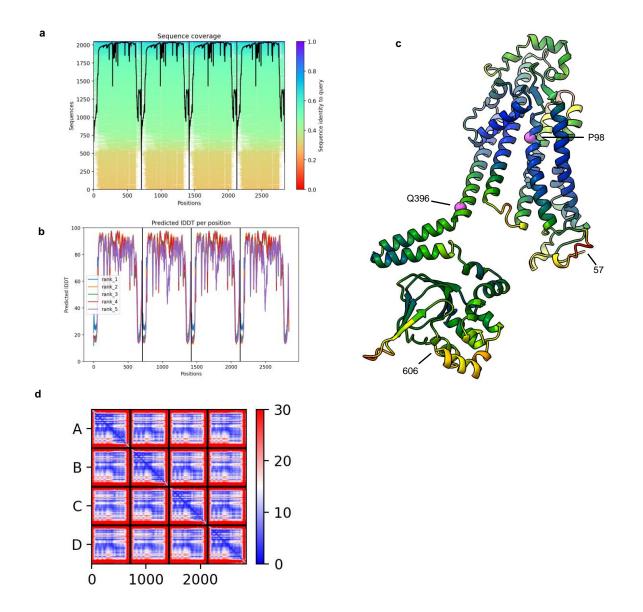
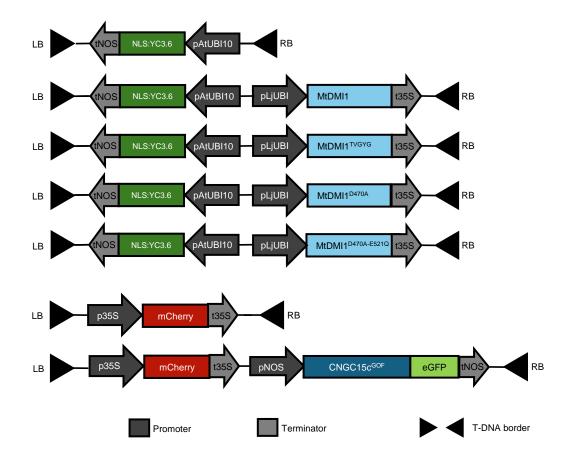
Supplementary information

Autoactive CNGC15 enhances root endosymbiosis in legume and wheat


In the format provided by the authors and unedited

Transmembrane domain S1

MtCNGC15a	PRINLWNKIFLAACLISLFVD	PLFFYL	103
MtCNGC15c	OLIHRWNKIFLVACLVSLFVD	PLFFYL	109
MtCNGC15b	OTIHOWNKIFLVACLISLFVD		91
GmCNGC15a	HRVNTWNKIFLAACLLSLFVD		103
GmCNGC15b	HRVNTWNKIFLAACLLSLFVD		107
GmCNGC15d	OTIHRWNKIFLVACLVSLFVD		109
GmCNGC15d	~		109
	QTIHRWNKIFLVACLASLFVD		
GmCNGC15c	QTIHRWNKILLVACLVSLFVD		106
SlCNGC15a	RLINIWNKCFLIASLTSLFVD		109
SlCNGC15b	HVIRRWNKFFLVSCLVSLFVD		111
SlCNGC15c	PTVRRWNKILLVACLIGLFVD		111
TaCNGC15a-A1	QVVHRWHKVFLAACLASLFVD		116
TaCNGC15a-B1	QVIHRWHKVFLAACLASLFVD	PLFLYL	116
TaCNGC15a-D1	QVIHRWHKVFLAACLASLFVD	<mark>P</mark> LFLYL	116
TaCNGC15b-A1	RVIHLWNKIFLTACLLSLFVD	PLFLYL	127
TaCNGC15b-B1	RVIHLWNKIFLTACLLSLFVD	PLFLYL	126
TaCNGC15b-D1	RVIHLWNKIFLTACLLSLFVD	PLFLYL	128
OsCNGC15	QLIHLWSKIFLAACLASLFVD	PLFLYL	120
ZmCNGC15	OLIHLWNKIFLSACLLSLFVD	PLFLYL	119
A.hCNGC15a	PRVNRWNRIFLVACLISLFVD		98
A.hCNGC15c	QAIHRWNKIFLVASLVSLFVD		67
A.hCNGC15b	OTIHRWNKIFLVACLVSLFVD		88
AtCNGC15b	QTIRRWNKIFLVACLVSLFVD		100
	-		145
AtCNGC2	KRVQRWNRALLLARGMALAVD		
MtCNGC2	KRVQLSNRALLLARGVALAID		141
AtCNGC4	KWVREWNKVFLLVCATGLFVD		111
MtCNGC4a	KWAEEWNRVFLLVCAMGLFVD		95
MtCNGC4b	KWVQEWNRVFLLVCAAGLFVD		94
MtCNGCIVAe	KVVHLWNKFLAIICFVAIFVD		36
AtCNGC19	KFVQVWTRVLAFSSLVAIFID <mark>I</mark>	PLFFFL	120
AtCNGC20	KEVQTWTKFFALSCLLAIFID	<mark>P</mark> LFFFL	112
MtCNGCIVAa	KLVHQWNKFFAICCLVAIFVD	PLFFFL	124
MtCNGCIVAd	KVVQQWNTIFAISCSVAIFFD	PLFFFL	59
MtCNGCIVAf	KLVQQWNKFLAIFCMLAIFVD	PLFLFL	65
MtCNGCIVAb	KIVQQWNKFLAIFCLLAIFVD	PLFFFL	100
-MtCNGCIVAc	KVVOOWNKFLAIFCIVAIYVD		109
AtCNGC14	DAVLOWNRVFLFWCLVALYVD		104
AtCNGC17	EIVLKWNWVFIVSCMVALFID		103
MtCNGC14	DIFLEWKRAFLCSCILSLFVD		105
MtCNGC17	OIVLKWNRLFIVSCLLALFVD		75
AtCNGC16	DLITRWNHIFLITCLLALFLD		76
MtCNGC16	PFVAKWNVTFLYACLFALFLD		67
AtCNGC18	NIVTYWNHVFLITSILALFLD		71
MtCNGC18			
	ELVAYWNKVFLVTSLLALFID		75
AtCNGC7	KTLLVWNRLFVISCILAVSVD		93
AtCNGC8	KTLLLWNRMFVISCILAVSVD		129
AtCNGC6	KFLLLCNKLFVASCILAVSVD	PLFLYL .	135
AtCNGC9	KFLLLCNKLFVTSCILAVSVD	PLFLYL	109
AtCNGC5	KFLLYCNKLFVASCILSVFVD	PFFFYL	120
MtCNGCII	KFLLLWNKLFVISCIFSVFVD	<mark>P</mark> LFFYL	131
AtCNGC10	SFLQNWNKIFLFACVVALAID	PLFFYI	100
AtCNGC13	SFLQNWNKIFLFASVIALAID <mark>I</mark>	PLFFYI	100
AtCNGC3	SYLQSWNKIFLLLSVVALAFD <mark></mark>	PLFFYI	104
AtCNGC11	KTLENWRKTVLLACVVALAID	PLFLFI	61
AtCNGC12	KTLENWRKTVLLACVVALAID		61
AtCNGC1	PFLQRWNKIFVLACIIAVSLD		116
MtCNGC1a	TFLQKWNKIFVLLCVIAVSLD		115
MtCNGC1b	PFLQKWNKIFVLSCLIAVSID		113
MtCNGCIa	PLLQKWNKIFVITCVMAVSMD		93
MtCNGCIb	PMLQKWNKIFVITCVLAISVD		107
1100110010	· · · · · · · · · · · · · · · · · · ·		101


SI Fig. 1| Sequence conservation of S1 amino acid sequence of CNGC15.

Protein sequence alignment of the S1 transmembrane domain of CNGC15 from *Medicago truncatula (Mt)*, *Arabidospis thaliana* (At), *Arachis hypogaea* (A.h), *Glycine max* (Gm), *Oryza sativa* (Os), *Solanum lycopersicum* (SI), *Triticum aesitivum* (Ta) and *Zea mays* (Zm). Highly conserved Proline residue mutated in CNGC15^{GOF} is highlighted in yellow.

SI Fig. 2| Confidence metrics of CNGC15a homotetramer.

a, Sequence identity plot showing good coverage and depth for the multiple sequence alignment against the MtCNGC15a sequence (the alignment is shown four times, once for each subunit). **b**, Plots of the predicted local distance difference test score (pLDDT) for the five independent tetramer models, which are overlaid (see inset colour scheme). The scores for each subunit are shown in separate panels. pLDDT values exceeding 70 are achieved across all the five models, except at the termini and in a few surface loops. **c**, Alphafold2 model of a single subunit taken from the top ranked model coloured according to pLDDT score, where residues with values of less than 50 are coloured red; residues with values in the range 50-100 are shown in rainbow colouration from red through to blue, with blue indicating the highest quality. Residues at the poorly predicted termini were omitted (i.e. residues 1-56 and 607-710). Magenta spheres indicate the position of Pro98 positioned in S1 and the channel gating residues Gln396. **d**, Visualization of Predicted Aligned Errors (PAE) for the top ranked model; the off-diagonal blue blocks indicate high confidence in the relative placement of the subunits within the tetramer. A to D indicate the four units of MtCNGC15. The x-axis numbering in **a**, **b** and **d** indicates the cumulative residue count for the tetramer (total = 4 x 710 = 2840 residues).

SI Fig. 3 GoldenGate constructs generated in this study.