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Abstract
Single-cell variability in gene expression is important for generating distinct cell types, but it

is unclear how cells use the same set of regulatory molecules to specifically control similarly

regulated genes. While combinatorial binding of transcription factors at promoters has been

proposed as a solution for cell-type specific gene expression, we found that such models

resulted in substantial information bottlenecks. We sought to understand the consequences

of adopting sequential logic wherein the time-ordering of factors informs the final outcome.

We showed that with noncommutative control, it is possible to independently control targets

that would otherwise be activated simultaneously using combinatorial logic. Consequently,

sequential logic overcomes the information bottleneck inherent in complex networks. We

derived scaling laws for two noncommutative models of regulation, motivated by phosphor-

ylation/neural networks and chromosome folding, respectively, and showed that they scale

super-exponentially in the number of regulators. We also showed that specificity in control

is robust to the loss of a regulator. Lastly, we connected these theoretical results to real bio-

logical networks that demonstrate specificity in the context of promiscuity. These results

show that achieving a desired outcome often necessitates roundabout steps.

Author Summary

DNA is the blueprint of life. Yet the order in which a cell follows these instructions makes
it capable of generating thousands of different fates. How this information is extracted
from underlying gene regulatory networks is unclear, especially given that biological net-
works are highly interconnected, and that the number of signaling pathways is relatively
small (approximately 5–10). The conventional approach for increasing the information
capacity of a limited set of regulators is to use them in combination. Surprisingly, combi-
natorial logic does not increase the diversity of target configurations or cell fates, but
instead causes information bottlenecks. A different approach, called sequential logic, uses
noncommutative sequences of a small set of regulators to drive networks to a large number
of novel configurations. If certain targets are first protected, then even promiscuous regu-
lators can activate specific subsets of lineage-specific targets. In this paper we show how
sequential logic outperforms combinatorial logic, and argue that noncommutative
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sequences underlie a number of cases of biological regulation, e.g. how a small number of
signaling pathways generates a large diversity of cell types in development. In addition to
explaining biological networks, sequential logic may be a general experimental design
strategy in synthetic and single-cell biology.

Introduction
A fundamental question in systems biology is how a small number of signaling inputs specifies
a large number of cell fates through the coordinated expression of thousands of genes. This
problem is especially challenging given that gene regulatory and other types of networks in
biology tend to be highly interconnected and their regulators promiscuous, with regulators
affecting multiple targets and targets being affected by multiple regulators. Examples of this
architecture include: transcription factor binding networks in bacteria [1], yeast [2, 3], plants
[4], and animals [5, 6]; cellular signalling pathways involved in growth and differentiation [7–
9]; the interactome of protein kinases and phosphatases [10, 11]; and synaptic connections
between different layers of the brain [12]. Furthermore, because the targets and regulators are
often well-mixed and mutually accessible in the cell, most actions are likely to have nonspecific
and undesired effects.

At the same time, regulatory molecules drive networks to a large number of highly specific
outcomes or cell fates. Although there are approximately four hundred canonical cell types in
the adult human [13], recent single-cell RNA expression profiling experiments in the develop-
ing embryo [14, 15], brain [16], hematopoietic system [17, 18], and other organs [19, 20], have
indicated that there may be thousands more.

Given there are only a few signaling pathways used in metazoan development [21, 22],
understanding how cells reach their final outcomes when there are fewer regulators than fates
and/or targets is an unsolved problem. One extensively studied solution for the control of pro-
miscuous gene networks is combinatorial binding of DNA-binding transcription factors (TFs)
at the promoter [23–31]. At the level of individual promoters, combinatorial binding ensures
that individual genes are ON only when specific combinations of TFs are present (Fig 1A).
However, on the genome level, combinatorial regulation restricts which sets of genes may be
ON at the same time. For example, using AND logic, gene H in Fig 1A is only ON in the case
that the three TFs K1, K2, and K3 are concurrent at the H promoter; but these stringent require-
ments mean that H can never be transcribed independently of the less highly-regulated genes
A-G. (A similar conclusion holds for OR logic.)

In fact, using combinatorial control, there is a one-to-one correspondence between configu-
rations of the targets and configurations of the regulators. As shown in Fig 1A, the ON/OFF
states of 3 TFs uniquely define the binding combinations at 23 = 8 promoters. A similar conclu-
sion holds when the regulators are expressed in a graded fashion.

This one-to-one correspondence is the fundamental limitation of combinatorial regulation:
it requires an equal number of regulators and independently controlled targets and/or cell
fates. Applied to embryonic development, combinatorial control requires that hundreds or
thousands of cell-type specific TF combinations be generated in a spatially precise manner at
the start. However, the combinatorial scheme does not explain how the TF states are regulated
in the first place, and thus it offers no new insight into how cell fate is specified.

The limitations of combinatorial logic can also be understood from an information theoretic
point of view. In particular, it is impossible to specify arbitrary cell fates if the regulatory layer
bottlenecks the capacity of the targets to receive messages from extracellular signals. It is
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known that some ten to twenty types of signals [21, 22] converge onto membrane-bound regu-
lators in many different combinations, permitting messages to be passed to the downstream
targets. Much of this information stands to be lost, however, if the network relies on combina-
torial logic alone: the regulatory layer simply cannot transmit messages in their entirety if there
are more signals than regulators. Thus, combinatorial logic strongly circumscribes what fates
are ultimately reachable. Cell fate information is lost not only if the signals are more numerous
than the regulators, but also if the connections between signals and regulators are promiscuous
(Fig 1B). When different signals activate the same regulators (Fig 1Bi), certain signaling inputs
become redundant. On the other hand, when same signal activates different regulators (Fig
1Bii), some of the regulators become redundant. One may determine by direct enumeration
exactly how redundancy decreases the number of configurations available to the targets (Mate-
rials and Methods Sections 1 and 2). These preliminary conclusions are at odds with the obser-
vation that signaling molecules are deployed over time in a complex code [32]. How do these
messages in the signal space reach the targets if the regulatory layer imposes a bottleneck on
information flow?

In addition, feedback regulation—a common feature of regulatory networks—exacerbates
information bottlenecks when coupled with combinatorial logic. Stated another way, feedback
merely widens the basin of attraction of certain promoter configurations at the expense of the
number of distinct configurations. In Fig 1C, constitutive expression of K1 by C means that C
is never ON independently of the targets regulated by K1. Thus, the number of accessible con-
figurations decreases from 8 to 6 without allowing new target configurations to be explored.

Fig 1. Combinatorial logic bottlenecks information flow in networks. (A) The number of ways that three TFs (K1, K2, K3) can be
ON or OFF (tabulated at right) is the same as the number of ways they can bind at promoters (left). An equal number of gene
expression states are observed whether the TFs use AND logic (requiring all factors be present) or OR logic (requiring at least one
of the factors). (B) Signal-to-target information flow is bottlenecked by regulators if (i) the regulators respond to multiple targets, or
(ii) the signals activate multiple regulators. The allowed target states are tabulated for signals using AND logic and regulators using
AND/OR logic. (C) A feedback loop causes constitutive activation of a regulator (K1) and leads to fewer accessible configurations
(tabulated at right).

doi:10.1371/journal.pcbi.1005089.g001
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We need an alternative to combinatorial logic in cell fate specification that overcomes infor-
mation bottlenecks. Here, we considered time-ordered control schemes, which we refer to as
sequential logic. In this scheme, regulators can be applied in a stepwise manner; the entire
sequence matters, so the final configurations can differ if the same regulators are permuted in
time. In order for different temporal sequences to carry distinct information, the actions of the
regulators must be noncommutative. This is the case, for example, when a regulator protects its
targets from the action of another regulator, as when loci recruited to repressive chromatin
compartments are protected from further modification [33, 34].

While it is not surprising that noncommutative sequences like this result in different out-
comes at the single promoter level, these simple mechanisms may have nontrivial implications
for regulation at the genome level. In particular, noncommutativity permits the same regula-
tors to be used at different times with distinct effects. This is seen in development when ubiqui-
tous signaling molecules like FGF family members exert different effects depending on the
time and context of their expression [35–38]. Reuse of factors could greatly expand the infor-
mation capacity of the major signaling pathways.

A number of examples show that noncommutativity may be a general strategy in other
areas of biology. In hematopoietic stem cells, activation of GATA2 and C/EBPα in different
orders results in different cell fates [39]. In neurobiology, different temporal orderings of the
same inputs lead to distinct firing patterns [40–42]. In the field of synthetic biology, a DNA
switch was developed that could detect the order in which invertase enzymes were applied
[43]. And in evolutionary biology, the order in which mutations arise was recently implicated
in determining a genotype’s fitness [44–47]. There is also accumulating evidence for sequential
logic in transcriptional control: signaling molecules and TFs in mammalian cells, including
ERK [48], NF-κB [49, 50], p53 [51], as well as in yeast [52–54] have been observed to pulse,
suggesting that TF timing may be used to control the transcriptional state of the cell.

By applying sequential logic, we show that, even in complex and promiscuously regulated
networks, specific target configurations can be reached using a temporal sequence of regula-
tors. In particular, we consider two models inspired by (i) kinase/neural networks and (ii) chro-
mosome folding and show analytically that both scale super-exponentially. We further show
that noncommutative networks are robust to the loss of regulators, suggesting a mechanism for
regulator evolution. We also show that regulators induce different orbits in expression space,
which is related to the number of networks that can be controlled in parallel. We conclude by
discussing how these models apply to interconnected networks in and outside biology and by
providing possible experimental tests of the theoretical concepts. Theorems and proofs are
given in the Materials and Methods.

Results

A time-sequence ratchet model generates more diversity than
combinatorial logic in multiply-connected networks
To consider how time-ordered sequences of regulators can specifically control groups of tar-
gets, we begin by analyzing a generic two-layer network that is an extension of combinatorial
logic (Fig 2, Materials and Methods Sections 1 and 2). In this model, each regulator controls
multiple targets, and each target is accessible to any of its regulators. The model is meant to be
analogous to the cellular environment wherein regulators and targets are well-mixed. For
example, targets could be substrate proteins capable of multi-site phosphorylation [55, 56], and
regulators the kinases and phosphatases. Targets could also be neurons and regulators their
upstream excitatory and inhibitory inputs [12]. We denote by K the set of activators (i.e.
kinases) and P the set of deactivators (i.e. phosphatases). Each target has a ladder of (integer-
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valued) states, and together the states of the targets are a configuration of the network. (This
distinction is in contrast to the common usage of “state” as a gene expression vector.) An addi-
tional parameter, the threshold T, determines the number of rungs on the ladder. Regulators
ratchet the targets through their states, and only targets that have reached threshold will be ON
at the end of a sequence of regulators. If each target in the group can be controlled by a unique
combination of K’s and P’s, what ON/OFF configurations are possible?

In this model, termed the ratchet network (Fig 2A), each of n K’s andm P’s control

N ¼ n
ln

� �
m
lm

� �
unique targets, with the connectivity parameters ln and lm specifying the number

of regulators to which each target connects. Consider the sequence K1 K2 P1 acting on the tar-
gets A, B, C, and D (Fig 2B). In the final configuration, B and D are ON together even though

Fig 2. The ratchet model attains configurations not reachable by combinatorial logic. (A) The ratchet
model for n =m = 2 and ln = lm = 1. Activators (K’s) and deactivators (P’s) turn targets ON and OFF, respectively.
(B) An example temporal sequence for the network with a threshold equal to 1. Black targets are in the 1 state.
(C) An example sequence for the same network with threshold equal to 2. Gray targets are in the 1 state, and
black targets are in the 2 state. (D) Scaling laws for the threshold T = 1 (red) and T = 2 (yellow) are shown for
symmetric networks (n =m). A comparison to combinatorial logic with an equivalent number of regulators (n +m)
is shown in blue.

doi:10.1371/journal.pcbi.1005089.g002
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no single K connects to both, and A and C are OFF, even though both share and activator with
B and D. Therefore, this simple model illustrates the important point that similarly regulated
targets can be in independently controlled using sequential logic.

With threshold T = 1, not all configurations are reachable. Observe that there is no way to
specifically activate A and D while leaving B and C OFF. This result is surprising given that A
and D share no regulators: specificity depends on the network as a whole, not just individual
targets. By going to T = 2, the forbidden configuration becomes accessible (Fig 2C), along with
all ON/OFF states (below).

A combinatorial formulation of the model as a connectivity matrix
The model described above can be formalized as a combinatorial object that we refer to as the
connectivity matrix A. This formulation is useful because it is amenable to studying scaling,
and it permits a direct comparison between noncommutative ratchet networks and standard
combinatorial logic. For the interested reader, the models considered in this paper have a uni-
versal formulation as noncommutative matrix operators on the vector space of configurations
(Materials and Methods Section 9).

Typically, the state of N targets is represented as an N-dimensional vector. If each target is
controlled by a unique (Ki, Pj) pair (i.e. ln = lm = 1), the N = nm-dimensional vector can be re-
formulated as an n ×mmatrix

A ¼

P1 � � � Pm

K1

..

.

Kn

A1;1 � � � A1;m

..

. . .
. ..

.

An;1 � � � An;m

0
BBBB@

1
CCCCA

ð1Þ

where each entry Ai,j 2 {0, 1, . . ., T} is the state of the target regulated by Ki and Pj. For exam-
ple, the connectivity matrix for the network in Fig 2 is

A ¼
P1 P2

K1

K2

A B

C D

 !
: ð2Þ

In general, a regulator may connect to multiple targets (i.e. ln, lm > 1, see below), so that
each entry of Amay be thought of as anM-dimensional vector (M determined in Materials
and Methods Section 1). It turns out that this is an unnecessary complication; we instead let
each Ai,j = 1 if at least one of theM targets regulated by Ki and Pj is ON, and Ai, j = 0 only if all
M targets are OFF.

In this formulation Ki and Pj are raising and lowering operators that map n ×mmatrices to
n ×mmatrices via the rules

Ki Ai;j

� �
¼

Ai;j þ 1 if Ai;j < T

Ai;j if Ai;j ¼ T

8<
:

Pi Ai;j

� �
¼

Ai;j � 1 if Ai;j > 0

0 if Ai;j ¼ 0:

8<
:

ð3Þ

From Eq (3), any sequence Ki1 Ki2� � �Kik of all K’s is commutative, because any target controlled
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by t� k of the K’s will be in state t� T at the end of the sequence, regardless of the order. A
similar argument holds for the P’s. However, sequences consisting of both K’s and P’s are in
general noncommutative. This is due to edge effects when Ai,j = 0 or T. If Ai,j = T, for example,
then Ki Pj results in Ai,j = T − 1, whereas Pj Ki gives Ai,j = T. Therefore, A gives insight into
both the configuration of the targets and the noncommutativity of the regulators.

The problem of determining the number of accessible configurations in a network is
reduced to finding the number of matrices satisfying certain patterns. For example, combinato-
rial logic with T = 1 corresponds to the special case in which the only sequences are the 2n com-
binations of the n K’s. In an n × 1 connectivity matrix, activating Ki corresponds to turning all
0’s in row i into 1’s. There are 2n matrices generated by this procedure. More complicated cases
of combinatorial logic can be studied this way (Materials and Methods Section 2), but it turns
out that the total number of network configurations is always less than 2n + m, with n +m the
total number of regulators. This is important because noncommutative models can bypass the
exponential limit.

The ratchet model scales as the poly-Bernoulli numbers
We used the connectivity matrix representation of the ratchet network to determine the scaling
as function of the number of regulators n andm, with each target connected to a unique (K, P)
pair (i.e. ln = lm = 1) and the threshold T = 1. Ki turns 0’s to 1’s in row i and Pj turns 1’s to 0’s in
column j. The rules are consistent with the one-pot reaction model in which all substrates
receptive to Ki are promoted when Ki is active. For example, the sequence K1 K2 P1 in Fig 2B
can be recast as

0 0

0 0

 !
��!K1

1 1

0 0

 !
��!K2

1 1

1 1

 !
��!P1

0 1

0 1

 !
: ð4Þ

The main result is that Amust avoid the patterns
1 0

0 1

 !
and

0 1

1 0

 !
in any 2 × 2 sub-

block (Materials and Methods Section 3). Brewbaker [57] enumerated the n ×m binary matri-
ces avoiding these patterns and showed that they scale as the poly-Bernoulli numbers [58]

B�n
m ¼ B�m

n ¼
Xm
j¼0

�1ð Þ nþjð Þj! jþ 1ð Þn
n

j

( )
¼
Xmin n;mð Þ

j¼0

j!ð Þ2
mþ 1

jþ 1

( )
nþ 1

jþ 1

( )
; ð5Þ

where
n

j

( )
is a Stirling number of the second kind, defined combinatorially as the number of

ways to put j labelled balls into n unlabelled boxes such that no box is empty [59]. These num-
bers scale not quite as fast as 2N = 2nm, but much faster than 2n + m, the maximum number of
states in the equivalent combinatorial network (Fig 2D). Thus, a simple time-sequence model
is able to generate super-exponential scaling.

All binary ON/OFF states are reachable for an increased threshold
Are more configurations accessible if multiple activation events are needed before reaching
threshold? For example, neurons require the summation of multiple excitatory inputs to reach
action potential, and proteins need to be phosphorylated at multiple sites before they are acti-
vated [55, 56]. We found that by increasing the threshold to T = 2, all 2N ON/OFF
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configurations of the N targets become reachable. In the connectivity matrix formulation,

1 0

0 1

 !
and

0 1

1 0

 !
are no longer forbidden, which we show with an inductive proof

(Materials and Methods Section 4). This scaling law (Fig 2D), achieves the maximum of reach-
ability and specificity; it far exceeds the scaling 2n + m of the combinatorial model.

Being able to reach the entire ON/OFF space of N targets is overkill for most biological net-
works, which only display a relatively small number of stable configurations. The major impli-
cation of this result is that multiple levels of activity permit more targets to be controlled
independently.

Increased regulatory connectivity generates robustness
As sequential logic allows a large number of configurations to be reached in a complex net-
work, we asked whether increasing the connectivity of the network (ln and lm) can maintain the
specificity of the network while making it robust to the loss of a regulator. This is potentially
relevant to evolution of biological networks, because redundant connections allow the network
to repurpose regulators for new functions without severely impairing existing ones [60].

In the ratchet model, an increase in the connectivity parameters to ln = 2 K’s and lm = 2 P’s
permits multiple targets to share a common (K, P) pair (Fig 3A). The connectivity matrix

Fig 3. Multiple connections in the ratchet network decreases the number of configurations. (A) An
example network where each target has ln = 2 connections to the K’s (red) and lm = 2 connections to the P’s
(blue). (B) A list of the minimal length sequences generating unique configurations in the network in when ln =
lm = 1. Red bars are K actions and blue bars are P actions. (C) The list of minimal length sequences when ln =
lm = 2. Some sequences nowmap to the same configuration. (D) Analytical solution for the number of
sequences as a function of n =m for different ln = lm families.

doi:10.1371/journal.pcbi.1005089.g003
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incorporating the extra links in the network in Fig 3A is

P1 P2 P3

A ¼

K1

K2

K3

ABDE ACDF CDEF

ABGH ACGI BCHI

DEFG DFGI EFHI

0
BBBBB@

1
CCCCCA:

ð6Þ

Now that each entry of A is a group ofM> 1 targets, it makes sense to track the state of the
group as a whole with a single number Ai,j. Even though a target appears in multiple entries of
A, the rules prevent a regulator from altering the state of groups at remote locations (e.g. K1

cannot change the state of the group at A2, 2).
We prove in the Materials and Methods that all sequences using at least n − ln + 1 K’s and

m − lm P’s are redundant with shorter sequences (Fig 3B and 3C, Materials and Methods Sec-
tion 5). For example, the sequences K1 K2 K3 is required to turn ON all targets in the case ln =
lm = 1, but if ln = lm = 2, the shorter sequences K1 K2, K1 K3, and K2 K3 have the same effect. We
derived a recursive formula that eliminates the redundant sequences in each (n,m, ln, lm)
instance to derive the number of sequences in (n,m, ln + 1, lm) and (n,m, ln, lm + 1) (Fig 3D
and S2 Fig). The formula agreed exactly with an algorithm designed to find all minimal length
sequences (Materials and Methods 5). Notably, increasing ln, lm reduced the number of config-
urations. We observed a similar effect in combinatorial logic (S1 Fig).

To investigate the robustness of sequential logic networks, we studied the effect of deleting
regulators in increasingly connected networks on the number of reachable configurations (Fig
4A). We hypothesized that sequences that activate similar subsets of targets should be able to
recoup permanently lost configurations. To test this, we computed the normalized correlation
coefficient between configurations in the network using all K’s (the full network) and configu-
rations in the network without K1 (the impaired network), subject to the constraint that those
configurations were reached using longer sequences (Fig 4B). To focus on the recoverable frac-
tion, we deleted all configurations that had an exact match. Highly similar configurations (yel-
low) clustered to the right of the plot, indicating that longer sequences can be used to recover
lost configurations.

How similar are the recouped configurations? As connectivity increased, the maximum sim-
ilarity became increasingly concentrated above 0.8 (Fig 4C). There is generally a tradeoff
between reachability and the size of the fraction above 0.8 (Fig 4D). The tradeoff is nonlinear,
however: using ln = 2 gave the greatest increase recoverability for the smallest loss of configura-
tions, showing that an intermediate level of redundancy can buffer the network to loss of regu-
lators. The above analyses demonstrate that specificity of control is not compromised when
regulators are lost or repurposed in heavily interconnected networks.

Sequestration networks generate diversity through protected states
In the ratchet model, all targets are accessible to their regulators at all times. However, in some
cases targets may be shielded from regulators: for example, genes can be silenced by sequestra-
tion in various nuclear compartments [61, 62]. This was seen in a landmark study by Filion
et al [63], who used a DNAse accessibility assay to show that genes associate with different reg-
ulators depending on their chromatin “color” or accessibility status.

To study the effect of accessibility and silencing on activating specific subsets of genes, we
constructed the following sequestration model. In addition to the OFF state 0 and the ON state
1, each target/gene is endowed with additional orthogonal states 2 to n (allowing for a total of
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2n − 1 − 1 genes). If RNA polymerase (RNAP) is associated with K1, what genes can be indepen-
dently activated? In this model (Fig 5) a regulator Ki promotes targets in the 0 state to state i,
and Pi returns targets in state i to 0. Any target in state i is protected from regulators other than
Pi. As an example of gene regulation on a three-dimensional chromosome (Fig 5A), the
sequence K3 K4 K1 P3 P4 first clusters all genes having a 3 in a repressive compartment, and
then the remaining genes having a 4 in another repressive compartment. The net effect is that
RNAP can only act on the gene represented by {1, 2}. We represent this abstractly as a configu-
ration vector of k-armed targets (Fig 5B), where each entry corresponds to the state {0, 1, . . .,
n} of a gene able to access k� n of the states (see below for a mathematical description of the
model). Therefore, protected states in the sequestration model allow genes to be transcribed
specifically in a well-mixed environment.

Fig 4. The ratchet network is robust to loss of a regulator. (A) A schematic illustration of the experiment.
The regulator K1 was deleted from networks withm = 2 P’s and variable n for different values of the
connectivity ln. The resulting number of configurations was computed by simulation. (B) Correlation
coefficient between configurations in the full network (all K’s; rows) and the impaired network (without K1;
columns). All rows with exact matches were deleted. (C) Cumulative distribution F(x) of the maximum
correlation coefficient x for each row in C for different values of ln. The dashed line is the similarity cutoff 0.8.
(D) Tradeoff between reachability and robustness. The number of reachable configurations as a function of
(n, ln) is plotted vs. the fraction of states above the similarity cutoff 0.8 (i.e. 1 − F(0.8)) for different values of n.

doi:10.1371/journal.pcbi.1005089.g004
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We derived (see below) that the number of reachable configurations scales with the number
of regulator pairs n as

f nð Þ ¼ 22
n�1�1 �

Xn�1

m¼2

n� 1

m

� �
2
Pm

k¼3
m
k�1ð Þ � 1

� �
2
Pm

k¼3
n�1
k�1ð Þ� m

k�1ð Þ� �
: ð7Þ

For n = 1, 2, 3, 4, 5, 6, this formula gives f(n) = 1, 2, 7, 89, 16897, 780304385 (Fig 6). We also
relaxed the constraint that all genes have a 1 state (allowing for a total of 2n − 1 genes) and
found that the number of configurations scales as cn = 2, 7, 94, 37701 with n = 1, 2, 3, 4. The
full model does not have an analytical solution, but it does have upper and lower bounds
related to Eq (7) (Materials and Methods Section 7, S3 Fig).

Fig 5. The sequestration network is a noncommutative model of gene regulation by chromosome folding.
(A) A sequence of moves K3 K4 K1 P3 P4 on a hypothetical chromosome with K and P actions represented as DNA-
binding factors and K1 playing the role of RNAP. Red circles correspond to genes and numbers correspond to
allowed binding partners. (B) The same sequence inA represented as a collection of targets with up to n = 4 arms.
For example, the target {0, 1, 2} corresponds to the gene locus with states 1 and 2 inA. The filled circle represents
the current state.

doi:10.1371/journal.pcbi.1005089.g005
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Combinatorial scaling laws of this sort are not uncommon [44, 64, 65]. Edwards and Glass
[64] saw an explosion in the number of states when studying trajectories on n-cubes, and
Green and Rees [65] saw a super-exponential jump when enumerating certain types of nonre-
peating sequences on n letters. Furthermore, a similar small number (four) of factors are neces-
sary and sufficient to reprogram fibroblasts to stem cells [66]. Together, these results indicate
that sequences can far exceed the 2n limit set by combinatorial regulation, and that only a few
regulators are necessary to make large changes in the configuration of a cell.

Regulators act on the configuration vector in the sequestration model
The sequestration network with n regulator pairs (referred to as the n-network) is described
using the 1 × 2n − 1 configuration vector x. This is a simpler description than the connectivity
matrix because a target affected by Ki is necessarily affected by Pi. The entries of x are the states
of each target g able to be controlled by k� n of the regulator pairs. Each target g is is a list
{0, i1, . . ., ik} of the k regulators to which it responds. Because of their radial appearance, such
targets are said to have k arms (see Fig 5B).

The regulators act on x according to the rules

Ki xg
� �

¼
xg þ i if i 2 g and xg ¼ 0

xg else

8<
:

Pi xg
� �

¼
0 if i 2 g and xg ¼ i

xg else:

8<
:

ð8Þ

Eq (8) guarantees that the regulators are orthogonal in the sense that a target in state j is pro-
tected from Ki and Pi if i 6¼ j; and also idempotent in that K2

i ¼ Ki. Furthermore, sequences of
regulators are noncommutative unless the only actions are P’s. This is a consequence of the fact
that P’s put all affected targets into the 0 state. Although these rules are different from the
ratchet model, a formulation exists that generalizes the K’s and P’s to matrix operators consis-
tent with both models (Materials and Methods Section 9).

Fig 6. Scaling in the sequestration model is super-exponential. (A) A plot of all the allowed configurations of a
set of targets of n = 4 regulator pairs in the sequestration model. Yellow represents targets that are ON, and blue
those that are OFF. (B) A list of the sequences generating the corresponding states in A. K actions are shown in the
red spectrum, and P in the blue. (C) A logarithmic plot of the scaling in the sequestration model. The total space is
the 22

n − 1
− 1, the reachable space is calculated from Eq (7), and the combinatorial model is 22n.

doi:10.1371/journal.pcbi.1005089.g006
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If x is restricted to the 2n − 1 − 1 targets all able to be regulated by K1 and at least one other K,
the network is said to be reduced; otherwise we say x is full. This distinction was used in Fig 5.

A one-coloring is a configuration of x that uses only one of the states and 0. For example, the
configuration x = (1, 0, 0, 1, 1, 0, 0) in the full n = 3-network is a one-coloring of 1; so is the
reduced network formed by (x4, x5, x7) = (1, 1, 0). This concept is easily extended to
k> 1-colorings. One-colorings are particularly important because they resemble the ON/OFF
configurations of genes in an RNA-seq experiment, and we would like to know how many such
configurations can be reached.

A simple counting argument for the connected one-colorings illustrates
super-exponential scaling in the sequestration model
As in the ratchet model, finding the accessible states of the sequestration network amounts
finding restricted patterns in x. We determined that the restricted one-colorings are those that
violate a property referred to as connectivity (Materials and Methods Section 7). A configura-

tion of x is said to be connected if all k> 3-arm targets g kð Þ
i ¼ f0; i1; . . . ; ikgmatch the state of

at least one of k of the 2-arm targets {0, i1, i2}, . . ., {0, ik − 1, ik} sharing the indices i. If the net-
work is reduced, no k-arm target may be in the 1 state when all of 2-arm targets with which it
overlaps (i.e. shares an index other than 1) are in the 0 state. This restricts the one-colorings
and suggests a method to determine the scaling law for the model in Fig 5.

As an example, in the n = 4 network on the reduced set of 23 − 1 targets illustrated in Fig 5,
{0, 1, 3} and {0, 1, 4} both being 0 constrains {0, 1, 3, 4} to be 0 as well. Furthermore, even
though {0, 1, 2} is in the 1 state, {0, 1, 2, 4} and {0, 1, 2, 3, 4} may be 0. It is only the two-arm tar-
gets that constrain the possible configurations: for example, the longer sequence K2 K4 P2 K3 K2

P4 K1 P3 K4 P1 K3 P4 K1 P2 P3 obtains the state x = (0, 0, 1, 0, 0, 0, 1) in which only the targets
{1, 4} and {0, 1, 2, 3, 4} are ON, showing that {0, 1, 2, 3, 4} need not be in the same state as {0, 1,
2, 3}, {0, 1, 2, 4}, or {0, 1, 3, 4}. In Fig 6A and 6B we show the allowed states and the sequences
that generate them for n = 4; there are 90 out of a possible 22

4 − 1 − 1 = 128 configurations.
There are 22

n − 1 − 1 one-colorings on 2n − 1 − 1 targets. How many of these violate the con-

nectivity rule? Suppose there arem 0’s among the 2-arm targets. Ifm = 1, then m
k�1

� � ¼ 1
k�1

� � ¼
0 of the k� 3-arm targets are constrained to be 0, as there is always another 2-arm target (in

the 1 state) that each k-arm target can match. Ifm> 1 andm − 1< k, however, then m
k�1

� �
> 0,

so m
k�1

� �
k-arm targets whose states {i1, . . ., ik − 1} are completely contained within the set of

2-arm targets {0, 1, j1}, . . ., {0, 1, jm} must be 0. Hence in any violation of the connectivity rules

at least one of
Pm

k¼3
m
k�1

� �
k-arm targets will be in the 1 state and the remaining

Pm
k¼3

n�1
k�1

� ��
m
k�1

� �
k-arm targets will be 0 or 1. Furthermore, there are n�1

m

� �
ways of specifyingm 0’s, so the

total number of violations is

Xn�1

m¼2

n� 1

m

� �
2
Pm

k¼3
m
k�1ð Þ � 1

� �
2
Pm

k¼3
n�1
k�1ð Þ� m

k�1ð Þ� �
: ð9Þ

Subtraction from 2n − 1 − 1 gives Eq (7).

The ratchet and sequestration networks divide the configuration space
into orbits
Until now we have considered the reachable space of a single group of targets each starting in
0. An ensemble of networks could each start with their targets in some arbitrary state, and
when a sequence is applied to the ensemble the different networks will in general span different
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configurations. Determining the number of orbits (defined precisely in Materials and Methods
Section 8) within the set of possible configurations tells us how many networks can be con-
trolled in parallel.

Enumerating the reachable space for both the ratchet and sequestration networks involved
finding configurations that violated at least one rule. If two configurations have distinct viola-
tions, then there is no way they can communicate using the regulators. Therefore, the different
orbits are the groups of configurations having the same forbidden patterns. It is possible that a
violation could be alleviated by an action that changes the state of an offending target, so we
require that each orbit be immune to a subset of the regulators. This could be achieved in bio-
logical networks by locking targets in protective chromatin states or by shutting down certain
cellular receptors.

We determined a recursive formula for the number of orbits in the ratchet network for an
arbitrary n,m (Materials and Methods Section 8). In Fig 7A we plot the orbits for the n = 4,

m = 2 case. There is one large component of size B�m
n and several smaller orbits of size B�j

i with
i� n and j�m. There are only a handful of singleton orbits in Fig 7A, but the number of iso-
lated states dominates the space as n,m increase.

We were unable to find a similar solution for the sequestration network because we lack a
general solution for the number of states in the main orbit. However, Fig 7B shows the compu-
tationally discovered orbits for the full network on 2n − 1 targets. A nontrivial feature is that
there are orbits which use all pairs of regulators, but which do not communicate with the main
orbit. For example, the sequence K2 K3 from x = (1, 0, 0, 0, 0, 0, 1) reaches the same configura-
tion as the sequence K1 starting from x = (0, 2, 3, 2, 2, 3, 0); these configurations are part of the
same orbit because both violate the connectivity rule between x7 = {0, 1, 2, 3} and the 2-arm tar-
gets x4, x5, and x6.

Another observation is that some pathways cannot be reversed by a legal action in the
ratchet network orbits (indicated by a directed arrow in Fig 7), whereas there always exists a

Fig 7. Noncommutative models induce orbits in the configuration space.Graphical representation of the
orbits in (A) the n = 4,m = 2 ratchet network and (B) the full n = 3 sequestration network. Configurations are
indicated by red circles, and those accessible to each other are connected with blue lines. Arrows in (A)
indicate whether a path is irreversible.

doi:10.1371/journal.pcbi.1005089.g007
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reversible path between configurations in the sequestration network orbits (no arrowheads). It
can be proved that this is true in general for the sequestration network (Materials and Methods
Section 8). This feature permits orbits to be found computationally by looking for reversible
one-step paths in the entire configuration space.

The orbits are one explanation for the phenomenon the same signal can cause cells to
behave differently [38]. More generally, the orbits demonstrate an intriguing symmetry
between the targets responding to a restricted subset of the regulators on one hand, and the
orbits restricted to the same subset on the other.

Discussion
In this paper we first show how noncommutative, sequential logic can relieve information bot-
tlenecks in multilayer networks. Bottlenecks in combinatorial logic may occur whenever a
downstream layer has fewer elements than the layer upstream, which poses the problem of
how networks process complex signals without loss of information. Noncommutative solutions
such as the ratchet and sequestration models, in which the number of configurations scales
super-exponentially in the number of regulators (Eqs (5) and (7)), permit longer, more com-
plex messages to reach the targets via information “pulses.” These pulses encode a large
diversity of signals into configurations of the targets that would otherwise be lost using combi-
natorial logic.

Noncommutativity has long been recognized as a central concept in control theory, because
it allows systems with few controllers to explore a broader configuration space. For example,
one generates z rotations in 3D by R − x Ry Rx, so control over z is generated by a pulse
sequence of rotations in x and y, as in airplane control where roll and pitch generate yaw [67].
Infinitesimal motions in the form of generating matrices are translated into flows in a vector
space by exponentiation. Because matrix multiplication is noncommutative, composition of
flows is not simply the addition of generators, but rather a higher order polynomial of commu-
tators of the generators given by the Baker-Campbell-Hausdorff formula [68]. Noncommuta-
tivity also appears in experimental physical chemistry where pulse sequences can prepare spin
systems in nontrivial population configurations [69]. A formal description of these phenomena
is based on the Heisenberg picture of quantum mechanics, wherein evolution of a system of
many variables is given by a differential equation involving the commutator of a Hamiltonian
operator.

The significance of noncommutative control for systems biology is that it becomes possible
to independently control targets that would otherwise be activated by the same promiscuous
regulator. In this paper, we argue that noncommutative sequences permit control over new
directions in gene expression space, allowing more specific sets of targets to be controlled. Sev-
eral studies have shown that TFs that can bind genes in one tissue type are in fact precluded
from binding the same genes in another [70, 71]. The C. elegans TF LIN35 fails to bind targets
in the germline that it binds in the intestine [71], and the SMARCA4 complex in mouse binds
enhancer elements in heart, limb, and brain tissue in a tissue-specific manner [70]. One hypo-
thetical explanation for these observations, based on the sequestration model, is that cell-type
specific gene expression is the result of noncommutative sequences like K1 K2 and K2 K1 that
silence certain promoters. The three-dimensional structure of the genome is a likely setting for
this type of regulation.

Gene regulation is known to take place in three-dimensions, as observations of DNA loop-
ing [72], nonrandom chromosome packing [73], and clustered transcription factories [74]
have shown. However, the factors that affect chromosome structure are non-specific. One such
factor is the ubiquitous zinc finger protein CCCTC binding factor (CTCF) [75], which
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functions as both an activator of transcription by bringing enhancers and promoters together
[76, 77] and as a repressor by insulating genes [78, 79]. Epigenetic modifications, such as his-
tone methylation and acetylation [80–82], also affect three-dimensional structure. In addition,
DNA looping was observed in the context of allelic exclusion during B- and T-cell lineage spec-
ification where individual alleles were recruited to heterochromatic regions while the other
underwent recombination [33, 34]. Consequently, the sequestration model predicts that tem-
poral permutations of a small set of chromatin modifying factors could specify a large number
of potential chromosomal conformations and lead to different expression states and corre-
sponding cell fate decisions.

New technologies such RNA-seq and ChIP-seq can be used to test the predictions of the
noncommutativity hypothesis at the genome level. Epigenetic drugs such as azacytidine and
trichostatin A inhibit DNAmethylation [83] and histone deacetylation [84], respectively, and
have been shown to cause global changes in gene expression alone and in combination [83,
85]. The sequestration hypothesis predicts that perturbations to the three-dimensional struc-
ture of the chromosome are noncommutative, so distinct gene expression states may be
reached by permuting the order in which epigenetic drugs are applied. While the sequestration
model may underlie chromosome folding, the ratchet model could form the basis of phosphor-
ylation networks. For example, mass spectrometry studies have revealed complex phosphoryla-
tion patterns [86, 87], though the number of kinases and phosphatases is comparatively small
and the networks are highly interconnected [10, 11]. As phosphoproteins are the mediator of
extracellular signals, ordered disruption of signaling pathways could also lead to distinct gene
expression configurations.

Analogously, the ratchet model may aid in the specification of distinct neural activity pat-
terns, owing to the fact that connections between the different hippocampal layers overlap [12,
88]. While superficial neurons can be activated in response to spatial cues, deeper layers can be
selectively activated by time sequences of inputs [40, 41, 89]. These results suggest the hypothe-
sis that neural networks may be noncommutative. In particular, experimental support exists
for the role of the dentate gyrus in pattern separation and orthogonalization by way of ensuring
that even quite similar memory representations use distinct subsets of neurons [90, 91]. The
ratchet model, by ordering inputs in time, is one way of reaching these specific subsets if the
number of input neurons is smaller than the number of targets neurons. Memories share many
common elements, including shape, color, smell, and sound, which poses problems for recall.
We hypothesize that older, “fuzzier”memories could be those relegated to very long ratchet
sequences. According to this hypothesis, memories are not forgotten, but are instead increas-
ingly difficult to access, and memories that are not consolidated are those that never formed a
unique ratchet sequence.

Beyond resolving bottlenecks and generating specificity, noncommutative actions offer a
new interpretation of how cell fate decisions and other stepwise processes occur on abstract
regulatory landscapes. The classical Waddington landscape view of development holds that
cells decay to attractor configurations representing terminal outcomes [92]; this is consistent
with a boolean network with many variables X converging to a fixed point [93]. In a static land-
scape, the final outcome is determined a priori by the nearest energy minimum. What then
determines the initial configuration? In organisms such as Drosophila, maternal patterning of
the embryo may account for this initial bias [94]; but in other organisms that employ mecha-
nisms like multilineage priming [82, 95], it is not clear that every cell fate decision is made at
the beginning.

Sequential logic allows cells to reach their final fate on a dynamic landscape. In the system
of Fig 8A (top), for example, it is not possible for cells in the blue configuration to transition to
the red fate by increasing X2, because this involves an uphill climb. However, the regulators of
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genetic networks may also affect the landscape directly. This is seen in Fig 8A (bottom) where
the sequence K1 K2 P1 changes the landscape in such a way that the overall cost of reaching the
same endpoint is much lower than the direct path (Fig 8A, top). This can be understood as the
effect of regulators acting on additional variables V, which modulates the landscape in X space.
For example, TFs can recruit chromatin regulators that modify global three-dimensional chro-
mosome structure and future TF accessibility [74, 76, 96, 97], or kinases can sequester sub-
strates in the nucleus to prevent their subsequent activation [53, 54]. Because sequential logic
acts on the V’s as well as the X’s, changes that appear to be small in one dimension (Fig 8B, left)
actually involve large excursions in the full space (Fig 8B, right). As a consequence, in

Fig 8. Sequential logic on regulatory landscapes. (A) The regulatory landscape for the 2-mRNA system
X1, X2 for two hypothetical paths with configurations represented by balls. It is difficult to directly increase X2

because of a potential barrier (top). In the roundabout path (bottom), visiting two intermediate configurations
via K1 K2 P1 results in an altered regulatory landscape. (B) The initial and final configurations in (A) projected
onto (X1, X2) space (left) and (X1, X2, V1) space (right). The regulators affect not only X1 and X2, but also an
additional variable, denoted V1, that alters the landscape of X1 and X2. The arrows indicate the instantaneous
direction of the trajectory.

doi:10.1371/journal.pcbi.1005089.g008
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noncommutative regulation, the landscape changes and cells can take on fates that were not
accessible at the beginning.

Previous theoretical models have explored dynamic regulatory landscapes in the form of
bifurcations [98, 99]. In these models, a set of kinetic parameters determines the positions of
minima and maxima in the landscape. However, the noncommutative model advanced here is
fundamentally different, in that using the regulators to move through X changes the landscape
directly. This could happen, for example, if acting on X1 with K1 hides it from the effect of K2.
Uncoupling of targets in this way may underlie the distinct effects of signals like FGF at differ-
ent stages of development [35–38]. It will be interesting to explore time series data for hints
that some genes pulse ON and OFF in order to protect their promoters from the actions of pro-
miscuous regulators.

Multistep processes other than development can benefit from the type of noncommutative
regulation highlighted in Fig 8. What seems like an intractable problem at the start becomes
much more feasible if one realizes that the effects of actions change with time and context. This
intuition is why thinking in terms of commutators [A, B] = AB − BA can make complex prob-
lems more soluble: the desired effect is often what is leftover after performing and undoing a
sequence of actions. Several examples illustrate this concept.

With its increased capacity for generating diversity, sequential logic is likely to be used in
evolution. A recent theoretical example in social bacteria demonstrated that in evolving a
new quorum sensing receptor-ligand pair, adding new receptors prior to ligands is preferred
over the opposite path [45]. An analysis of the stability and catalytic activity of a family of
bacterial β-lactamase mutants showed that the ability to evolve new substrate specificity is
contingent on mutations that first stabilize the protein active site [46, 100]. Finally, biologi-
cal networks evolve the same functions in different orders, but the order in which these
functions arise dictates which other genotypes can be reached by neutral mutations [44].
These results suggest that permuted sequences of mutation events may have different fitness
costs. With extensive artificial evolution experiments underway in protein engineering [100]
and bacterial mutation accumulation [47], coupled with progress in sequencing technolo-
gies, it will be possible to test this hypothesis by permuting the conditions that promote
mutation.

Sequential logic can also be applied in synthetic biology to build circuits with memory [43,
101–103]. In general, the toolkit that permits up- and downregulation of genes is small, with a
few staples like Lac, Tet, and Ara [104]. Significant effort has been put into generating logic
gate (AND/OR) promoters [30]. To further expand the toolkit, it has been proposed that more
orthogonal regulators be developed [105]. We suggest that sequential logic may be a more
promising strategy to scale up the number of targets that can be independently controlled by
permuting in time a small number of controllers.

More broadly, sequential logic can be used to accomplish experimental goals not possible in
single-step approaches. For example, in multiplexing mRNA detection in single cells, we previ-
ously used a sequential hybridization scheme that permits the number of barcodes to exponen-
tially [106], whereas combinatorial schemes can only specify approximately 30 barcodes. We
expect many single-cell experiments to benefit from a sequential strategy in which detours
facilitate achievement of the main goal with high efficiency.

Finally, our results connect outside of biology to strategic planning in social, political,
and economic arenas. Anyone familiar with negotiating knows about the limitations inherent
in trying to make interconnected groups of people move in specific directions, especially
when the actions affect all participants at once. Multiparty negotiations and tournaments
may benefit from time-ordered strategies in which enemies temporarily team up, or fringe
interest groups are transiently pacified. Indeed, a conclusion from the sequestration model is
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that the most highly regulated targets need to be protected prior to satisfying the ones with
fewer connections. Determining whether this prediction is borne out in congressional and
international negotiations, for example, is an interesting question for political science. Evi-
dence for noncommutative effects in games exists in that the initial seeding in a tournament
can bias its outcome [107], and that long-term goals change players’ strategies in in the
repeated prisoner’s dilemma [108]. In conclusion, the direct path to an outcome in a net-
works with many interacting parts may have many unintended and prohibitively expensive
consequences. A multi-step strategy may achieve the same outcome with minimal cost and
side effects.

Materials and Methods

1. The connectivity matrix with multiple targets
In this section we determine how many targets are controlled by the same regulators in the
connectivity matrix A. Then we extend A to more than 2 dimensions.

If ln = lm = 1 it is clear that each Ai,j corresponds to a single target and that each target
appears only once. In general, however, a target can appear in multiple entries of A (cf. Eq (6)).
To see this, consider the bipartite graph formed by all the targets and all the K’s, but none of
the P’s. The handshaking lemma from graph theory [59] says that the total number of edges is
one half the sum of the degrees of each vertex, which is either ln for a target or some number pn
for a K regulator. There are Nln total edges, so we find 1

2
Nln þ npnð Þ ¼ Nln or pn ¼ N

n
ln for the

number of links coming from each K. Similarly, the number of links emanating from each P is
pm ¼ N

m
lm. In terms of the connectivity matrix, pn and pm correspond to the number of unique

targets in each row and column, respectively.
Because K1 connects to a fraction

pn
N
of the targets, it follows that K1 and P1 together connect

to a fraction pnpm
N2 of the targets. Therefore, the total number of targets connecting to K1 and P1 is

M ¼ N pnpm
N2

� � ¼ pnpm
N
. Another way to see this is to consider one target in the intersection of K1

and P1. This one target uses up one of each of the regulators and one unit of connectivity, leav-

ing a total ofM ¼ n�1
ln�1

� �
m�1
lm�1

� �
ways to connect other targets to the same pair of regulators. It

is easily verified that these two formulations for the number of targets per matrix entryM are
equivalent. This illustrates that there is not simply a one-to-one correspondence between the
entries of A and the targets.

There was nothing special about the labels K and P in the above paragraphs. Thus, the con-
nectivity matrix can easily be extended to a u-dimensional connectivity tensor where u is the
number of pools of regulators. Each pool has ni regulators connecting to lni targets, and each
target connects to pni ¼ N

ni
lni regulators of pool i, 8i 2 {1, . . ., u}. The total number of targets

and the total number of targets per entry are extensions of the u = 2 case, giving

N ¼
Yu
i¼1

ni

lni

� �
ð10Þ

distinct targets and

M ¼
Qu

i¼1 pni
Nu�1

¼
Yu
i¼1

ni � 1

lni�1

� �
ð11Þ

targets controlled by one factor from each of the u pools. S1A Fig shows an example network
with u = 3 pools.

Noncommutative Biology and Sequential Regulation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005089 August 25, 2016 19 / 36



2. Counting configurations in combinatorial networks using the
connectivity matrix
The number of configurations in combinatorial logic is the number of ways that N targets can
each be bound by exactly u regulators, where each regulator comes from a different pool. In the
main text we analyzed the case u = 1 and ln = 1. Here we extend those results to arbitrary u and
ln.

First consider the case u = 2, corresponding to a pool of K’s and a pool of P’s. Whereas in
the ratchet model, Ki and Pj acted separately on the entries of A, in combinatorial logic the pair
(Ki, Pj) is needed to switch Ai, j from 0 to 1. Many such pairs may be active at any one time. We
write this formally as

Kf g; Pf gð Þ Ai;j

h i
¼

1 if Ki 2 Kf g and Pj 2 Pf g

0 else;

(
ð12Þ

where {K} denotes a subset of the K’s. The notation (�, �) means that a combination of factors
acts on the target, instead of just a single factor.

If ln = lm = 1 there are (2n − 1)(2m − 1) + 1 ways to pick at least one of n K’s and one ofm
P’s, plus one way to pick nothing. If lm = 1 and ln > 1, then for a certain number α� n of the
K’s, any subset containing α or more K’s has the same effect as activating all n K’s at once. For
example, in Eq (6), the action of ({K1, K2}, {P1, P2}) is sufficient to activate all targets in the n =
m = 3, ln = lm = 2 network. To determine α, recall that there areM targets in each entry of the
connectivity matrix A. Choosing i K’s means that the total number of targets isM × i, but a sin-
gle column of A only contains pm unique targets. Each target is connected to ln K’s, so for a tar-
get in the intersection of i K’s and a single P, there are ln − i spots left over to choose n − i K’s

and lm − 1 spots left over to choosem − 1 P’s, or n�i
ln�i

� �
m�1
lm�1

� �
ways total. Using the principle of

inclusion-exclusion [59] this means that α is the smallest i such that

M � i�
Xmin i;lnð Þ

i0¼2

�1ð Þi0 i
i0

� �
n� i0

ln � i0

� �
m� 1

lm � 1

� �
� pm: ð13Þ

By choosing α K’s, the number of unique targets in a column of A that can be turned ON is
exactly the number represented in that column. Because all subsets with α, α + 1, . . ., n − 1 K’s

are redundant, here are only 2n � 1ð Þ �Pn�1

i¼a
n
i

� �
subsets of K’s that contribute to unique con-

figurations, leaving a total of 2n � 1ð Þ �Pn�1

i¼a
n
i

� �	 

2m � 1ð Þ þ 1 unique configurations.

If the P’s also have redundant connections, the result generalizes to
Theorem 1 The number of configurations in combinatorial logic with parameters n, m, ln, lm,

and u = 2 is

2n � 1ð Þ 2m � 1ð Þ þ 1

�
Xn�1

i¼a

n
i

� � !
2m � 1ð Þ � 2n � 1ð Þ

Xm�1

i¼b

m
i

� � !
þ

Xn�1

i¼a

n
i

� � ! Xm�1

i¼b

m
i

� � !
;

ð14Þ

where α (resp. β) is the smallest number of K’s (resp. P’s) having the same effect as all K’s (resp.
P’s) at once.

This result is obtained by counting all pairings of K’s and P’s, then subtracting those pairings
that have a redundant effect. For example, any combination using K3 is redundant in the con-
nectivity matrix of Eq (6). Finally, those pairings that were excluded twice are added back in.
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This result generalizes to all u with slight modifications. Because one factor from each of u
pools is now required, the combinatorial equation determining state of a target is

Kf g1; Kf g2; . . . ; Kf gu

� �
Ai;j;...;k

h i
¼

1 if K1i 2 Kf g1;K2j 2 Kf g2; . . . ;Kuk 2 Kf gu

0 else:

(
ð15Þ

Here the double subscript Kik indicates the k
th factor in the ith pool. Determining αi for each

pool i of regulators requires finding the pool j 6¼ i which maximizes the number Ni of targets
controlled in two dimensions. If we choose αi or more regulators in the ith pool, then there is a
redundancy in the jth dimension, whereas any choice of fewer than αi regulators activates fewer

than Ni targets. Write Ni ¼ max j 6¼i
ni
lni

� �
nj
lnj

� �n o
the total number of targets and pnj ¼ Ni

nj
lnj the

number of targets in any column of the the equivalent ni × nj connectivity matrix regulated by
pools i and j. It is easy to see that these parameters reduce to their previous definitions for

u = 2. Now defineMi ¼ ni�1
lni�1

� �
nj�1

lnj�1

� �
as the number of targets in each entry of the equivalent

ni × nj connectivity matrix. As above, αi is now the smallest r such that

Mi � r �
Xmin r;lnið Þ

r0¼2

�1ð Þr0 ni � r0

lni � r0

� �
nj � 1

lnj � 1

 !
� pnj: ð16Þ

Once αi is determined for each pool i, the inclusion-exclusion sum can be extended using
standard arguments [59]. Define by

S kð Þ ¼
X

s2
u
k

� � Y
i2s

Xni�1

j¼ai

ni

j

� � !Y
i=2s

2ni � 1ð Þ
( )

; ð17Þ

where σ denotes all k-subsets of {1, . . ., u}. Then we have the final result
Theorem 2 The total number of configurations in combinatorial logic with u pools and

parameters ni, lni, i 2 {1, . . ., u} is

S ¼ 1þ
Xu
k¼0

�1ð ÞkS kð Þ: ð18Þ

This result reduces to Theorem 1 when there are only u = 2 pools. At most there areQu
i¼1 2ni � 1ð Þ ways to specify at least one target, corresponding to the 0th-order term in Eq

(18). Increasing the connectivity through the lni can only reduce the number of configurations.
This behavior is shown in S1B Fig for the symmetric case that all the ni and lni are equal. As u is
increased the number of configurations increases dramatically, but the scaling is actually sub-
exponential, i.e. less than 2N. Increasing connectivity through lni shifts the curves to the right.

3. Using the connectivity matrix to establish a one-to-one
correspondence between the ratchet network and the lonesummatrices
To establish the correspondence between the reachable configurations of ratchet network (ln =

lm = 1, T = 1) and the lonesum matrices, we must show (i) that A avoids the patterns
1 0

0 1

 !

and
0 1

1 0

 !
in any 2 × 2 sub-block, and (ii) that any lonesum matrix can be constructed
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from K and P actions. First observe that the value 1 in Ai, j indicates the last K affecting that
index must have followed a P, whereas 0 indicates the last Pmust have followed a K. For the

first restriction we have
1 0

0 1

 !
implies

P1 . . .K1 K1 . . . P2

K2 . . . P1 P2 . . .K2

 !
. This means P2 follows K1

follows P1 follows K2 follows P2, which is a contradiction, showing that this 2 × 2 block is
unreachable. The other five unique 2 × 2 blocks are all reachable with elementary sequences.
This establishes point (i) that the reachable configurations are a subset of the lonesum
matrices.

To establish point (ii) that the lonesum matrices are a subset of the reachable configurations,
we use an equivalent formulation of the lonesum matrices as staircase matrices composed of
the rows aj = (1, . . ., 1, 0, . . ., 0) with the last 1 appearing at position ij subject to the constraint
that ij � ij − 1 for all 8j 2 {2, . . ., n} [109]. It is easy to see that the pattern of ones resembles an
inverted staircase. We show via induction that any staircase matrix can be constructed from K
and P actions. The nth row is obtained by the sequence Kn Pin + 1� � �Pm which leaves 1’s at the
first in indices and 0’s at the remainder. Now assume that the kth row is obtained by the
sequence Kk Pik + 1� � �Pm without affecting any of the rows n, n − 1, . . ., k + 1. Then the
sequence Kk − 1 Pik − 1 + 1� � �Pm puts 1’s at the first ik − 1 indices of row k − 1. Because ik − 1 � ik
� � � � � in, none of the Pik − 1 + 1, . . ., Pm turn a 1 to a 0 in rows n, n − 1, . . ., k + 1, k. This proves
the induction hypothesis and shows that the staircases matrices are a subset of the reachable
configurations.

Together with the fact that the reachable configurations are a subset of the staircase matri-
ces, this implies that the reachable configurations and the lonesum matrices are in fact the
same set, and we have

Theorem 3 The number of reachable configurations in the (n,m) ratchet network with ln =
lm = 1 and threshold 1 scales as the poly-Bernoulli numbers B�n

m ¼ B�m
n .

4. Inductive proof that all binary ON/OFF configurations are reachable in
the ratchet network with threshold greater than 1
With T = 2, only targets in state 2 are ON. Once a 0-1 configuration of A is obtained, however,
it is a simple matter to convert it into an ON/OFF configuration by applying all the K’s. Here
we use the fact that 1’s can be reached from above and below to prove the

Theorem 4 In the ratchet network represented by the matrix A with ln = lm = 1 and threshold
T = 2, all binary 0-1 configurations are reachable.

Proof. We use an induction argument analogous to the proof of Theorem 3. Suppose that in
row n a set of r�m indices {nj} = {nj1, . . ., njr} should be ON. First prepare every target in row
n in the 1 state using Kn, then use the sequence Kn Pjr + 1

� � �Pjm to obtain 2’s at {nj1, . . ., njr} and
1’s at {njr + 1

, . . ., njm}. Now assume that we can prepare rows n, n − 1, . . ., k + 1 in a similar 1-2
configuration with the rest of the matrix 0. We want to show that we can add row k to this set
without affecting any of the previous rows. Assuming that a set of s�m indices {kj1, . . ., kjs}
should be ON, apply the sequence Pj1

. . . Pjs
K2

k Pjsþ1
. . . Pjm

to obtain 2’s at {kj1, . . ., kjs} and 1’s at

{kjs + 1
, . . ., kjm}. Now, because {Pj1, . . ., Pjs}[{Pjs + 1

, . . ., Pjm} = {P1, . . ., Pm}, all 2’s and 1’s in rows
n, n − 1, . . ., k + 1 are now 1’s and 0’s, respectively. Applying the sequence Kn Kn − 1� � �Kk + 1

reestablishes the 1-2 configuration we had prior to fixing row k and leaves 0’s at rows 1, . . ., k
− 1. Now that row k is also in the proper 1-2 configuration, we have proved the induction
hypothesis. Once all rows in the proper 1-2 configuration, the sequence P1� � �Pm obtains the
matrix in the 0-1 configuration. Since this procedure can be repeated for any collection of indi-
ces {{1j}, . . ., {nj}}, it follows that all binary 0-1 matrices are reachable.

Noncommutative Biology and Sequential Regulation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005089 August 25, 2016 22 / 36



5. A recursive formula for the number of non-redundant sequences in the
ratchet network
When the connectivity parameters ln and lm exceed 1, certain sequences in the threshold 1
ratchet network become redundant. Our goals in this section are to (i) to characterize the
redundant sequences by the number of K’s and P’s, and (ii) count the non-redundant
sequences. This will obtain an upper bound on the number of configurations.

We want the shortest sequences that can activate or (deactivate) all targets; any sequences
longer than this are redundant. To see why this is so, we need the concept of a cycle. We say
that a target has gone through a cycle if has traversed the states 0, 1, 0 at some subsequent time
points. We have the following lemma.

Lemma 5 Any sequence that takes all targets through a cycle is redundant.
Proof. The final configuration of any sequence is represented by the positions of the 1’s and

0’s of the connectivity matrix. Recall that Ai,j = 0 if an only if all targets represented by Ai,j are
OFF in the final configuration. Permute the rows and columns of A until it is in staircase form
with r�min(n,m) steps, where a step is a group of adjacent rows or columns having the same
number of 1’s and 0’s. The steps partition the rows and columns of A into subsets of indices {i1,
i2, . . ., ir} and {j1, j2, . . ., jr} where the k

th step is defined by 1’s at rows ik to ik + 1 − 1 and 0’s at
columns jk to jk + 1 − 1. Then the sequence

Qr
k¼1 Kik

. . .Kik�1Pjk
. . . Pjk�1 obtains the desired con-

figuration of 1’s and 0’s. Being able to write a staircase matrix for the final configuration means
that every target ON in the final configuration occurs only where there are 1’s in the matrix.
These targets are never affected by a P in this procedure; they do not go through a cycle.
Because any allowed configuration can be reached from this procedure, it follows that any
sequence that uses a cycle is redundant.

Knowing that the non-redundant sequences must avoid cycles, it suffices to find the longest
sequences that can be written before cycles appear.

Lemma 6 For each value of ln (lm), the maximum number of K’s (P’s) that can be used before
all targets are activated (deactivated) is n − ln + 1 (m − lm).

Proof. A sequence that activates all targets has no intervening P’s. Recall that a single K acti-
vates at most N

n
ln targets. Then, prior to the last K being used, the number of activated targets is

N � N
n
ln ¼ N

n
n� lnð Þ � N

n
ln n� lnð Þ. This means there are at most n − ln groups of targets con-

trolled by different K’s. Thus, at most n − ln K’s are used before the last K is used, and n − ln + 1
K’s must be sufficient to activate the complete set. The maximum number of P’s that can be
used is onlym − lm because we can think of every sequence starting in the zero configuration as
having been preceded by a single P; this modification puts the P’s on equal footing with the K’s.

With this characterization of the non-redundant sequences our goal is to recursively elimi-
nate sequences that use n − ln + 1 K’s andm − lm P’s. We first find the number of sequences
that use up tom − lm P’s, which forms the top row in each (n,m) block in S2 Fig. Then we use
these values to recursively find the number of sequences using up to n − ln + 1 K’s. The strategy
is to subtract from the total number of sequences at a given (ln, lm) all those sequences using
the forbidden number of regulators in order to get the new total.

Denote by amn the number of sequences usingm P’s when the total number of K’s is n. If
m = 1, then all B�n

1 ¼ 2n sequences (except for the empty sequence) use a K and none use a P. If
m = 2, the maximum number of P’s that can be used ism − lm = 1. Discarding the 2n sequences
with no P, the number of sequences using a single P is

a1n ¼
B�n
2 � 2n

2
: ð19Þ

Division bym = 2 is required to account for the fact that there are m
1

� � ¼ m different ways of
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starting each sequence with a P, and we consider both of these equivalent. Having determined
amn , it is straightforward to determine amþ1

n . Because there arem + 1 P’s to choose from, there

are mþ1
m

� �
amn ways to write sequences withm P’s, mþ1

m�1

� �
am�1
n ways to write sequences withm − 1

P’s, . . ., mþ1
0

� �
1 ways to write sequences with 0 P’s, the only remaining sequences are those with

m + 1 P’s. Knowing that the total number of sequences is B�n
m , this leaves

amþ1
n ¼

B�n
m � 2n �Pm

j¼0

mþ 1

j

� �
ajn

mþ 1

ð20Þ

total sequences usingm + 1 P’s when the total number of K’s is n. Having determined this
number, we can sum up all the sequences usingm − lm P’s to get the first row of the (n,m)
block in S2 Fig. Denote by cmn ln; lmð Þ the lmth column and ln

th row of the (n,m) block. The col-
umn headers cmn 1; lmð Þ are given by

cmn 1; lmð Þ ¼ 2n þ
Xm�lm

j¼0

m
j

� �
ajn: ð21Þ

We can determine the row entries for ln> 1 in the same way that we determined the column
headers, the only difference being that the total number of sequences is cmn 1; lmð Þ, not B�n

m unless
lm = 1. Denote by bnm lmð Þ the number of sequences using n K’s when the total number of P’s is
m and the P connectivity is lm. For fixedm, lm and n = 1, there are

b1m lmð Þ ¼ 2m �
Xlm�1

j¼0

m
j

� �
; ð22Þ

sequences, as all but the empty sequence use a single K. In complete analogy to Eq (20) we find
there are

bnþ1
m lmð Þ ¼ cmn 1; lmð Þ �

Xn�lnþ1

j¼0

nþ 1

j

� �
bjm lmð Þ ð23Þ

sequences using n + 1 K’s when the total number of P’s ism. Unlike in the equation for amn ,
there is no division by n + 1 because all sequences starting with a different K are different.
Finally, we can sum up all the sequences using n − ln + 1 K’s to get the

Theorem 7 The number of minimal length sequences in the (n,m, ln, lm) ratchet network
with threshold T = 1 using no more than n − ln + 1 K’s and m − lm P’s is

cmn ln; lmð Þ ¼
Xn�lnþ1

j¼0

n
j

� �
bjm lmð Þ: ð24Þ

We used this formula to compute each entry in S2 Fig. Because of the complexity of this
procedure, we checked it against a computer algorithm operating with the following steps. In
step 1 find all B�n

m sequences in the ln = lm = 1 case. In step 2 increase the connectivity (ln or lm)
and find all sequences of a given length; group them by the configuration they generate. Some
of these sequences will not appear in the list generated by step 1: for example, both K1 K2 and
K2 K1 will be found in step 2. We are interested in index permutation e.g. 1! 3, not letter per-
mutation, so in step 3 delete all sequences in each length group not appearing in step 1. Repeat
steps 1–3 with this new list of sequences until ln = n − 1. This code, implemented in Matlab
Version 2015b, gave exact agreement with Theorem 7.
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6. Proof that the reachable configurations are equivalent to the
connected one-colorings
We now show that rules restrict the reachable configurations of the sequestration model in the
main text to the connected one-colorings of the reduced n-network.

Theorem 8 There is a one-to-one correspondence between the reachable configurations of the
reduced n-network and the connected one-colorings.

Proof. The converse direction, reachable implies connected, is easier to prove and will be
discussed first. Assume that all configurations in the reduced n-network so far reached are con-
nected. The next configuration will be reached by turning all 0’s to i’s or all j’s to 0’s by applica-
tion of Ki or Pj, respectively. The k-arm targets sharing state i with the 2-arm target {0, 1, i} are
either in the same state as some other 2-arm target {0, 1, i0} or are in the 0 state. So application
of Ki cannot change the connectivity of the configuration. Furthermore, a k-arm target can be
in the j state only if the target {0, 1, j} is in the j state, so these targets will still be matched after
application of Pj. Thus, any configurations reachable from a reachable configuration must be
connected.

The forward direction, connected implies reachable, is less trivial. In order to prove that all
connected one-colorings in the n-network are reachable, we will use the strong form of mathe-
matical induction. Assume the theorem holds for all networks up to n − 1. Embedded within
the full n-network of 2n − 1 targets is the reduced n-network on 2n − 1 targets. Within the
reduced n-network is a set of 2n − 2 targets able to access {0, 1, 2} and all subsets (including Ø)
of the integers {3, . . ., n}. Thus, we can substitute 2! 1 as the ON state in this embedded net-
work and all connected one-colorings (of 2) will be reachable. The same holds in general for all
2n − k targets able to access {0, 1, k} and all subsets of the integers {k + 1, . . ., n}. In each of these
embedded networks the substitution k! 1 as the ON state will enable us create any connected
one-coloring.

Pick any connected one-coloring (of 1) in the n-network. Its opposite configuration is
formed by the transformation at each target g of 1! 0 and 0! kmin, where kmin = min{k2g|
xpos({0, j, k}) = 0} is the smallest index that g shares with a corresponding 2-arm target at position
pos({0, j, k}) of x (possibly in the full network) currently in the 0 state. The opposite of a con-
nected one-coloring is clearly connected, because all the connected 1’s are now 0, and all the 0’s
are in the same state as the 2-arm target {0, j, kmin}. If it is possible to reach the opposite config-
uration, then application of the sequence K1 P2. . .Pn yields the desired one-coloring of the n-
network.

To show that the opposite configuration of the chosen one-coloring is indeed reachable, iso-
late the embedded networks one-by-one by application of the sequence Kk K1 Pk for k = 2, . . .,
n, so that the targets in the n − k + 1-network are the only targets in the 0 state. By hypothesis,
the connected one-colorings are reachable in all embedded networks which have at most n − k
states besides 0, 1, and k. The opposite configuration in the n-network is composed of con-
nected one-colorings (of k) in each embedded network; these are are reachable. Therefore, the
one-coloring of the n-network is reachable via K1 P2. . .Pn. This procedure holds for any one-
coloring.

7. Lower and upper bounds for the full n-network
How many configurations are reachable in the full n-network? Let this number be cn. The fol-
lowing theorems derive lower and upper bounds for cn in terms of the number of one-
colorings.

Theorem 9 The formula f(n + 1) for the number of connected one-colorings in the reduced n
+ 1-network is a lower bound for cn.
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Proof. The full n + 1-network can be partitioned into a set of 2n targets having a 1 and all
subsets of {2, . . ., n + 1}, and 2n − 1 targets that lack 1 but have all nonempty subsets of
{2, . . ., n + 1}. The latter set of targets is an embedded full n-network, while the former is the
reduced n + 1-network. All 2(n + 1) letters are needed to form the one-colorings in the
reduced n + 1-network. Every one-coloring is finally obtained by applying some permutation
of K1, P2, . . ., Pn + 1 to a configuration that uses (at most) the states 2, . . ., n + 1 and 0, i.e. the
full n-network. Because K1 and P1 do not affect the targets of the the embedded full n-net-
work, there must be (at least) one sequence using only {K2, . . ., Kn + 1} and {P2, . . ., Pn + 1}
that prepares the embedded full n-network in the aforementioned configuration, which
means we may associate a one-coloring with (at least) one of the cn sequences in the embed-
ded full n-network. Therefore, multiple configurations in the full n-network may map to the
same one-coloring in the reduced n + 1-network. Conversely, if two one-colorings are differ-
ent, they are distinguishable by their configurations immediately preceding the final K1,
P2, . . ., Pn + 1 sequence, and must therefore map to different configurations in the full n-net-
work. Together, these statements imply that the map from configurations in the full n-net-
work to one-colorings in the reduced n + 1-network is many-to-one, but the map from one-
colorings to configurations in the full n-network is one-to-one. Therefore, f(n + 1)� cn.

Theorem 10 An upper bound on cn is

nf nð Þ þ n n� 1ð Þ f nð Þ � 1ð Þf n� 1ð Þ þ � � � þ n! f nð Þ � 1ð Þ � � � f 2ð Þ � 1ð Þf 1ð Þ þ 1

¼
Xn
k¼1

nð Þk
Yn

j¼n�kþ2

f jð Þ � 1ð Þ
( )

f n� kþ 1ð Þ þ 1:
ð25Þ

where (n)k = n(n − 1)� � �(n − k + 1) is the falling factorial.
Proof. There are nf(n) one-colorings in the full n-network, plus one origin. Each one of the

one-colorings can be thought of as the origin of an n − 1-network, which in turn generate
(n − 1)f(n − 1) one-colorings in an embedded n − 1-network, for a total of

nf nð Þ n� 1ð Þf n� 1ð Þ

configurations using 1, 2, and perhaps 0, hence termed two-colorings. However, one of the f(n)
one-colorings is the 0 state of the n-network, so it does not generate any two-colorings. Thus,
there are at most 1 + nf(n) + n(n − 1)(f(n) − 1)f(n − 1) zero-, one-, and two-colorings. Now
assume that the number of k-colorings is

n n� 1ð Þ � � � n� kþ 1ð Þ f nð Þ � 1ð Þ f n� 1ð Þ � 1ð Þ � � � f n� kþ 2ð Þ � 1ð Þf n� kþ 1ð Þ:

Of these,

n n� 1ð Þ � � � n� kþ 1ð Þ f nð Þ � 1ð Þ f n� 1ð Þ � 1ð Þ � � � f n� kþ 2ð Þ � 1ð Þ

are origins of an n − k-network, meaning they are actually k − 1-colorings; they cannot generate
any k + 1-colorings. The remaining

n n� 1ð Þ � � � n� kþ 1ð Þ f nð Þ � 1ð Þ f n� 1ð Þ � 1ð Þ
� � � f n� kþ 2ð Þ � 1ð Þ f n� kþ 1ð Þ � 1ð Þ

are genuine k-colorings which can generate f(n − k) one-colorings in the n − k-network, or
equivalently, k + 1-colorings. Thus, the total number of zero-, one-, two-, . . ., k + 1-colorings is
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no more than

n n� 1ð Þ � � � n� kþ 1ð Þ f nð Þ � 1ð Þ f n� 1ð Þ � 1ð Þ
� � � f n� kþ 2ð Þ � 1ð Þ f n� kþ 1ð Þ � 1ð Þ:

This induction argument proves the statement.

8. Properties of the orbits in the ratchet and sequestration network
First we define what it means to be an origin and an orbit in the threshold-1 ratchet network
and determine the number of orbits as a function of n andm. Then we prove that the configu-
rations in the sequestration network are defined by reversible paths.

A forbidden configuration in the ratchet network contains some row or column permuta-

tion of the pattern
1 0

0 1

 !
on any 2 × 2 sub-block of the connectivity matrix A. This is the

minimum violation, but larger blocks may violate this pattern as well, for example

1 0

0 1

1 0

0
B@

1
CA

has 2 violations. Furthermore, application of any of the K’s or P’s in this sub-block will relieve
at least one of these violations. Therefore, we define an i, j-orbit in the ratchet network as the
locus of configurations having a forbidden configuration on an i × j sub-block that does not use
the corresponding set of i K’s and j P’s. The origin of any i, j-orbit is the configuration having
all remaining nm − ij entries of A equal to 0 (or all 1 to make the case of having only P actions
symmetric with having only K’s). A matrix X having the same forbidden i × j sub-block as an
origin Y is not considered to be in the orbit of Y if (i) there is no sequence of actions that trans-
forms Y to X, or (ii) if the sequence involves one of the forbidden K’s or P’s. With these restric-
tions, the number of origins is equal to the number of orbits.

Denote by cji the number of orbits in a ratchet network of size n ×m with violations involv-
ing i� n K’s and j�m P’s. If i = j = 2 there are 2ij � B�2

2 ¼ 2 forbidden configurations that
turn into origins for the remaining n − i K’s and n − j P’s. There are more orbits in these smaller

networks. For every i0, j0 � 2 there are i
i0
� �

j
j0

� �
cj

0
i0B

� j�j0ð Þ
i�i0 configurations reached by orbits using i0

K’s and j0 P’s. Only configurations not reached by these orbits are available as new origins when

the number of K’s and P’s not to be used is i and j, respectively. Finally, there are n
i

� �
m
j

� �
ways

to specify i� n K’s and j�m P’s. Then we have the
Theorem 11 For a given set of i� n K’s and j�m P’s, the number of i, j-orbits is

cji ¼ ð2ij � B�j
i Þ �

Xi;j
i0 ;j0�2

i0þj0�iþj�1

i

i0

 !
j

j0

 !
cj

0
i0B

0�ðj�j0Þ
i�i0 ; ð26Þ

and the the total number of i, j-orbits in the n ×m ratchet network is

Cj
i n;mð Þ ¼ n

i

� � m
j

� �
cji; ð27Þ
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where

B0� j�j0ð Þ
i�i0 ¼

B� j�j0ð Þ
i�i0 if i� i0 > 0 and j� j0 > 0

2i�i0 if j� j0 ¼ 0

2j�j0 if i� i0 ¼ 0

8>>><
>>>: : ð28Þ

The modification B0 ensures that an orbit lacking allowable P’s (K’s) can still use K’s (P’s). A
table of values of Eq (27) is given in S4 Fig.

We noted in the main text that configuration in the sequestration network can be joined by
reversible paths. A path Ki Pj or Pj Ki is reversible if a configuration reached by the sequence of
actions w is also reached by the either the sequence wKi Pj or wPj Ki, but not wKi or wPj, respec-
tively. Thus we can also prove the

Theorem 12 There always exists a reversible path between any two configurations in an orbit
of the sequestration network.

Proof. Let x be a configuration in an orbit usingm� n of the actions, and let P denote the
locus of configurations reached from x. We now need to show that Pmust be reversibly
reached from the origin. Denote by �P the complement of P, so that any y 2 �P is reversibly
reached from the origin. In order for there to be no reversible path between x 2 P and y 2 �P ,
there must always be a state i such that Ki increases the number of targets {�, i} in the i state and
Pi increases the number of targets {�, i} in the zero state. Now assume there is a configuration z
2 P using allm allowed states. zmust have at least one target in the 0 state, but this is un-
allowed, because then z would violate the connection rule. Therefore, there is a maximum
numberm0 <m of states used by any x 2 P. Now assume there is a configuration z0 2 P using
allm0 allowed states. But this implies that there is a single-arm target {0, j} that must be in the
zero state. Then the action Kj takes z0 to a configuration y 2 �P and Pj takes y to z. This path
must be reversible, and z0 is reached reversibly from the origin. By induction we conclude that
m0 = 0 and that P = Ø. Finally, because any two configurations are reached reversibly from the
origin, there is a reversible path between them.

Theorem 12 defines the orbits of the sequestration network as those configurations con-
nected by reversible paths.

9. A universal formulation of the actions as matrix operators
In this section we show how to write the K and P regulators as matrix operators in a manner
consistent with both models considered in the paper. First we define the vector space V of con-
figurations of the N targets, then we derive the operators that transform V.

Let x 2 V. For a network with N targets we require that ∑i xi = N. This means that x has at
least N entries, and in general dim x� N. Therefore, we cannot use the standard state space of
N-dimensional vectors, because the operators will not conserve the number of targets. Each tar-
get has a 0 state. The number D of independent directions accessible from 0 is called the dimen-
sion of the network, and the number T of steps one can move along each dimension is called
the threshold. In the ratchet model, each target has a single ladder of states with variable thresh-
old, so D = 1 and T is allowed to vary; in the sequestration model D = n but the threshold is
T = 1.

Denote by Adi the fraction of the targets of type A in state i 2 {0, 1, . . ., T} along dimension
d. For a subset of the targets a K-type action causes population transfer between states (d, j)
and (d, i) with i = j + 1, and a P-type action the reverse. If a K regulator acts for a short time we
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can write the “reaction rate” equation as

_xAj
¼ �gAxAj

_xAi
¼ þgAxAj

ð29Þ

where gA > 0 is a proportionality constant. This defines a matrix differential equation

_x ¼ Gdj � x ð30Þ

with x 2 R
N DTþ1ð Þ�1 the vector of populations of the DT + 1 states of the N targets and Gdj 2

R
N DTþ1ð Þ�N DTþ1ð Þ the block diagonal matrix of rate constants between the j and j + 1 population

states along dimension d. Eq (29) can be rewritten

_xAj

_xAi

0
@

1
A ¼

�gA 0

gA 0

 !
�

xAj

xAi

0
@

1
A: ð31Þ

Because Gdj is block diagonal, Eq (30) can be solved by exponentiation on each block:

xAj
tð Þ

xAi
tð Þ

0
@

1
A ¼ exp

�gA 0

gA 0

 !
t

( )
�

xAj
0ð Þ

xAi
0ð Þ

0
@

1
A ¼

e�gAt 0

1� e�gAt 1

 !
�

xAj
0ð Þ

xAi
0ð Þ

0
@

1
A: ð32Þ

The restriction of the model from a continuous range of population states xAi
2 [0, 1] to the

boolean values {0, 1} formally emerges by considering the “reaction” K catalyzes on its targets
to have gone to completion. We do this by taking the the limit t!1 in Eq (32) to get

xAj
tð Þ

xAi
tð Þ

0
@

1
A ¼

0 0

1 1

 !
�

xAj
0ð Þ

xAi
0ð Þ

0
@

1
A; ð33Þ

so that the matrix Kdj defined by

Kdj ¼ lim
t!1

exp Gdjt
n o

ð34Þ

is the block diagonal matrix having 1’s at (row, column) positions (1 + (d − 1)T + i, 1 + (d − 1)
T + j) of each block that responds to K in dimension d and admits population transfer between
from j to i.

Because K acts on all targets at once, it is insensitive to the initial state j. Thus the matrix
corresponding to the action of K is

Kd ¼
Y
j

Kdj; ð35Þ

which is the block diagonal matrix having 1’s at (row, column) positions

1þ d � 1ð ÞT þ 1; 1þ d � 1ð ÞT þ 0ð Þ; . . . ; 1þ d � 1ð ÞT þ T; 1þ d � 1ð ÞT þ T � 1ð Þ
and 1þ d � 1ð ÞT þ T; 1þ d � 1ð ÞT þ Tð Þ

of each block that responds to K in dimension d.
This derivation can be repeated in the case that population goes in the opposite direction

from at state j to a state i< j using a different set of rate matricesHdj corresponding to the
reverse of Eq (31). We obtain the block diagonal matrix Pd corresponding to the action of P in
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dimension d having 1’s at (row, column) positions

1þ d � 1ð ÞT þ 0; 1þ d � 1ð ÞT þ 1ð Þ; . . . ; 1þ d � 1ð ÞT þ T � 1; 1þ d � 1ð ÞT þ Tð Þ
and 1þ d � 1ð ÞT þ 0; 1þ d � 1ð ÞT þ 0ð Þ

of each block that responds to P in dimension d. Whereas Kd is sub-diagonal, Pd is super-
diagonal.

The Baker-Campbell-Hausdorf expansion shows that Kd in Eq (35) and in general any
product of matrices Kd and Pd are generated by matrix exponentiation of commutators of the
generators Gdj,Hdj. This is the origin of noncommutativity in both the ratchet and sequestra-
tion models.

An example in the sequestration network illustrates population transfer between states. In
the n = 2 network on the targets A, B, and C the initial configuration of the network is repre-
sented by

A0 A11 A21 B0 B11 B21 C0 C11 C21ð ÞT ¼ 1 0 0 1 0 0 1 0 0ð ÞT .
Only targets A and C can access dimension 1, and only targets B and C can access dimension 2.
Therefore the t!1 action of K1 on the network is given by

e�gAt 0 0 0 0 0 0 0 0

1� e�gAt 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 e�gCt 0 0

0 0 0 0 0 0 1� e�gCt 1 0

0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

1

0

0

1

0

0

1

0

0

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

t!1
�!

0

1

0

1

0

0

0

1

0

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ð36Þ

Only A and C advance to state 1 and the number of targets (3) is conserved.

Supporting Information
S1 Fig. Scaling in combinatorial networks is sub-exponential. (A) An example network with
u = 3 pools of n = 2 regulators each. A target is only ON if all u of its regulators bind. (B) Plots
of Eq (18) vs. n for an increasing number of pools u and increasing redundancy ln.
(TIF)

S2 Fig. Number of unique words in the threshold 1 ratchet network as a function of n,m,
ln, and lm found using Eq (24). n andm increase the across the rows and up the columns. ln
and lm increase down the columns and across the rows of the sub-blocks.
(TIF)

S3 Fig. The full n-network model has upper and lower bounds. (A) A plot of all the allowed
configurations of a set of targets controlled by n = 3 regulators pairs in the full n-network. Blue,
cyan, yellow, and red correspond to states 0, 1, 2, and 3, respectively. (B) A list of the words
generating the corresponding states in A. K actions are shown in the red spectrum, and P in the
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blue. (C) A logarithmic plot of the bounds on the full model. The total space is
Qn

i¼0 ðiþ 1Þ n
ið Þ,

the upper and lower bounds are calculated from Eqs (24) and (7), respectively, and the combi-
natorial model is 22n.
(TIF)

S4 Fig. Number of orbits restricted from using i of the K’s and j of the P’s in the threshold 1
ratchet network as a function of n andm calculated using Eq (27). n andm increase the
across the rows and up the columns. i and j increase down the columns and across the rows of
the sub-blocks.
(TIF)
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