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Infections with filamentous fungi are common to all animals, but attention is

rising especially due to the increasing incidence and high mortality rates observed

in immunocompromised human individuals. Here, Aspergillus fumigatus and other

members of its genus are the leading causative agents. Attributes like their saprophytic

life-style in various ecological niches coupled with nutritional flexibility and a broad host

range have fostered the hypothesis that environmental predators could have been the

actual target for some of their virulence determinants. In this mini review, we have merged

the recent findings focused on the potential dual-use of fungal defense strategies against

innate immune cells and soil amoebae as natural phagocytes. Well-established virulence

attributes like the melanized surface of fungal conidia or their capacity to produce

toxic secondary metabolites have also been found to be protective against the model

amoeba Dictyostelium discoideum. Some of the recent advances during interaction

studies with human cells have further promoted the adaptation of other amoeba

infection models, including the wide-spread generalist Acanthamoeba castellanii, or less

prominent representatives like Vermamoeba vermiformis.We further highlight prospects

and limits of these natural phagocyte models with regard to the infection biology of

filamentous fungi and in comparison to the phagocytes of the innate immune system.
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ENVIRONMENTALLY ACQUIRED FUNGAL PATHOGENS

Fungi are ubiquitous in nature, inhabiting various ecological niches. Even among those which
thrive as saprophytes and do not exhibit any host requirement for survival, there are pathogens
which cause devastating diseases in humans and animals resulting in thousands of deaths every
year (Brown et al., 2012). Classical examples include filamentous fungi like Aspergillus fumigatus
and Fusarium sp., but also several dimorphic fungi such as Blastomyces dermatitidis orHistoplasma
capsulatum, and the yeast Cryptococcus neoformans, have environmental reservoirs. One of the
most prevalent groups of fungi in the environment is represented by the aspergilli (Shelton et al.,
2002). With several hundred species, only a few of them have a considerable impact on human
health: A. fumigatus, A. flavus, A. terreus, A. nidulans, and A. niger.

Aspergillus fumigatus is one of the most important air-borne fungal pathogens, living
ubiquitously in terrestrial environments. This fungus disseminates by releasing thousands of
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asexual spores (conidia) from each conidiophore which, upon
inhalation, pass through the nasal cavity and reach the alveoli.
Most of them are expelled by mucocilliary clearance while the
residual ones are eliminated by macrophages and neutrophils of
an immunocompetent host. In the case of an immunodeficient
host, conidia swell and grow into a mycelium. Once the
fungus overcomes the natural immune barrier, it can cause
asthma-associated allergies, sinusitis, allergic bronchopulmonary
aspergillosis (ABPA) and, in the worst case, life-threatening
invasive aspergillosis (IA), occasionally reaching mortality rates
even beyond 50% due to rapid progression and misdiagnosis
(Brown et al., 2012). Aspergilli can also infect wild and domestic
animals nearly encompassing all major phyla including corals,
honey bees, reptiles, and warm-blooded animals such as birds,
mammals, and non-human primates (reviewed by Seyedmousavi
et al., 2015). Another group of environmental filamentous
fungi represent exclusively entomogenous pathogens, such as
Metarhizium anisopliae or Beauveria bassiana. Microscopic
examination and phagocytosis assays with these fungi suggested
that their ability to adhere to the insect cuticle, penetrate through
the haemocoel using hydrolyzing enzymes, and ultimately
survive phagocytic haemocytes may be a consequence of
adaptations that have been acquired early in evolution to avoid
predation by soil amoebae (Bidochka et al., 2010).

Unlike Aspergillus, C. neoformans is not ubiquitous in
the soil; rather it has been isolated from areas frequented
by pigeons, chickens, turkeys, and other avian species. After
inhalation of infectious particles, Cryptococcus resides in the
lung alveoli where it can persist and replicate while a thick
polysaccharide capsule surrounding the yeast cell helps to avoid
its killing by macrophages. Other studies have shown that
Cryptococcus is also able to survive intracellularly, even a few
hour after phagocytosis (Feldmesser et al., 2000). Dissemination
to the brain results in severe meningoencephalitis, especially in
immunocompromised patients. On the other hand,C. gatiiwhich
has been isolated from trees, mainly causes pulmonary infections
in an immunocompetent host (García-Rodas and Zaragoza, 2012;
Kwon-Chung et al., 2014).

Among other environmentally acquired pathogenic fungi,
thermally dimorphic fungi such as Histoplasma capsulatum,
Blastomyces dermatitidis, and Coccidioides immitis are especially
clinically relevant and classified as Biosafety Level 3 (BSL3)
organisms. Despite their divergent phylogeny, they all
share similar patterns of existence: temperature-dependent
morphological dimorphism, pulmonary infectivity, and
endemism. After the inhalation of conidia, transformation into a
yeast-form is crucial to promote pathogenicity through escape
from phagocytosis, modulation of the cytotoxic environment of
the phagolysosome or enhanced degradation of reactive oxygen
species (Boyce and Andrianopoulos, 2015).

Considering the diversity of environmental niches and
strategies to survive and replicate within a variety of mammalian
hosts, the aforementioned virulence attributes may confer a
dual-use capability to defend against phagocytes in both animal
hosts and the environment. Moreover, such parallels gave rise
to the idea that selective pressures in the environment have
led to the emergence and maintenance of these traits that have
later supported virulence in higher eukaryotes. Although the

filamentous life style of aspergilli suggests little need for any
specific attributes to avoid or withstand any phagocytes, their
infectious and reproductive stage is formed by small, unicellular
conidia which are easily ingested by such cells. A number of
profound studies over the last years have uncovered a multitude
of mechanisms which aid in the escape and defense of these
fungi against their opponents of human or environmental origin
(Table 1).

FUNGAL RESISTANCE TO INNATE
IMMUNE CELLS AND SOIL AMOEBAE

Macrophages and neutrophil granulocytes are the most
prominent representatives among innate immune cells which
counteract fungal pathogens. Alveolar macrophages are the first
line of defense against IA by killing inhaled conidia and initiating
the pro-inflammatory response that recruits neutrophils to
the site of infection (reviewed by Brakhage et al., 2010). As a
consequence, patients with reduced numbers of macrophages
have long been known to be at a higher risk to develop IA
(Brakhage, 2005). A number of in-vitro studies suggest that even
macrophages from immunocompetent individuals show variable
killing efficiencies of ingested fungal conidia ranging from
10 to 90% as summarized in Philippe et al. (2003). The same
study demonstrated that fungal conidia are especially resistant
to killing when remaining in a dormant state or when the
confronting macrophages are derived from immunosuppressed
donors. Overall, most of these results are based on counts of
colony forming units (CFUs) and certain methodological issues,
such as the time of co-incubation, conidial aggregation or the
incomplete experimental removal of non-ingested conidia,
could have also contributed to the heterogeneous killing rates
that have been reported. A similar assay with Dictyostelium
discoideum revealed that conidia were readily ingested but
remained viable over more than 24 h based on the number
of CFUs (Hillmann et al., 2015). Even the comparably robust
pathogen Acanthamoeba castellanii ingested conidia within the
first hour of their interaction, but no signs of digestion were
observed at any stage (Van Waeyenberghe et al., 2013). Along
this line, co-incubation of A. fumigatus or Fusarium oxysporum
conidia with the common water contaminant Vermamoeba
vermiformis did not result in any reduction of viable conidia,
but instead phagocytic uptake promoted filamentation and
growth of the fungus (Cateau et al., 2014; Maisonneuve et al.,
2016).

RECOGNITION AND PROCESSING OF
FUNGAL CONIDIA BY HUMAN AND
ENVIRONMENTAL PHAGOCYTES

Given their role as a first line of defense, studies on the
recognition and phagocytic processing of fungal conidia by
macrophages have a long-standing history, mainly with regard to
aspergilli. The surface of their conidia represents the immediate
interface and pathogen-associated molecular patterns (PAMPs)
include cell wall constituents like α- and β-glucans, chitins,
galactomannans, and other polysaccharides. However, these are
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TABLE 1 | Fungal virulence determinants studied using amoeba model systems.

Amoeba model Fungal pathogen Virulence factor studied References

HUMAN PATHOGENIC FUNGI

A. castellanii C. neoformans Capsule, melanin, phospholipase production Steenbergen et al., 2001; Chrisman et al., 2010

Comparative transcriptomic study Derengowski et al., 2013

Extracellular vesicles, glucuronoxylomannan of capsule Rizzo et al., 2017

H. capsulatum Yeast-to-hyphae transition Steenbergen et al., 2004

S. schenckii

B. dermatitidis

A. fumigatus Phagocytic escape Van Waeyenberghe et al., 2013

A. castellanii

Naegleria gruberi

A. fumigatus

A. terreus

Diffusible compound with anti-amoebic properties Hobson, 2000

D. discoideum C. neoformans Capsule, melanin Steenbergen et al., 2003

A. fumigatus DHN-melanin, gliotoxin Hillmann et al., 2015

Trypacidin Mattern et al., 2015

A. terreus Asp-melanin Geib et al., 2016

S. cerevisiae

C. albicans

C. glabrata

Flocculation

Hyphae formation

Koller et al., 2016

ENTOMOPATHOGENIC FUNGI

A. castellanii M. anisopliae

B. bassiana

Phagocytic escape and survival Bidochka et al., 2010

OTHER

Giant vampyrellid soil

amoebae

Various soil-borne species,

Plant pathogenic fungi

First feeding trials to assess the ability of soil amoeba to

attack, perforate and lyse the spores of different soil fungi

Old and Darbyshire, 1978; Chakraborty et al., 1983;

Old et al., 1985; Chakraborty and Old, 1986

Protostelium mycophaga Olive and Stoianovitch, 1960

usually masked by a proteinaceous, hydrophobic rodlet layer
which is immunologically inert and diminishes the recognition
by immune cells (Aimanianda et al., 2009). The green-gray
dihydroxynapthalene (DHN)-melanin pigment coating dormant
conidia is another surface component assumed to play a similar
role in A. fumigatus (Jahn et al., 1997; Tsai et al., 1998; Chai
et al., 2010). These protective layers are lost during swelling and
subsequent germination of the conidia (Figure 1), exposing the
PAMPs and allowing recognition, as demonstrated for strains
of A. fumigatus lacking the DHN melanin pigment which were
ingested by macrophages at higher rates than wild type strains
(Luther et al., 2007). Interestingly, nearly identical ratios were
observed with D. discoideum. Conidia of the wild-type, covered
by green DHN-melanin, were taken up, but at least threefold
less efficiently than the white conidia of the melanin deficient
mutant (Hillmann et al., 2015). These data suggest that hiding
“prey”-associated molecular patterns could be an asset to escape
also from environmental predators and hence, well suited to be
studied in an amoeba model.

Swollen conidia of A. fumigatus that have lost their DHN-
melanin cover expose cell wall β-glucans which activate the
Dectin-1/Syk kinase/NADPH signaling cascade in macrophages
(Luther et al., 2007; Ma et al., 2012). After recognition
and internalization, phagolysosome maturation is initiated
through assembly of the NADPH oxidase and LC3-associated
phagocytosis (LAP) (Akoumianaki et al., 2016). Melanized
conidia of A. fumigatus are able to inhibit the crucial process
of phagolysosomal maturation at the acidification step which
contributes to their significantly reduced killing rates relative

to melanin deficient conidia (Jahn et al., 2002; Thywißen et al.,
2011, Figure 1). In sharp contrast, melanized conidia were shown
to inhibit the apoptosis of macrophages by activating the PI3-
kinase/Akt signaling pathway (Volling et al., 2011).

The chemically distinct Asp-melanin of Aspergillus terreus
does not inhibit phagolysosomal acidification in macrophages
or D. discoideum (Figure 1), indicating that even closely
related fungi, such as A. fumigatus and A. terreus, apply
different persistence and propagation strategies inside the
harsh phagolysosomes of macrophages and some environmental
phagocytes (Slesiona et al., 2012; Geib et al., 2016).

PHAGOCYTE-ESCAPE MECHANISMS OF
A. FUMIGATUS

Apart from conidial killing, macrophage encounters with
A. fumigatus may also result in disruption of the host cell by the
elongation of the hyphae (Figure 1). Here, Aspergillus fumigatus
conidia swell up and initiate growth despite the nutrient-scarce
environment of the phagolysosome thereby exploiting their
glyoxylate cycle and siderophore machinery to overcome the
limited supply of carbon and iron, respectively (Behnsen et al.,
2007; Schrettl et al., 2010). It seems likely that these pathways
could also be active during conidial processing in environmental
phagocytes as this escape strategy was well documented during
the interaction with A. castellanii as well as D. discoideum,
resulting in host cell lysis for both amoebae (Van Waeyenberghe
et al., 2013; Hillmann et al., 2015). Some of the consequences
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FIGURE 1 | Comparative schematic view on parallel events in the phagocytic processing of fungal conidia from Aspergillus fumigatus (Af) and Aspergillus terreus (At)

in macrophages and amoeba. The latter summarizes results from A. castellanii (Ac) and D. discoideum (Dd). The conidial pigments Asp-melanin (At) and DHN-melanin

(Af) are complex polymers and the final-known intermediate structure is displayed. Ingested spores of At can persist in acidified phagolysosomes (PLs) in

macrophages. Acidification of At containing PLs occurs also in D. discoideum. In macrophages, Af can either be killed via the LC3 dependent pathway, laterally

transferred to other cells, or undergo swelling and germination. Exocytosis (Ac), swelling (Ac, Dd) and germination (Ac, Dd) of Af conidia has also been documented in

amoeba, while killing by amoeba has not been reported. The spore-borne trypacidin, and the secreted gliotoxin and fumagillin are all made by A. fumigatus only and

are all known to affect macrophages as well as Dd.

of intracellular fungal germination on the host cell were only
recently resolved for human alveolar macrophages. Orchestrated
by calcineurin, the infected host cell can complete exocytosis of
the fungus containing endosome, followed by the lateral transfer
to neighboring cells as part of programmed necrosis (Shah
et al., 2016). In perspective of the well-studied social behavior
of D. discoideum, this amoeba model seems to be especially
promising for future studies on such intercellular or altruistic
processes. It has become obvious that filamentous fungi can
be tough opponents of innate immune cells, but questions on
the origin of such anti-immune properties of filamentous fungi
remain open. Amoeba models could help to close the knowledge
gaps which cannot be addressed from in vitro studies with human
cells.

AMOEBAE PREDATION AS AN
EVOLUTIONARY TRAINING GROUND FOR
FILAMENTOUS FUNGAL PATHOGENS

Free living amoebae (FLA) are ubiquitous unicellular protozoa,
distributed worldwide in various environments such as soil,
water, or air. Mycophagous species, either opportunists or
specialists, are widespread and have been isolated over the past
60 years (Olive and Stoianovitch, 1960; Old andDarbyshire, 1978;
Chakraborty et al., 1983; Old et al., 1985; Chakraborty and Old,

1986). One of the first mycophagous amoebae ever described was
Protostelium mycophagum (Olive and Stoianovitch, 1960). It has
been isolated alongside the pink-pigmented yeast Rhodotorula
mucilaginosa, but it can also feed on Phoma sp., Ustilago
violacea, Sporobolomyces sp., and Cryptococcus laurentii (Spiegel
et al., 2006). Other mycophagous soil amoebae from the
genera Thecamoeba, Arachnula, and Vampyrella have been
shown to suppress the growth of the plant pathogenic fungus
Gaeumannomyces graminis var. tritici and therefore significantly
contribute to the reduction of “take-all” wheat crops disease
caused by this fungus (Chakraborty et al., 1983).

In environments where fungi have encountered constant
protozoal predation and competition for nutrients, they must
have developed strategies to counteract phagocytic uptake or
intracellular passage. Consequently, the same determinants
that were effective against amoeba predation, could have later
promoted the survival of fungi in a human host. The coincidental
evolution hypothesis suggests that virulence factors have evolved
as a response to more ordinary selection pressures than for
virulence per se (Erken et al., 2013). Several studies using free-
living amoeba A. castellanii and more recently D. discoideum
have supported this hypothesis for yeast-like fungi and have
underlined the suitability of these models to study basic fungal
virulence determinants (Steenbergen et al., 2001, 2004; Chrisman
et al., 2010; Derengowski et al., 2013; Koller et al., 2016; Rizzo
et al., 2017, see Table 1 for an overview).
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Aspergillus fumigatus requires no obvious residence inside
the mammalian host to survive and replicate; it appears to lack
classical virulence factors and its pathogenicity primarily depends
on host impairment. Therefore, it is conceivable that the ability to
counteract the compromised immune system was partially tuned
from the long-term interplay between fungi and their predators
in their natural environment. Such fungivorous organisms are by
no means limited to amoebae, but also include higher animals
like nematodes, mites, or insects. For instance, a primary study
on A. nidulans demonstrated that the multitude of fungal low-
molecular-mass compounds known as secondary metabolites
could present a selective advantage against predation by the
fungivorous springtail Folsomia candida (Rohlfs et al., 2007).

Such defensive actions could also provide protection against
microscopic predators, as active components have been shown
to diffuse from the non-germinating spores and inhibit certain
functions of phagocytosis (Slight et al., 1996). The anti-amoebae
effects of diffusates from clinical and environmental isolates of
A. fumigatus and A. terreus have been described on Naegleria
gruberi, proposing it as a primary function of such metabolites
(Hobson, 2000). Even at the early stages of a direct interaction,
mycotoxins are encountered immediately by the ingesting
phagocytes, as it has recently been shown for the amoebicidal
polyketide trypacidin which resides primarily on the surface of
the A. fumigatus spore (Gauthier et al., 2012; Mattern et al., 2015,
Figure 1). Following germination and escape, further potent,
soluble toxins are synthesized.

Among them, the sesquiterpene fumagillin was one of the
first for which amoebacidal properties were observed and
has initially been used for the treatment of infections caused
by Entamoeba histolytica (Killough et al., 1952). Fumagillin
(Figure 1) and its synthetic analogs thereby irreversibly inhibit
the methionine aminopeptidase-2 (MetAP2), making them
promising therapeutic candidates against malaria parasites,
trypanosomes, or other amoebae (Arico-Muendel et al., 2009).
When using D. discoideum as a model, however, cytotoxic
effects on the phagocytes could largely be attributed to the non-
ribosomal peptide gliotoxin (Hillmann et al., 2015). The toxic and
immunosuppressive properties of gliotoxin, the prototype of the
epidithiodioxopiperazine (ETP)-type mycotoxins, are directed
toward the host’s immune effector cells via the activity of its
unusual intramolecular disulfide bridge (Figure 1). Several target
molecules for gliotoxin have been well described, including the
NADPH oxidase of polymorphonuclear leukocytes or central
regulatory hubs like the phosphatidylinositol 3,4,5-trisphosphate
metabolism and the transcription factor NFκB (Pahl et al.,
1996; Tsunawaki et al., 2004; Schlam et al., 2016). Among
these studies, Schlam and colleagues have shown that gliotoxin
further prevents integrin activation in immortalized and primary
macrophages and interferes with actin dynamics. As both of these
are essential instruments during phagocytosis and membrane
ruffling, such pathways may be attractive targets in the defense
against FLA. Previously it was thought that gliotoxin production
is restricted only to clinical isolates of A. fumigatus; however,
it was demonstrated recently that the vast majority (>96%)
of both environmental and clinical isolates of aspergilli are
able to produce this mycotoxin (Kupfahl et al., 2008; Scharf
et al., 2012). Consequently, it is only plausible to suspect that

fungi have maintained their whole repertoire of active secondary
metabolites to counteract not only their numerous competitors,
but also predators in their natural environment whose numbers
and diversity have long been underestimated. A recent study
supports this conclusion by demonstrating that mycophagous
protists are abundant, taxonomically widespread, and central
ecological players in the soil food web (Geisen et al., 2016).

PERSPECTIVES

Both Dictyostelium discoideum and Acanthamoeba castellanii
have been extensively studied as model organisms in terms of
phagocytic interactions, mainly due to the similarity with human
macrophages (Tosetti et al., 2014). As unicellular eukaryotes, with
a compartmentalized cytoplasm, relatively small size, and active
chemotactic movement they exemplify an ideal non-mammalian
model for host-pathogen interactions and microbial infections.
Both amoebae are easy to cultivate (either on bacteria or
axenically), giving high cell yields with defined identity. Besides,
working with these model organisms is highly advantageous
in terms of genetic malleability combined with a profound
knowledge of its phagocytic pathways (Eichinger et al., 2005;
Siddiqui and Khan, 2012). A major advantage of D. discoideum
over A. castellanii is the well annotated genome, the high number
of molecular tools and protocols, and the wide availability of
targeted mutants that are easily accessible at www.dictybase.
org (Eichinger et al., 2005; Bozzaro and Eichinger, 2011; Fey
et al., 2013). However, the fact that prolonged subcultivations
and axenization of native amoeba cultures may have led to
the accumulation of undesired mutations and loss of original
phagocytic abilities has to be taken into consideration. Another
drawback of D. discoideum is its limited maximal survival
temperature of roughly 27◦C, which may be unfavorable for
some fungi that may express their full virulence potential only
at temperatures around 37◦C. However, at present there is little
support for the idea that filamentous fungi like A. fumigatus tend
to regulate their general virulence attributes strictly in response
to higher temperatures. In fact, a recent study revealed that
11 of 37 clusters encoding for the biosynthesis of secondary
metabolites were activated by a temperature shift from 37 to
30◦C, including those coding for DHN-melanin, gliotoxin, and
trypacidin (Lind et al., 2016). Nevertheless, when using amoebae
as a tool to study the origin of fungal virulence, it is important
to keep in mind that throughout their evolution, fungi have also
encountered many other soil-dwelling predators that may have
contributed to the emergence of fungal virulence determinants.
Certainly not all virulence traits are equally beneficial to protect
fungi in different hosts, giving rise to a number of different
invertebrate animal models which have been used to study
fungal pathogenesis (Desalermos et al., 2012). Very little is
known about the interaction of soil amoebae and fungi in their
natural environment. It is plausible, that not every amoeba is
amenable to infection by every fungal pathogen. Furthermore,
bacteria are the preferential prey for D. discoideum, while
A. castellanii was originally discovered as a contaminant in yeast
cultures (Castellani, 1930). Even if fungal infection biologists
have successfully exploited these two established amoeba models,
further studies on the evolution of fungal virulence may call
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for an inclusion of natural fungivorous predators from the
Amoebozoa phylum.
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