 0.022 for PFS and

0.027 for OS) and MSK-CT (P = 0.0026 for OS) or

immunotherapy treatment in the WFBCCC cohort

(P = 0.012 for OS and 0.0045 for PFS) but not MSK-

IO cohort (P = 0.53 for PFS) (Fig. S7). These findings

are consistent with a recent publication by Shoenfeld

et al in terms of SMARCA4 mutations as poorer prog-

nosis biomarker for patients receiving nonimmunother-

apy as well as the comutated genes [44]. Regarding

immunotherapy treatment, Shoenfeld et al. reported

that SMARCA4-mutant patients had better response

rates; however, these patients experienced a trend of

shorter survivals that is consistent with our observa-

tion, although the difference in their analysis is not

significant. Also, the four cohorts in our study only

consist of patients with LUAD, while the study by

Shoenfeld et al. covers all subtypes of NSCLC includ-

ing LUAD, LUSC, and others. Future studies with

larger cohort of patients with same histology may be

needed.

For these patients harboring both KRAS and

SMARCA4 mutations, an alternative treatment strat-

egy is required. A clinical study showed that cisplatin-

based chemotherapy benefited NSCLC patients with

low SMARCA4 expression [26]. Another report indi-

cated the activity of AURKA, which encodes a cell-cy-

cle regulated kinase, was essential in NSCLC cells

lacking SMARCA4, and the inhibition/depletion of

AURKA enabled apoptosis and cell death in vitro and

in xenograft mouse models [45]. As well, CDK4 inhibi-

tor such as Palbociclib may be another option for

patients carrying SMARCA4 mutations [46]. More-

over, a recent study indicated that SMARCA4-defi-

cient lung cells and xenograft tumors displayed

marked sensitivity to inhibition of oxidative phospho-

rylation [25]. All observations suggested encouraging

treatment strategies but need further testing in clinics.

5. Conclusions

We provide evidence that SMARCA4 mutations are

associated with poor clinical survival outcomes of

KRAS-mutant LUAD patients. If confirmed in addi-

tional cohorts, it is likely that future prediction models

will need to include SMARCA4 mutations.
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among K, KP and KS patients.

Fig. S3. The comparisons of TMBs among K, KP and

KS patients. ** P < 0.01; Mann-Whitney U test.

Fig. S4. The comparisons of PD-L1 levels among K,

KP and KS patients.
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Fig. S6. (A) Overall, SMARCA4 mutations are associ-

ated with lower expression level of SMARCA4, and

(B) Specifically, non-sense mutations are associated

with the lowest expression levels compared to wild-

type, missense mutations and other mutations in the

TCGA cohort. (C) No significant difference was

observed for the patient survivals between those carry-

ing non-sense and missense/other types of mutations in

the MSK-CT cohort.

Fig. S7. SMARCA4 mutations as a biomarker in

LUAD are associated with shorter DFS and OS of

patients treated with non-immunotherapy in the (AB)

TCGA and (C) MSK-CT cohorts, and shorter PFS

and OS of patients treated with immunotherapy in the

(EF) WFBCCC cohort but (D) not MSK-IO cohort.

Table S5. The LM22 Signature genes, provided at

https://cibersort.stanford.edu/download.php.

472 Molecular Oncology 15 (2021) 462–472 ª 2020 The Authors. Molecular Oncology published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies

SMARCA4 mutations as biomarker in KRAS-mutant LUAD L. Liu et al.

https://cibersort.stanford.edu/download.php

	Outline placeholder
	mol212831-aff-0001
	mol212831-aff-0002
	mol212831-aff-0003
	mol212831-aff-0004
	mol212831-aff-0005
	mol212831-aff-0006
	mol212831-aff-0007
	mol212831-aff-0008
	mol212831-fig-0001
	mol212831-fig-0002
	mol212831-fig-0003
	mol212831-fig-0004
	mol212831-fig-0005
	mol212831-fig-0006
	mol212831-bib-0001
	mol212831-bib-0002
	mol212831-bib-0003
	mol212831-bib-0004
	mol212831-bib-0005
	mol212831-bib-0006
	mol212831-bib-0007
	mol212831-bib-0008
	mol212831-bib-0009
	mol212831-bib-0010
	mol212831-bib-0011
	mol212831-bib-0012
	mol212831-bib-0013
	mol212831-bib-0014
	mol212831-bib-0015
	mol212831-bib-0016
	mol212831-bib-0017
	mol212831-bib-0018
	mol212831-bib-0019
	mol212831-bib-0020
	mol212831-bib-0021
	mol212831-bib-0022
	mol212831-bib-0023
	mol212831-bib-0024
	mol212831-bib-0025
	mol212831-bib-0026
	mol212831-bib-0027
	mol212831-bib-0028
	mol212831-bib-0029
	mol212831-bib-0030
	mol212831-bib-0031
	mol212831-bib-0032
	mol212831-bib-0033
	mol212831-bib-0034
	mol212831-bib-0035
	mol212831-bib-0036
	mol212831-bib-0037
	mol212831-bib-0038
	mol212831-bib-0039
	mol212831-bib-0040
	mol212831-bib-0041
	mol212831-bib-0042
	mol212831-bib-0043
	mol212831-bib-0044
	mol212831-bib-0045
	mol212831-bib-0046


